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MATRIX FUNCTIONS THAT PRESERVE THE STRONG
PERRON-FROBENIUS PROPERTY*
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Abstract. In this note, matrix functions that preserve the strong Perron-Frobenius property
are characterized, using the real Jordan canonical form of a real matrix.
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1. Introduction. A real matrix has the Perron-Frobenius property if its spectral
radius is a positive eigenvalue corresponding to an entrywise nonnegative eigenvector.
The strong Perron-Frobenius property further requires that the spectral radius is
simple; that it dominates in modulus every other eigenvalue; and that it has an
entrywise positive eigenvector.

In [I7], Micchelli and Willoughby characterized matrix functions that preserve
doubly nonnegative matrices. In [7], Guillot et al. used these results to solve the critical
exponent conjecture established in [12]. In [I], Bharali and Holtz characterized entire
functions that preserve nonnegative matrices of a fixed order and, in addition, they
characterized matrix functions that preserve nonnegative block triangular, circulant,
and symmetric matrices. In [4], Elhashash and Szyld characterized entire functions
that preserve sets of generalized nonnegative matrices.

In this work, using the characterization of a matrix function via the real Jordan
canonical form established in [16], we characterize matrix functions that preserve the
strong Perron-Frobenius property. Although our results are similar to those presented
in [4], the assumption of entirety of a function is dropped in favor of analyticity in
some domain containing the spectrum of a matrix.

2. Notation. Denote by M, (C) (respectively, M, (R)) the algebra of complex
(respectively, real) n x n matrices. Given A € M,,(C), the spectrum of A is denoted
by o (A), and the spectral radius of A is denoted by p (A).
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The direct sum of the matrices Ay,..., A, where 4; € M,,(C), denoted by
A1 @ - D Ay, @le A;, or diag (A, ..., Ag), is the n x n matrix

Ay

k
, N = E n;.
i=1

Ay,

For A € C, J,(A) denotes the n x n Jordan block with eigenvalue X\. For A €
M,,(C), denote by J = Z'AZ = @._, Ju,(\) = @i_, Ju,, where Y n; = n, a
Jordan canonical form of A. Denote by A1, ..., As the distinct eigenvalues of A, and,
fori=1,...,s, let m; denote the index of \;, i.e., the size of the largest Jordan block
associated with \;. Denote by i the imaginary unit, i.e., i :=+/—1.

A domain D is any open and connected subset of C. We call a domain self-
conjugate if X € D whenever \ € D (i.e., D is symmetric with respect to the real-axis).
Given that an open and connected set is also path-connected, it follows that if D is
self-conjugate, then RN D # (.

3. Background. Although there are multiple ways to define a matrix function
(see, e.g., [9]), our preference is via the Jordan Canonical Form.

DEFINITION 3.1. Let f : C — C be a function and denote by f) the jth
derivative of f. The function f is said to be defined on the spectrum of A if the values

FON), j=0,...omi—1, i=1,...,s,

called the values of the function f on the spectrum of A, exist.

DEFINITION 3.2 (Matrix function via Jordan canonical form). If f is defined on
the spectrum of A € M, (C), then

t
fA) = Zf(NZ7 = 2 <69 f(Jm)> z,
i=1
where
/ (=D
FO9) F) e L

(3.1) F(Iny) = oY)
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The following theorem is well-known (for details see, e.g., [I1], [I4]; for a complete
proof, see, e.g., [6]).

THEOREM 3.3 (Real Jordan canonical form). If A € M,(R) has r real eigenval-
ues (including multiplicities) and ¢ complex conjugate pairs of eigenvalues (including
multiplicities), then there exists an invertible matriz R € M, (R) such that

1 [Bhmr Tn (M)
(32) ROAR= B Con )]
where:
1.
cl) L
(3.3) Ci(N) - ¢ € M;(R);
I
C(A)
2.
_ | RY SO
(3.4) C(\) = {%()\) %()\J € Ms(R);

3. S(\)=0,k=1,...,r; and
4. SMg) #0, k=r+1,...;r+c.

ProposiTION 3.4 ([I6, Corollary 2.11]). Let A € C, A # 0, and let f be a
function defined on the spectrum of Ji(A) & Ji (5\) For j a nonnegative integer, let

f/(\j) denote fO)(N). If Cr(\) and C(\) are defined as in B3) and B3, respectively,
then

HC) f(Cy) e LR
f(Ck()\)) _ f(CA) S MQk((C),
- f'(C)
f(Cy)

and, moreover,
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if and only if f(]) /S\j).

We recall the Perron-Frobenius theorem for positive matrices (see [1I, Theorem
8.2.11]).

THEOREM 3.5. If A € M, (R) is positive, then

(i) p=p(A)>0;

(ii) p € o (A);
(iii) there exists a positive vector x such that Ax = px;
(iv) pis a simple eigenvalue of A; and

(v) |A| < p for every A € o (A) such that A # p.

One can verify that the matrix

(3.5) B— E _11]

satisfies properties (i) through (v) of [Theorem 3.5 but obviously contains a negative
entry. This motivates the following concept.

DEFINITION 3.6. A matrix A € M,(R) is said to possess the strong Perron-
Frobenius property if A satisfies properties (i) through (v) of [Theorem 3.5

It can also be shown that the matrix B given in (3.5 satisfies BX > 0 for k > 4,
which leads to the following generalization of positive matrices.

DEFINITION 3.7. A matrix A € M,(R) is eventually positive if there exists a
nonnegative integer p such that A* > 0 for all k > p.

The following theorem relates the strong Perron-Frobenius property with even-
tually positive matrices (see [8, Lemma 2.1], [I3] Theorem 1], or [I8, Theorem 2.2]).

THEOREM 3.8. A real matriz A is eventually positive if and only if A and AT
possess the strong Perron-Frobenius property.
4. Main results. Before we state our main results, we begin with the following

definition.

DEFINITION 4.1. A function f: C — C defined on a self-conjugate domain D,
DNRY £, is called PFrobeniud] if

(i) FO) = f(A), A€ D
(i) |f(N)| < f(p), whenever |[A| < p, and A, p € D.

IWe use the term ‘Frobenius’ given that such a function preserves Frobenius multi-sets, intro-
duced by Friedland in [5].
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REMARK 4.2. Condition (i) implies f(r) € R, whenever r € DNR; and condition
(ii) implies f(r) € Rt, whenever r € DNR*.

The following theorem is our first main result.

THEOREM 4.3. Let A € M,(R) and suppose that A is diagonalizable and pos-
sesses the strong Perron-Frobenius property. If f : C — C is a function defined on
the spectrum of A, then f(A) possesses the strong Perron-Frobenius property if and
only if f is Frobenius.

Proof. Suppose that f is Frobenius. For convenience, denote by fy the scalar

f(A). Following [Theorem 3.3 and [Proposition 3.4] the matrix

foca)
(4.1) f(A)=R Do frn R,

where R = [z R'], = >0, is real. If 0 (A) = {p(A4),A2,..., Ay}, then o (f(4)) =
{focays fazs s I} (see, e.g., [9)[Theorem 1.13(d)]) and because f is Frobenius, it
follows that |f,| < fua) for & = 2,...,n. Moreover, from (&I it follows that
J(A)x = fyayz. Thus, f(A) possesses the strong Perron-Frobenius property.

Conversely, if f is not Frobenius, then the matrix f(A), given by (&J)), is not
real (e.g, I\ € 0 (A4), A € R such that f(\) € R), or f(A) does not retain the strong
Perron-Frobenius property (e.g., 3X € o (A) such that |f(\)| > f(p(A))). O

EXAMPLE 4.4. [Table 4.1]lists examples of Frobenius functions for diagonalizable
matrices that possess the strong Perron-Frobenius property.

f D
f(z)=2,peN C
f(z) = |2] C

f(z) =27, p €N, p even {zeC:2¢R}

f(z)=2Y?P peN,podd, p>1 C
f(z) =1 garz*, ap >0 C
f(z) = exp(2) C

TABLE 4.1

Ezxzamples of Frobenius functions.

For matrices that are not diagonalizable, i.e., possessing Jordan blocks of size two
or greater, given (3] it is reasonable to assume that f is complex-differentiable, i.e.,
analytic. We note the following result, which is well known (see, e.g., [2], [3], [10
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Theorem 3.2], [15], or [19)]).

THEOREM 4.5 (Reflection Principle). Let f be analytic in a self-conjugate domain

D and suppose that [ :==DNR # (). Then f(A\) = f()\) for every X\ € D if and only if
f(r) €R forallrel.

The Reflection Principle leads immediately to the following result.

COROLLARY 4.6. An analytic function f : C — C defined on a self-conjugate
domain D, DNR*T #£ 0, is Frobenius if and only if

(i) f(r) € R, whenever r € DNR; and
(i) |f(N)| < f(p), whenever |\| < p and A, p € D.

LEMMA 4.7. Let f be analytic in a domain D and suppose that I := DNR # (.
If f(r) €R for all r € I, then fO)(r) €R for allr € I and j € N..

Proof. Proceed by induction on j: when j = 1, note that, since f is analytic on
D, it is holomorphic (i.e., complex-differentiable) on D. Thus,

. f(z) = f(r)
"(r) =1
fir) = lim =——
exists for all z € D; in particular,
Py = tim 1O S0
T e

and the conclusion that f/(r) € R follows by the hypothesis that f(z) € R for all
xel.

Next, assume that the result holds when j = kK — 1 > 1. As above, note that
f®)(r) exists and
(k—1) _ r(k—-1)
f(k)(r) = lim / (z) = f (T), xel

T x—r

so that f®(r) e R. O

THEOREM 4.8. Let A € M,,(R) and suppose that A possesses the strong Perron-
Frobenius property. If f : C — C is an analytic function defined in a self-conjugate
domain D containing o (A), then f(A) possesses the strong Perron-Frobenius property
if and only if [ is Frobenius.

Proof. Suppose that f is Frobenius. Following [Theorem 3.3 there exists an
invertible matrix R such that

p(4)
R™'AR = D=z Jni (k) . ;
@k:r-ﬁ-l an ()\k)
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where

Rz[:c R’], x > 0.

Because f is Frobenius, following [Theorem 4.5, f(A\) = f(\) for all A € D. Since f
is analytic, ) is analytic for all j € N and, following [Cemma 4.7 fU)(r) € R for all

r € I. Another application of Theorem 4.5] yields that f()(\) = fU)(X) for all A € D.
Hence, following [Proposition 3.4} the matrix

f(p(A))
f(A) =R Dl f(Tni (k) R

is real and possesses the strong Perron-Frobenius property.
The proof of the converse is identical to the proof of the converse of[Theorem 4.3} O

COROLLARY 4.9. Let A € M,(R) and suppose that A is eventually positive. If
f: C — C is an analytic function defined in a self-conjugate domain D containing
o (A), then f(A) is eventually positive if and only if [ is Frobenius.

Proof. Follows from [Theorem 4.8 and the fact that f(AT) = (f(A))" (9, Theo-
rem 1.13(b)]). O

REMARK 4.10. Aside from the function f(z) = |z|, which is nowhere differen-
tiable, every function listed in [Table 4.1] is analytic and Frobenius.
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