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COMMON REDUCING UNITARY SUBSPACES AND
DECOHERENCE IN QUANTUM SYSTEMS*

GRZEGORZ PASTUSZAK!T AND ANDRZEJ JAMIOLKOWSKI!

Abstract. Maps of the form ®(X) =>"7_; A; X A¥, where Aj,..., A are fixed complex n x n

i=1
matrices and X is any complex n X n matrix, are used in quantum information theory as repre-
sentations of quantum channels. This article deals with computable conditions for the existence
of decoherence-free subspaces for ®. Since the definition of decoherence-free subspace for quantum
channels relies only on the matrices Aq,..., As, the term of common reducing unitary subspace is
used instead of the original one. Among the main results of the paper, there are computable con-
ditions for the existence of common eigenvectors. These are related to common reducing unitary
subspaces of dimension one. The new results on common eigenvectors provide new effective condition
for the existence of common invariant subspaces of arbitrary dimensions.

Key words. Decoherence-free subspaces, Quantum channels, Common eigenvectors, Common
eigenspaces, Common invariant subspaces.
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1. Introduction and preliminary facts. Quantum information theory is one
of the central topics of study in quantum mechanics [15]. Quantum information may
be understood as physical information that is held in the state of a quantum system,
see [8] for basic concepts and terminology of quantum theory. The smallest possible
unit of quantum information is the gubit. Qubits may be transmited through quantum
channels.

There are many fundamental differences between qubits and bits that are used
to store classical information. For example, a classical bit of information takes the
value 0 or 1 whereas a qubit can take the the values 0 and 1 and all intermediate
ones. This is a consequence of a fundamental property of quantum states. We can
construct linear superpositions of a state in which qubit has the value 0 and of a state
in which it has the value 1. In this sense, qubits are able to convey classical bits and
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are more capacious. Furthermore, a qubit cannot be copied or destroyed, which is
obviously not the case for a classical bit.

The above comparison suggests that storing and processing information in quan-
tum systems is safer and more economic than in the classical way. This justifies huge
efforts already put in the construction of a large scale quantum computer.

Unfortunately, quantum information may be easily corrupted by a number of fac-
tors [13]. We have among them various random driving forces from the environment,
possible interactions between the system and the environment, and statistical impre-
cision as well (i.e., timing errors). Any such a factor that can affect a quantum system
is described as decoherence. Decoherence is an obstacle which must be overcome and
managed before quantum computers can be built.

One way to overcome the effects of quantum decoherence is to "hide" quantum
information from the environment in some "quiet corner". This quiet corner is called
the decoherence-free subspace (DFS). Decoherence-free subspace is a part of the quan-
tum system’s Hilbert space where the system is decoupled from the environment and
its evolution is completely unitary. Although this definition is commonly used, it is
not fully precise. This resulted in the developement of few different mathematical
definitions of DFS in the literature, see [I0] for the details.

Regardless of this ambiguity, it seems that the definition of a decoherence-free
subspace for a quantum channel, which is a very special quantum system, is already
settled and takes the form studied in [I8], see also [12] and Chapter 3 of [13].

Recall that a quantum channel is a trace preserving completely positive map
® : M,(C) — M,(C) (see [8], [2] for definitions of these notions), where M, (C)
denotes the vector space of all n x n complex matrices. This implies that there are
matrices Ay, ..., As € M, (C) such that

d(X) = Z A XA?
=1

for any X € M,,(C), and Y ;_, A¥A; = I,, where A* denotes matrix adjoint to A and
I,, is the n x n identity matrix, see [8], 5.2.3] for details on operator sum decomposition
of quantum channels. The latter condition is known as the normalization rule.

Before we state the definition of a decoherence-free subspace for a quantum chan-
nel, let us recall some terminology.

Assume that A € M, (C) and W is a subspace of C". We say that W is an
invariant subspace of A (or A-invariant) if and only if Aw € W for any w € W.
We say that W is a reducing subspace of A (or A-reducing) if and only if W is an
invariant subspace of both A and A*.
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Assume that A;,..., A, € M,(C) and W is a subspace of C". We say that W
is a common invariant subspace of all A; if and only if W is A;-invariant for any
i=1,...,s. Wesay that W is a common reducing subspace of all A; if and only if W
is A;-reducing for any i =1,...,s.

The definition below is a precise formulation of the one taken from [12] and [13].

DEFINITION 1.1. Assume that A;,..., A, € M, (C) and ®(X) = >°7 | 4; X Af
is a quantum channel. A nonzero subspace W of C" is a decoherence-free subspace
for @ if and only if W is a common reducing subspace of A1, ..., As and there exists
a unitary operator U : W — W and complex numbers g1, ...,gs such that A;w =
(¢;:U)w for any w € W and i =1,...,s.

This paper is devoted to present some computable conditions for the existence
of decoherence-free subspaces for quantum channels. By a computable condition (or
a computable criterion) we mean any procedure employing only finite number of
arithmetic operations. We emphasize that in applications of mathematics to physics
and other sciences it is often crucial to have rather computable than purely theoretical
conditions since the latter ones can be hard in verification.

It follows from the definition that decoherence-free subspaces for quantum chan-
nels may be studied without any reference to concrete examples taken from quantum
mechanics. Indeed, the formulation of Definition 1.1 depends only on the matrices
Ay, ..., As. Thisis the reason why we rather use the term of common reducing unitary
subspace than the original one. We thus propose the following definition.

DEFINITION 1.2. Assume that Ay,..., As € M,,(C) and W is a nonzero common
reducing subspace of A;. We say that W is a common reducing unitary subspace of
A; if and only if there exists a unitary operator U : W — W and complex numbers
gi such that A;w = (¢;U)w for any w € W andi=1,...,s.

It is clear that W is a common reducing unitary subspace of Ay,..., A; € M, (C)
if and only if W is a decoherence-free subspace for a quantum channel ®(X) =
i A; X A, as long as the condition Y ;_; A¥A; = I,, holds. However, it is con-
venient to study the general problem of common reducing unitary subspaces, i.e.,

without assuming the normalization rule.

The paper is organized as follows. In Section 2, we give and compare two com-
putable conditions for the existence of a common eigenvector of s complex matrices.
One of these conditions is already known from [9], but here we obtain its new appli-
cations.

Recall that a nonzero vector v € C" is a common eigenvector of Ay,...,As €
M, (C) if and only if v is an eigenvector of every A;, that is, A;v = «;v for some
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a; € C. Obviously, v is a common eigenvector of A; if and only if the one-dimensional
subspace V' generated by v is A;-invariant.

In the section, we also prove that the general problem of the existence of common
reducing unitary subspaces is equivalent, in some sense, to the problem of the existence
of common eigenspaces. A common eigenspace is a common reducing unitary subspace
with the unitary operator being equal to identity.

Section 3 is devoted to present main results of the paper, which we derive from the
results of Section 2. Among other things, we show there is a computable criterion for
the existence of a common reducing unitary subspace of A; € M,,(C) of dimension one.
Observe that such a subspace exists if and only if there exists a common eigenvector
of Ay,..., Az, A7,..., AL

We first formulate the results of Section 3 in the language of common reducing
unitary subspaces and then in the language of decoherence-free subspaces for quantum
channels. As we shall see, both formulations are useful.

In Section 4, we give some additional comments on the problems discussed. For
example, we apply our results from Section 2 concerning common eigenvectors to the
problem of common invariant subspaces of arbitrary dimensions. This is done in the
spirit of [9]. Note that common invariant subspaces of arbitrary dimensions have an
application in quantum information theory as well, see for example [4].

In the final section of the paper, we illustrate our computable criterions with a
concrete numerical example. In this example, we verify the existence of a common
reducing unitary subspace of dimension one for three complex 3 x 3 matrices randomly
generated in a computer algebra system.

Let us now introduce some notation and recall few basic facts that we use in the
paper. Assume that B(C") is the vector space of all linear operators on C". If we
fix a basis of C™, then B(C™) is isomorphic with the vector space M, (C) of all n x n
complex matrices. From now on we identify B(C™) with M, (C), and thus, we call an
element A of M,,(C) an operator or a matriz.

Assume that A € M, (C) and W is an invariant subspace of A. A restriction of A
on W is the operator A|W : W — W defined by (A|W)w = Aw € W for any w € W.
Observe that if W is A-reducing, then (A|W)* = A*|W.

Assume that A € M,,(C) and W is a subspace of C". Then W is A-reducing if
and only if W is A*-reducing. Moreover, W is reducing for A if and only if both W
and C" & W are A-invariant where C" © W denotes the unique subspace V of C"
such that W @V = C™.
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Assume that W is a common reducing unitary subspace of Ay,..., A; € M, (C)

such that A;w = (¢;U)w for some complex numbers g; and a unitary operator U :
W — W, for any w € W. We call W trivial, if g; = 0 for any ¢. If W is not trivial,
we call W nontrivial.

Note that if W is a common reducing unitary subspace as above, then we have
Arw = (;U)w, where g; denotes the complex conjugate of g; € C.

2. Common eigenvectors, common eigenspaces and common reducing
unitary subspaces. This section is devoted to show and compare two computable
conditions for the existence of a common eigenvector. It is easy to see that there is
a common reducing unitary subspace of Aj,..., As; of dimension one if and only if
there exists a common eigenvector of A;,..., A5, A7,..., AL, Thus, the problem of
the existence of a common reducing unitary subspace of dimension one comes down
to the problem of the existence of a common eigenvector.

The notion of a common eigenspace is a natural generalization of a common eigen-
vector. Assume that W is a nonzero subspace of C*. We call W a common eigenspace
of Ay,..., As € M, (C) if and only if there exist complex numbers «, . .., a; such that
A;w = aq;w for any w € W. We prove in Theorem 2.5 that the general problem of
the existence of common reducing unitary subspaces is equivalent to the problem of
the existence of common eigenspaces.

Assume that A, B € M, (C). We denote by [A, B] = AB — BA the commutator
of A and B, and by ker A = {v € C"; Av = 0} the kernel of A.

In [9], we proved the following computable criterion for the existence of a common
eigenvector of s > 2 complex square matrices. This is the generalized version of [16]
Theorem 3.1].

THEOREM 2.1. Assume that Aq,...,As € M, (C) and
n—1
M(Ay, . A) = (] ker[Aft-. AFe Al ... AL
ki l; >0
where k1 + ko + -+ ks £0andly + 1o+ -+ 15 #0.
(1) The subspace M(A1, ..., As) is A;-invariant for anyi=1,...,s.
(2) Matrices A; have a common eigenvector if and only if M(A4,..., As) #0.
(3) We have M(A4,...,As) =ker K where
n—1
K= 30 (AR Al Al AL (AR A Al Al
kiol; >0

and ki + ko + -+ ks #0, i +lo+ -+ 1, #0.
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We show in the proposition below that the subspace M(A1,..., As) has other
interesting properies. These properties are related to the subject of our study.

PROPOSITION 2.2. Assume Ai,..., A € M,(C) and let M = M(Ay,...,A;).

(1) We have (A;Aj)w = (AjA)w for any i,j and any w € M. Moreover, if
V C C™ is A;-invariant and (A;A;)v = (AjA;)v for any i,j and any v € V,
then V C M.

(2) If v € C" is a common eigenvector of A;, then v € M. Consequently, any
common eigenspace of A; is contained in M.

Proof. (1) Obviously, if w € M, then w € ker[A;, A;] and so (A;4;)w = (A;4;)w
for any 1, j.

Assume that V' C C™ is A;-invariant, and (A4;A4,)v = (A;4;)v for any 4, j and v €
V.Lett>2, Xq1,...,X; € {Ala---;As} and 1 <i<t—1. Weset X7 ---X;_1 =1,,
ifi=1and Xjyo-- X, = I, ifi=t—1. Then

(X1 o 'Xt)v = (X1 s Xz'fl)(Xz’XiJrl)(XiJrQ ce Xt)v
= (X1 Xic1) (X1 Xo) (Xigo - - Xe)v

for any v € V since (X; 2+ X¢)v € V and all the matrices A; commute on V. This
easily implies that (X --- X¢)v = (X401 - - Xp(1))v for any permutation o of the set
{1,...,t}, and thus,

(AR AR (AL o Al = (AR AB ) = (Al Al (AR AR
for any k;,l; > 0 and v € V. Hence, v € ker[A’f1 . ~~A’§5,Al11 - Alsl and so V C M.

(2) Assume that v € C" is a common eigenvector of A; and V is the one-
dimensional vector space generated by v. Then there are complex numbers «; such
that A;v = auv for any i. Observe that (4;4,)v = aav = (4;4;)v and so
(A;Aj)v = A;(Ajv) € V. Hence, the subspace V is A;-invariant and the matrices
A; commute on V. Therefore it follows by (1) that V' C M, and so v € M. This
yields any common eigenspace W of A; is contained in M, because W is a set of
common eigenvectors of A;. O

Now we define another subspace related to the problem of the existence of a
common eigenvector. This subspace allows us to formulate a computable criterion
analogous to the one presented in Theorem 2.1. The criterion requires less compu-
tation than the first one, but needs an additional assumption. We start with the
following general observation.

PROPOSITION 2.3. Assume that H,Ay,...,A; € M,(C) and H has pairwise
different eigenvalues. If the subspace X C C™ is nonzero H-invariant and (HA;)x =
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(A;H)x for any i and any x € X, then there exists a common eigenvector v € X of
the matrices H, Ay, ..., As.

Proof. Assume that 0 # X C C" is H-invariant and (HA;)z = (A;H)z for any
x € X. Since X is H-invariant and H is a matrix over an algebraically closed field
C of complex numbers, there exists @ € C and a nonzero vector v € X such that
Hv = av. Moreover,

H(Aw) = (HA)v = (A;H)v = A;(Hv) = a(A;v)

for any 7 since v € X and the matrix H commutes with A; on the subspace X. This
yields that A;v is an eigenvector of H corresponding to the eigenvalue . Because H
does not have multiple eigenvalues, the space of all eigenvectors corresponding to «
is one-dimensional. This implies that the vectors v and A;v are linearly dependent
and so A;v = B;v for some complex numbers 5;. Consequently, Hv = av, A;v = S;v
and so v is a common eigenvector of H, Ay,..., As. O

The following theorem gives an interesting alternative to Theorem 2.1.

THEOREM 2.4. Assume that H, Ay, ..., As € M,,(C) and define

oo S
N(H, Ay, Ag) = () [ ker[H*, Ay,
k=1i=1
(1) The subspace N(H, As,...,As) is H-invariant and (HA;)z = (A;H)z for
any x € N(H, Ay, ..., As).
(2) Assume that H has pairwise different eigenvalues. Then the matrices H,
Ay, ..., As have a common eigenvector if and only if N(H, Ay, ..., As) #0.
(3) We have

N(H, Ay, ... A =) ﬂ ker[H*| A;]

and consequently N(H, Ay, ..., As) = ker K where

Proof. (1) We show that the subspace N (H, A;,...,A;) is H-invariant. The
second condition follows from the fact that N'(H, A1,..., As) € i, ker[H, A;].

If N(H,Ay,...,As) = 0 then N(H, Ay,...,A;) is H-invariant. Hence, assume
that N'(H, A1,...,As) # 0 and let v € N(H, Ay, ..., As). Then (H¥A;)v = (A;H")v
for any k and ¢ = 1,...,s which implies that

(H*A;))Hv = H*(A;H)yv = H*(HA;)v = (H*" A;))v = (A;H* Yo = (A, HY)Ho
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for any k € N and any i = 1,...,s. Hence, we get Hv € ker[H*, A;] for any k and i,
and thus, Hv € N(H, Ay,...,As). Consequently, the subspace N'(H, Ay, ..., Ay) is
H-invariant.

(2) Assume that the matrices H, Ay,..., A; have a common eigenvector. Then
there are complex numbers ap,aq,...,as and a nonzero vector v € C™ such that
Hv = ayv and A;v = a;v for any i. Observe that (H*A;)v = o¥ v = (A, H*)v,
and hence, v € ker[H* A;] for any k € N and any i = 1,...,s. This implies that
veEN(H,Ax,...,As) and so N(H, Ay, ..., As) #0.

Conversely, it follows by (1) that the subspace N (H, Ay, ..., As) is H-invariant
and (HA;)x = (A;H)z forany z € N (H, Ay, ..., As). Hence, it follows by Proposition
2.2 that if N(H, Ay,...,As) # 0, then the matrices H, Ay,..., As have a common
eigenvector.

(3) The first identity follows easily by the Cayley-Hamilton theorem. For the proof
of the second one, observe that ker(A* A+ B*B) = ker Anker B for any A, B € M,,(C),
because the matrices A*A, B* B are positive semi-definite. O

In the final theorem of this section, we show a relation between common reducing
unitary subspaces, common eigenspaces and the subspace M introduced in Theorem
2.1 and studied for the first time in [9].

THEOREM 2.5. Assume that Aq,...,As € M,,(C) and W is a subspace of C™.
The subspace W is a common reducing unitary subspace of Ai,..., As if and only
if W is an A;-reducing common eigenspace of AXA; such that W C M(A4,. .., As,
Ax oL AY).

Proof. = Assume that W is a common reducing unitary subspace of Aq,..., A;.
Then W is A;-reducing and there are complex numbers g; and a unitary operator
U:W — W such that A,w = (¢;U)w for any w € W. Hence,

(A7 Aj)w = A7 (Ajw) = A (g;U)w = g; A7 (Uw) = (90U " U)w = g;giw
for any w € W, because Uw € W. Thus, W is a common eigenspace of A} A;.

Similar calculations show that (4;A7)w = Gigjw, (A;4))w = (g;9;U*)w and
(A Aw = (9ig;U*?)w, and thus, all the matrices A1,..., A,, A3,..., A* commute
on W. It follows from Proposition 2.2 (1) that W C M(Ay,..., As, A},..., A%).

< Assume that W is an A;-reducing common eigenspace of AfA; such that

W C M(A,... Ay, AL, .. AY).

Since W is a common eigenspace of AfA;, there are complex numbers «;; such
that (A7A;)w = az;w for any w € W and 4,j = 1,...,s. Moreover, (A7A)w =
(A;Af)w for any w € W by Proposition 2.2 (1).
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Consequently, (AfA)w = (A4;Af)w = oyw for any w € W where o; = ;.
Because the operators A} A; are positive semi-definite, the numbers «; are real non-
negative.

Assume that oy, = 0 for some k. Then (A} Ax)w = 0, and thus, 0 = (w|(A} Ar)w)
= (Apw|Apw) = ||Apw||?, where (-|-) and ||-|| denote the standard scalar product and
the standard norm in C™, respectively. This implies that Axw = 0 for any w € W,
and hence, Ayw = (0 - U)w for any unitary operator U : W — W.

Assume that aj > 0 for some k and take any r; € C such that ry7g = aik Then
(TRAL) (rAr)w = (rpAg)(TrA;)w = w, and hence, the operator ryAx : W — W is
unitary. This implies that there is a nonzero complex number s = % and a unitary

operator Uy : W — W such that Ajw = (s,Ux)w for any w € W.

Assume that ap > 0 and «; > 0 for some k,[. Then there are nonzero complex
numbers sg, s; and unitary operators Uy, U; : W — W such that

apw = (AZAI)’LU = AZ(AMU) = @U,:(Alw) = (@UgSlUl)w = (@SZU]:UZ)’LU
and hence

(aklUk)w = Uk(aklw) = Uk(ﬁslU;Ul)w = (ESlUkUgUl)w = (ﬁslUl)w

for any w € W. Therefore Ujw = (%’;’l Uy )w since 5, s; # 0 and so U; and Uy, are

linearly dependent. Obviously ay; # 0, because U; is nonzero as a unitary operator.

The above arguments yield the existence of a unitary operator U : W — W and
complex numbers g; such that A;w = (¢;U)w for any w € W.

Indeed, if there is k such that oy > 0, then U = Uy, where U, : W — W is the
unique unitary operator satisfying Axw = (s;Uj)w for some nonzero complex number
sk- We set g; = 0 if and only if a; = 0. Thus, in the case a; = 0 for any 7, we may
assume U is an arbitrary unitary operator, for example an identity. We conclude that
W is a common reducing unitary subspace of Ay,..., As. O

Theorem 2.5 implies that the problem of the existence of common reducing unitary
subspaces is equivalent, in the above sense, to the problem of the existence of common
eigenspaces. The latter problem comes down to the existence of d linearly independent
common eigenvectors wy, . . . , wy associated to a fixed sequence of eigenvalues, where
d is an arbitrary natural number. It is thus interesting to ask whether the results of
Theorem 2.1 and Theorem 2.4 are somehow sufficient to solve the general problem of
common reducing unitary subspaces.
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Since the subspaces M and A considered in the section are crucial in Theorem
2.1 and Theorem 2.4, respectively, we make a comparison of these two subspaces,
pointing out similarities and differences between them.

REMARK 2.6. Assume that H, A;,..., As € M,,(C) and set M = M(H, A,,...,
Ag) and N =N (H, Ay,..., Ay).

1. Tt is easy to see that M C N, so M # 0 implies AV # 0. The converse
implication does not hold in general.

2. The condition A/ # 0 requires much less computation than the condition M #
0. From the other hand, the subspace N is related to common eigenvectors
only if we assume that H do not have multiple eigenvalues. This assumption
is unimportant if we consider the subspace M.

3. The subspace M is a common invariant subspace of H, Ay, ..., As by Theo-
rem 2.1 (1). The subspace N is, in general, only H-invariant, see Theorem
2.4 (1).

4. The subspace M is the biggest common invariant subspace of H, Ay, ..., A
on which all these matrices commute, by Proposition 2.2 (1). It can be
shown similarly as in Proposition 2.2 (1) that the subspace N is the biggest
H-invariant subspace on which the matrix H commutes with A;, for any 3.
In general, the matrices A; do not commute with each other on N.

5. Since M C N and M contains any common eigenvector of H, Ay,..., As by
Proposition 2.2 (2), this is also the case for N.

3. Main results and applications to quantum channels. In this section,
we deduce the main results of the paper. First, we formulate them in the language
of common reducing unitary subspaces and then in the language of decoherence-free
subspaces for quantum channels. We apply here the results of the Section 2.

We distinguish the case of nontrivial and the case of arbitrary common reducing
unitary subspaces, see Section 1 for the definitions. Both of these cases seem to be
important, as we demonstrate in Section 4. Assume that Xi,..., X € M, (C) and
define

K(Xi,...,Xs) ={veC" X;v=0 for any i}.

Weset K = K(Xy,...,Xs), M= M(Xy,...,Xs)and N = N(Xy, ..., Xs). It follows
from Proposition 2.2 (1) that £ C M, N since K is X;-invariant and all the matrices
X1,..., X, commute on K.
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We define M’ = M’(Xy,...,X;) and NV = N'(X4,...,X;) as the unique sub-
spaces of M and N, respectively, such that CNM=KNN =0and CH M’ =M,
K& N =N. Observe that M' = (C"o K)NM and NV = (C" o K)NN.

THEOREM 3.1. Assume that H, Ay,...,As € M,,(C) and set

M= M(H, Ay, ... Ay, H* AL, .. AY),
N =N(H Ay, ... Ay, H* AT, AY),
K=K(HA,.. A, H* A ... A

Assume that M’ and N' are defined according to the notation introduced above.

(1) Matrices H, Ay, ..., As have a common reducing unitary subspace of dimen-
sion one if and only if M # 0.
(1) Matrices H, Ay,...,As have a nontrivial common reducing unitary subspace

of dimension one if and only if M’ #£ 0.

(2) Assume that H has pairwise different eigenvalues. Then H, A;,..., As have
a common reducing unitary subspace of dimension one if and only if N # 0.

(2’) Assume that H has pairwise different eigenvalues. Then H, Aq,..., As have
a nontrivial common reducing unitary subspace of dimension one if and only
if N" # 0.

(3) The conditions M # 0, M' #0, N # 0, N7 # 0 are computable.

Proof. (1) and (2) Assume that X1, ..., X; are arbitrary n x n complex matrices.
It is easy to see that there exists a common reducing unitary subspace of X; of dimen-
sion one if and only if there exists a common eigenvector of Xy, ..., X, X{,..., X}
Hence, the assertion of (1) follows from Theorem 2.1 (2) and that of (2) follows from
Theorem 2.4 (2).

(1’) (=) Assume that V is a nontrivial one-dimensional common reducing unitary

subspace of H, Ai,...,As. Then there is a nonzero common eigenvector v € V of
H, Ay, ..., As, H* A, ..., A%. Hence, v € M by Proposition 2.2 (2) and there are
complex numbers ag,ay,...,as such that Hv = agv, H*v = agv, A;v = a;v,

Afv = @;v. Since V is nontrivial, we get ag # 0 or oy # 0 for some ¢, and thus,
Hv=agv #0or Aww = ayv # 0. Tt follows that v ¢ K, so v € M’ and M’ #£ 0.

(<) Observe that the subspace M’ is H, Ay, ..., As-reducing. Indeed, we have
that M’ = (C"oK)NM, Mis H, A;,..., As-reducing by Theorem 2.1 (1) and C"6 K
is H, Ay, ..., As-reducing, because K is H, Ay, ..., As-reducing. Moreover, M’ C M
and so the matrices H, Ay,..., As, H*, A}, ..., A% commute on M’ by Proposition 2.2

(1).

Since the subspace M’ is nonzero H, Ay, ..., As, H*, A}, ..., A*-invariant and all
these matrices commute on M’, we get by a known result that there exists a common
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eigenvector v € M’ of H, Ay, ..., A, H*, A%, ..., A%, see for example [6]. Hence, the
subspace V generated by v is a one-dimensional common reducing unitary subspace
of H,Ay,..., A,. This subspace is nontrivial, because VC M’ C C" & K.

(2”) (=) This follows by (1) since M’ C N.

(<) We show similarly as in (1’) that the subspace N is H-invariant, although
we apply Theorem 2.4 (1). Since NV C N, we have that H commutes with A, ..., As,
H* A%, ..., A* on N7 by Theorem 2.4 (1). Because N is nonzero, it follows by Propo-
sition 2.3 that there is a common eigenvector v € N7 of H, Ay, ..., As, H* AS, ..., AL,
Hence, the subspace V' generated by v is a one-dimensional common reducing unitary
subspace of H, Aq,...,A,. This subspace is nontrivial, because V C NV CC* & K.

(3) The fact that the conditions M # 0 and A # 0 are computable follows from
Theorem 2.1 and Theorem 2.4, respectively.

Observe that ker X NkerY = ker(X*X 4+ Y*Y') for any matrices X,Y € M, (C),
because X*X,Y™*Y are positive semi-definite.

Since the subspace K is an intersection of kernels of the matrices H, Ay, ..., As,
H*, A7, ..., A%, the observation implies that the linear basis of I can be directly
computed. This is also the case for M and N, see Theorem 2.1 and Theorem 2.4.

Hence, we can explicitly calculate the dimensions dimcK, dimeM, dimeN, and
thus, the assertion follows from the fact that dime¢M’ = dimeM — dimcK and
dimeN' = dimeN — dimcK. O

The above theorem solves the problem of the existence of common reducing uni-
tary subspaces of dimension one. In the following theorem, we consider another
special case of the general problem of common reducing unitary subspaces. Namely,
we assume that all the numbers g; from the definition of a common reducing unitary
subspace are equal to 1.

THEOREM 3.2. Assume that Ay,..., As € M, (C) and define 7 = J(A1,...,As)
as the intersection of the following subspaces:

o M(Ay,..., A5, AT, ... AY),
e {veC"Av=Ajvand Ajv = Ajv for any i, j},
o {veC™(AfA;)v = for any i}.

(1) The subspace J is a common reducing subspace of A1, ..., As.
(2) If J # 0, then there exists a unitary operator U : J — T such that A;v = Uv
for any i and any v € J. Hence, J is a common reducing unitary subspace.
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(3) If W is a common reducing unitary subspace of Ay, ..., As such that A;w =
Uw for some unitary operator U : W — W and anyi=1,...,s andw € W,
then W C J.

Proof. (1) We set M = M(Ay,...,As, AT, ..., AL).

Assume that z € J and k € {1,...,s}. We prove that Azz, Ajz € J. Since
z € M and M is A;, A-invariant by Theorem 2.1 (1), we get Apx, Ajz € M.
Because J C M, it follows from Proposition 2.2 (1) that the matrices Ay, ..., As,
Af, ..., Ay commute on J. Moreover, A;x = Ajzr and Ajz = Ajz, so

Az(Akl‘) = (AzAk)l‘ = (AkAz)IL' = (AkAj)l‘ = (AJAk)IL' = Aj (Akl')

and similarly A7 (Axz) = A5 (Agx), Ai(Ajx) = Aj(Ajx), Af(Agx) = Aj(Afx) for any
1,7,k =1,...,s. Therefore, we obtain

A, Apz € {v € C"; Aju = Ajv and Ajv = Ajv for any i, j}.

Assume that By = Ay or By = Aj. Because the matrices A1,..., Ay, A7, ..., A}

commute on 7, we easily get (AFA;)Brx = By (A A;)x. It follows that (AfA;)Brx =
Byx since (A A;)x = x, and thus,

Agx, Az € {v e C" (A] A;)v = v for any i}.

We conclude from the above arguments that if x € J, then Agx, Ajxz € J, and
hence, the subspace J is A;-reducing.

(2) Observe that (A A;)x = (A;Af)xz = x for any © € J and since J # 0, all the
operators A;|J : J — J are unitary. Moreover, 4;|J = A;|J for any 14, j, because
A;x = Ajx for any x € J. This proves the assertion.

(3) Assume that W is a common reducing unitary subspace of A; such that
A;w = Uw for some unitary operator U : W — W. It follows from Theorem 2.5 that
W C M and since Ajw = U*w = Ajw and (A; A;)w = (U*U)w = w for any w € W,
we get W C 7.0

Let us observe that the construction of the subspace J from the above theorem
seems to be natural in view of Theorem 2.5.

The following theorem applies the results of Theorem 3.1 and Theorem 3.2 to
decoherence-free subspaces for quantum channels.

THEOREM 3.3. Assume that ®(X) =7 | A; XA} is a quantum channel.

(1) Any common reducing unitary subspace of A; is nontrivial.
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(2) There exists a one-dimensional decoherence-free subspace for ® if and only if
M(Ay, ..., As, AT, ..., A%) #£ 0. This condition is computational.

(2’) Asume that there exists t such that A; has pairwise different eigenvalues. We
interchange A; with Ay. Then there exists a one-dimensional decoherence-free
subspace for @ if and only if N(A1,..., As, A, ..., A¥) # 0. This condition
is computational.

(3) Assume that J = J(\/sA1,...,\/sAs). If T # 0, then J is a common
reducing unitary subspace of Ay, ..., As and consequently, a decoherence-free
subspace for ®. The condition J # 0 is computable.

Proof. (1) Assume that W is a common reducing unitary subspace of A; such
that A;w = (g;U)w for some g; € C and a unitary operator U : W — W, for any
w € W. Since >7_| A¥A;, = I, we get >_>_, |g:| = 1 and hence there is ¢ such that
gt # 0. Thus, W is nontrivial.

(2) and (2’) Assume that W is a one-dimensional decoherence-free subspace for ®.
It follows from Definition 1.1 and Definition 1.2 that W is a common reducing unitary
subspace of Ay, ..., A, of dimension one. We know from (1) that W is nontrivial, and
hence, there are equivalences (1)<>(1’) and (2)<(2’) of the conditions from Theorem
3.1. Thus, the assertions follow from Theorem 3.1.

(3) We know from Theorem 3.2 that (v/sA;)|J = U for some unitary operator
U:J — J. Thus, 4;|TJ = %U, so J is a common reducing unitary subspace of
Ay, ..., A and consequently, a decoherence-free subspace for ®. The condition J # 0
is computable since the subspace J is an intersection of suitable kernels. 0

Observe that there exist quantum channels ®(X) = >"7_| A; X Af with the prop-
erty J(v/sAi,...,1/sAs) # 0. Indeed, assume that the matrices Ay, ..., A; € M, (C)
have the following block-diagonal form

0 E;

where U : C¥ — CF is an arbitrary unitary operator and the matrices E; € M,,_(C)
satisfy the condition Y] | EfE; = I,_j. Then obviously > | A¥*A, = I, and
(v/sA;)|CF = U. This implies that the assertion of Theorem 3.3 (3) may be useful in
practical applications.

4. Remarks. This section is devoted to present some additional comments on
the subject matter of the paper. In particular, we relate the results of Section 2 with
the problem of the existence of common invariant subspaces of arbitrary dimensions.

4.1. The trivial and the nontrivial case. The proof of the assertions (2)
and (2’) of Theorem 3.3 convinces to consider general conditions for the existence of
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common reducing unitary subspaces, i.e., not necessarily conditions only for nontrivial
ones, see Section 1 for the definition. Indeed, in some important cases any common
reducing unitary subspace is nontrivial, see Theorem 3.3 (1).

Despite of this fact, only the problem of the existence of nontrivial common
reducing unitary subspaces is challenging. Indeed, assume that X,..., X, € M, (C).
It is easy to see that the subspace K = K(Xy,...,X,) introduced in Section 3 is a
trivial common reducing unitary subspace of X;. Moreover, any such a subspace is
contained in K. Hence, there exists a trivial common reducing unitary subspace of
X, if and only if I # 0.

It may be sometimes convenient to completely eliminate the case of trivial com-
mon reducing unitary subspaces from our considerations. This can be done in the
following way.

Observe that V NV’ = 0 for any nontrivial common reducing unitary subspace
V of X; and any trivial one V’. Assume that Y; : C* © K — C" © K is defined by
Y = X;|(C" & K) and let W be a subspace of C". The observation yields that the
subspace W is a nontrivial common reducing unitary subspace of X; if and only if W
is contained in C"&/C and W is a common reducing unitary subspace of Y;. Moreover,
any common reducing unitary subspace of Y; is nontrivial. These arguments imply
that we can study the matrices Y; instead of X; if we wish to consider only nontrivial
common reducing unitary subspaces of Xj.

4.2. Common invariant subspaces. Assume that A;,...,A; € M, (C) have
pairwise different eigenvalues. We prove in [9, Corollary 3.3] (see also [1], [5], [17])
that in this case, the matrices A; have a common invariant subspace of dimension k if
and only if the matrices Cj (ANZ) have a common eigenvector where ANZ =A; —t;I, for
some t; € N and C’k(E) denotes the k-th compound of A;, see [14] for the definition
and main properties.

In [9, Corollary 3.3] we apply the condition M # 0 for the existence of a common
eigenvector of A;, see also Theorem 2.1. The results of Section 2 show that we can
suitably exchange the condition M # 0 used in [9, Corollary 3.3] to the condition
N # 0, see Theorem 2.4. As discussed in Section 2, this condition requires less
computation than the first one. Consequently, we obtain more efficient computational
condition for the existence of a common invariant subspace of dimension k. Note
that this condition may be applied as in Section 3 and Section 4 of [9] in checking
irreducibility of a given completely positive map. Indeed, it follows by [4] that a
completely positive map @ such that ®(X) =>"7 | 4, X A? for any X € M,,(C) and
some A; € M, (C) is irreducible if and only if the matrices A; do not have a nontrivial
common invariant subspace. Recall that, by the definition, a completely positive map
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® is irreducible if and only if there is no nontrivial projector P such that ®(P) < AP
for some A > 0.

4.3. Pairwise different eigenvalues. The assumption that the matrix H from
Theorem 2.4 has pairwise different eigenvalues seems not to be so strong in practi-
cal applications. Indeed, it follows from [3, Lemma 3.1] or [7, Chapter I, Corollary
10] that the set of all n X n complex matrices having at least one multiple eigen-
value is Lebesgue-measurable, and of measure zero. So if H is random, it should be
expected that H has pairwise different eigenvalues. These arguments imply that if
P(X) =37, A XA} is a quantum channel, then we can use the efficient condition
N(Aq, ..., As, A%, ..., A%) #£ 0 to check whether there is a decoherence-free subspace
for ® of dimension one.

5. A numerical example. In the last section, we present an application of
the criterion given in Theorem 3.1 to three concrete 3 x 3 matrices A, B and C.
Specifically, we check whether A, B, C' have a common reducing unitary subspace of
dimension one (trivial or nontrivial). These matrices were randomly generated in a
computer algebra system under the assumption that their entries belong to the set
{-3,-2,-1,0,1,2,3}. All calculations given below were performed using the same
software.

Assume that

30 1 1 0 -2 3 -1 -1
A=|3 1 -1|,B=| -3 1 1 |,c=|-3 2 3
2 0 -1 —3 -3 -2 -1 -2 1

We prefer to apply the conditions (2) and (2) of Theorem 3.1 since these are more
efficient than the remaining ones. For this purpose, we check whether A, B or C has
pairwise different eigenvalues.

Recall that the discriminant disc(f) of a polynomial f € C[z] is the resultant of
f and f" where f’ denotes the formal derivative of f, see [11, Chapter IV, Section 8.
It is commonly known that disc(f) = 0 if and only if f has a multiple root. Hence,
a matrix Y € M,,(C) has a pairwise different eigenvalues if and only if disc(xy) # 0
where yy denotes the characteristic polynomial of Y.

We get that disc(xa) = 864, disc(xp) = —13419 and disc(x¢) = —976. Thus,
all the matrices has pairwise different eigenvalues and the conditions (2) and (2') of
Theorem 3.1 are applicable. Note that this is consistent with Section 4.3.

Weset H=A, Ay =B, Ay =C, A3 = A*, Ay = B* and A5 = C*. Then
2 5
N(A,B,C,A*,B*,C*) = N(H,Ay,...,A5) = [ [ | ker[H", Aj] = ker K

k=11i=1
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2 14292 —4376 —1769
K=Y M [H* A]"[H" A]= | —4376 5698 3389

k=11i=1 —1769 3389 4484

Since det K = 149782564282 # 0, we get N (H, A1, ..., As) = 0 and hence Theorem
3.1 (2) implies that the matrices A, B, C' do not have a common reducing unitary sub-
space of dimension one. This obviously yields these matrices do not have a nontrivial
common reducing unitary subspace of dimension one either.

To make the comparison of subspaces M and N from Section 2 more concrete
(see Remark 2.6), we compute also M(A4, B,C, A*, B*,C*). It follows from Theorem
2.1 that M(A4, B,C, A*, B*,C*) = ker K’ where

K' =

S (Bb s By BB B B
ki l;€{0,1,2}

fork1+~~~+k67é0, ll+~~~+lﬁ7éOandBle, BQZB, B3:C, B4:A*,
Bs = B*, Bg = C*. We get

1 90269511662695957111656
K'-| 0| =] —72804159139519208105154 | ,
0 26474422056095133884250

o

—72804159139519208105154
K-|1]= 85381405854804833456880

0 —30062218685628270512574

0 2647442205609513!3884250
K10 —30062218685628270512574

1 20348385815244430069452

and det K’ is a nonzero integer having the number of decimal digits equal to 68.

We note that it takes only 9 seconds to calculate K whereas about 165 minutes
to calculate K’. This emphasizes the fact that the condition N # 0 requires much
less computation than the condition M # 0.
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