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Abstra
t. Maps of the form Φ(X) =
∑

s

i=1
AiXA∗

i
, where A1, . . . , As are �xed 
omplex n× n

matri
es and X is any 
omplex n × n matrix, are used in quantum information theory as repre-

sentations of quantum 
hannels. This arti
le deals with 
omputable 
onditions for the existen
e

of de
oheren
e-free subspa
es for Φ. Sin
e the de�nition of de
oheren
e-free subspa
e for quantum


hannels relies only on the matri
es A1, . . . , As, the term of 
ommon redu
ing unitary subspa
e is

used instead of the original one. Among the main results of the paper, there are 
omputable 
on-

ditions for the existen
e of 
ommon eigenve
tors. These are related to 
ommon redu
ing unitary

subspa
es of dimension one. The new results on 
ommon eigenve
tors provide new e�e
tive 
ondition

for the existen
e of 
ommon invariant subspa
es of arbitrary dimensions.
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1. Introdu
tion and preliminary fa
ts. Quantum information theory is one

of the 
entral topi
s of study in quantum me
hani
s [15℄. Quantum information may

be understood as physi
al information that is held in the state of a quantum system,

see [8℄ for basi
 
on
epts and terminology of quantum theory. The smallest possible

unit of quantum information is the qubit. Qubits may be transmited through quantum


hannels.

There are many fundamental di�eren
es between qubits and bits that are used

to store 
lassi
al information. For example, a 
lassi
al bit of information takes the

value 0 or 1 whereas a qubit 
an take the the values 0 and 1 and all intermediate

ones. This is a 
onsequen
e of a fundamental property of quantum states. We 
an


onstru
t linear superpositions of a state in whi
h qubit has the value 0 and of a state

in whi
h it has the value 1. In this sense, qubits are able to 
onvey 
lassi
al bits and

∗
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are more 
apa
ious. Furthermore, a qubit 
annot be 
opied or destroyed, whi
h is

obviously not the 
ase for a 
lassi
al bit.

The above 
omparison suggests that storing and pro
essing information in quan-

tum systems is safer and more e
onomi
 than in the 
lassi
al way. This justi�es huge

e�orts already put in the 
onstru
tion of a large s
ale quantum 
omputer.

Unfortunately, quantum information may be easily 
orrupted by a number of fa
-

tors [13℄. We have among them various random driving for
es from the environment,

possible intera
tions between the system and the environment, and statisti
al impre-


ision as well (i.e., timing errors). Any su
h a fa
tor that 
an a�e
t a quantum system

is des
ribed as de
oheren
e. De
oheren
e is an obsta
le whi
h must be over
ome and

managed before quantum 
omputers 
an be built.

One way to over
ome the e�e
ts of quantum de
oheren
e is to "hide" quantum

information from the environment in some "quiet 
orner". This quiet 
orner is 
alled

the de
oheren
e-free subspa
e (DFS). De
oheren
e-free subspa
e is a part of the quan-

tum system's Hilbert spa
e where the system is de
oupled from the environment and

its evolution is 
ompletely unitary. Although this de�nition is 
ommonly used, it is

not fully pre
ise. This resulted in the developement of few di�erent mathemati
al

de�nitions of DFS in the literature, see [10℄ for the details.

Regardless of this ambiguity, it seems that the de�nition of a de
oheren
e-free

subspa
e for a quantum 
hannel, whi
h is a very spe
ial quantum system, is already

settled and takes the form studied in [18℄, see also [12℄ and Chapter 3 of [13℄.

Re
all that a quantum 
hannel is a tra
e preserving 
ompletely positive map

Φ : Mn(C) → Mn(C) (see [8℄, [2℄ for de�nitions of these notions), where Mn(C)

denotes the ve
tor spa
e of all n × n 
omplex matri
es. This implies that there are

matri
es A1, . . . , As ∈ Mn(C) su
h that

Φ(X) =

s∑

i=1

AiXA∗
i

for any X ∈ Mn(C), and
∑s

i=1 A
∗
iAi = In where A∗

denotes matrix adjoint to A and

In is the n×n identity matrix, see [8, 5.2.3℄ for details on operator sum de
omposition

of quantum 
hannels. The latter 
ondition is known as the normalization rule.

Before we state the de�nition of a de
oheren
e-free subspa
e for a quantum 
han-

nel, let us re
all some terminology.

Assume that A ∈ Mn(C) and W is a subspa
e of Cn
. We say that W is an

invariant subspa
e of A (or A-invariant) if and only if Aw ∈ W for any w ∈ W .

We say that W is a redu
ing subspa
e of A (or A-redu
ing) if and only if W is an

invariant subspa
e of both A and A∗
.
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Assume that A1, . . . , As ∈ Mn(C) and W is a subspa
e of Cn
. We say that W

is a 
ommon invariant subspa
e of all Ai if and only if W is Ai-invariant for any

i = 1, . . . , s. We say that W is a 
ommon redu
ing subspa
e of all Ai if and only if W

is Ai-redu
ing for any i = 1, . . . , s.

The de�nition below is a pre
ise formulation of the one taken from [12℄ and [13℄.

Definition 1.1. Assume that A1, . . . , As ∈ Mn(C) and Φ(X) =
∑s

i=1 AiXA∗
i

is a quantum 
hannel. A nonzero subspa
e W of Cn
is a de
oheren
e-free subspa
e

for Φ if and only if W is a 
ommon redu
ing subspa
e of A1, . . . , As and there exists

a unitary operator U : W → W and 
omplex numbers g1, . . . , gs su
h that Aiw =

(giU)w for any w ∈ W and i = 1, . . . , s.

This paper is devoted to present some 
omputable 
onditions for the existen
e

of de
oheren
e-free subspa
es for quantum 
hannels. By a 
omputable 
ondition (or

a 
omputable 
riterion) we mean any pro
edure employing only �nite number of

arithmeti
 operations. We emphasize that in appli
ations of mathemati
s to physi
s

and other s
ien
es it is often 
ru
ial to have rather 
omputable than purely theoreti
al


onditions sin
e the latter ones 
an be hard in veri�
ation.

It follows from the de�nition that de
oheren
e-free subspa
es for quantum 
han-

nels may be studied without any referen
e to 
on
rete examples taken from quantum

me
hani
s. Indeed, the formulation of De�nition 1.1 depends only on the matri
es

A1, . . . , As. This is the reason why we rather use the term of 
ommon redu
ing unitary

subspa
e than the original one. We thus propose the following de�nition.

Definition 1.2. Assume that A1, . . . , As ∈ Mn(C) and W is a nonzero 
ommon

redu
ing subspa
e of Ai. We say that W is a 
ommon redu
ing unitary subspa
e of

Ai if and only if there exists a unitary operator U : W → W and 
omplex numbers

gi su
h that Aiw = (giU)w for any w ∈ W and i = 1, . . . , s.

It is 
lear that W is a 
ommon redu
ing unitary subspa
e of A1, . . . , As ∈ Mn(C)

if and only if W is a de
oheren
e-free subspa
e for a quantum 
hannel Φ(X) =∑s
i=1 AiXA∗

i , as long as the 
ondition

∑s
i=1 A

∗
iAi = In holds. However, it is 
on-

venient to study the general problem of 
ommon redu
ing unitary subspa
es, i.e.,

without assuming the normalization rule.

The paper is organized as follows. In Se
tion 2, we give and 
ompare two 
om-

putable 
onditions for the existen
e of a 
ommon eigenve
tor of s 
omplex matri
es.

One of these 
onditions is already known from [9℄, but here we obtain its new appli-


ations.

Re
all that a nonzero ve
tor v ∈ C
n
is a 
ommon eigenve
tor of A1, . . . , As ∈

Mn(C) if and only if v is an eigenve
tor of every Ai, that is, Aiv = αiv for some
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αi ∈ C. Obviously, v is a 
ommon eigenve
tor of Ai if and only if the one-dimensional

subspa
e V generated by v is Ai-invariant.

In the se
tion, we also prove that the general problem of the existen
e of 
ommon

redu
ing unitary subspa
es is equivalent, in some sense, to the problem of the existen
e

of 
ommon eigenspa
es. A 
ommon eigenspa
e is a 
ommon redu
ing unitary subspa
e

with the unitary operator being equal to identity.

Se
tion 3 is devoted to present main results of the paper, whi
h we derive from the

results of Se
tion 2. Among other things, we show there is a 
omputable 
riterion for

the existen
e of a 
ommon redu
ing unitary subspa
e of Ai ∈ Mn(C) of dimension one.

Observe that su
h a subspa
e exists if and only if there exists a 
ommon eigenve
tor

of A1, . . . , As, A
∗
1, . . . , A

∗
s .

We �rst formulate the results of Se
tion 3 in the language of 
ommon redu
ing

unitary subspa
es and then in the language of de
oheren
e-free subspa
es for quantum


hannels. As we shall see, both formulations are useful.

In Se
tion 4, we give some additional 
omments on the problems dis
ussed. For

example, we apply our results from Se
tion 2 
on
erning 
ommon eigenve
tors to the

problem of 
ommon invariant subspa
es of arbitrary dimensions. This is done in the

spirit of [9℄. Note that 
ommon invariant subspa
es of arbitrary dimensions have an

appli
ation in quantum information theory as well, see for example [4℄.

In the �nal se
tion of the paper, we illustrate our 
omputable 
riterions with a


on
rete numeri
al example. In this example, we verify the existen
e of a 
ommon

redu
ing unitary subspa
e of dimension one for three 
omplex 3×3 matri
es randomly

generated in a 
omputer algebra system.

Let us now introdu
e some notation and re
all few basi
 fa
ts that we use in the

paper. Assume that B(Cn) is the ve
tor spa
e of all linear operators on Cn
. If we

�x a basis of Cn
, then B(Cn) is isomorphi
 with the ve
tor spa
e Mn(C) of all n× n


omplex matri
es. From now on we identify B(Cn) with Mn(C), and thus, we 
all an

element A of Mn(C) an operator or a matrix.

Assume that A ∈ Mn(C) and W is an invariant subspa
e of A. A restri
tion of A

on W is the operator A|W : W → W de�ned by (A|W )w = Aw ∈ W for any w ∈ W .

Observe that if W is A-redu
ing, then (A|W )∗ = A∗|W .

Assume that A ∈ Mn(C) and W is a subspa
e of Cn
. Then W is A-redu
ing if

and only if W is A∗
-redu
ing. Moreover, W is redu
ing for A if and only if both W

and Cn ⊖ W are A-invariant where Cn ⊖ W denotes the unique subspa
e V of Cn

su
h that W ⊕ V = C
n
.
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Assume that W is a 
ommon redu
ing unitary subspa
e of A1, . . . , As ∈ Mn(C)

su
h that Aiw = (giU)w for some 
omplex numbers gi and a unitary operator U :

W → W , for any w ∈ W . We 
all W trivial, if gi = 0 for any i. If W is not trivial,

we 
all W nontrivial.

Note that if W is a 
ommon redu
ing unitary subspa
e as above, then we have

A∗
iw = (giU)w, where gi denotes the 
omplex 
onjugate of gi ∈ C.

2. Common eigenve
tors, 
ommon eigenspa
es and 
ommon redu
ing

unitary subspa
es. This se
tion is devoted to show and 
ompare two 
omputable


onditions for the existen
e of a 
ommon eigenve
tor. It is easy to see that there is

a 
ommon redu
ing unitary subspa
e of A1, . . . , As of dimension one if and only if

there exists a 
ommon eigenve
tor of A1, . . . , As, A
∗
1, . . . , A

∗
s. Thus, the problem of

the existen
e of a 
ommon redu
ing unitary subspa
e of dimension one 
omes down

to the problem of the existen
e of a 
ommon eigenve
tor.

The notion of a 
ommon eigenspa
e is a natural generalization of a 
ommon eigen-

ve
tor. Assume that W is a nonzero subspa
e of Cn
. We 
all W a 
ommon eigenspa
e

of A1, . . . , As ∈ Mn(C) if and only if there exist 
omplex numbers α1, . . . , αs su
h that

Aiw = αiw for any w ∈ W . We prove in Theorem 2.5 that the general problem of

the existen
e of 
ommon redu
ing unitary subspa
es is equivalent to the problem of

the existen
e of 
ommon eigenspa
es.

Assume that A,B ∈ Mn(C). We denote by [A,B] = AB − BA the 
ommutator

of A and B, and by kerA = {v ∈ Cn;Av = 0} the kernel of A.

In [9℄, we proved the following 
omputable 
riterion for the existen
e of a 
ommon

eigenve
tor of s ≥ 2 
omplex square matri
es. This is the generalized version of [16,

Theorem 3.1℄.

Theorem 2.1. Assume that A1, . . . , As ∈ Mn(C) and

M(A1, . . . , As) =
n−1⋂

ki,lj≥0

ker[Ak1

1 · · ·Aks

s , Al1
1 · · ·Als

s ]

where k1 + k2 + · · ·+ ks 6= 0 and l1 + l2 + · · ·+ ls 6= 0.

(1) The subspa
e M(A1, . . . , As) is Ai-invariant for any i = 1, . . . , s.

(2) Matri
es Ai have a 
ommon eigenve
tor if and only if M(A1, . . . , As) 6= 0.

(3) We have M(A1, . . . , As) = kerK where

K =

n−1∑

ki,lj≥0

[Ak1

1 · · ·Aks
s , Al1

1 · · ·Als
s ]

∗[Ak1

1 · · ·Aks
s , Al1

1 · · ·Als
s ]

and k1 + k2 + · · ·+ ks 6= 0, l1 + l2 + · · ·+ ls 6= 0.
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We show in the proposition below that the subspa
e M(A1, . . . , As) has other

interesting properies. These properties are related to the subje
t of our study.

Proposition 2.2. Assume A1, . . . , As ∈ Mn(C) and let M = M(A1, . . . , As).

(1) We have (AiAj)w = (AjAi)w for any i, j and any w ∈ M. Moreover, if

V ⊆ Cn
is Ai-invariant and (AiAj)v = (AjAi)v for any i, j and any v ∈ V ,

then V ⊆ M.

(2) If v ∈ Cn
is a 
ommon eigenve
tor of Ai, then v ∈ M. Consequently, any


ommon eigenspa
e of Ai is 
ontained in M.

Proof. (1) Obviously, if w ∈ M, then w ∈ ker[Ai, Aj ] and so (AiAj)w = (AjAi)w

for any i, j.

Assume that V ⊆ Cn
is Ai-invariant, and (AiAj)v = (AjAi)v for any i, j and v ∈

V . Let t ≥ 2, X1, . . . , Xt ∈ {A1, . . . , As} and 1 ≤ i < t− 1. We set X1 · · ·Xi−1 = In,

if i = 1 and Xi+2 · · ·Xt = In, if i = t− 1. Then

(X1 · · ·Xt)v = (X1 · · ·Xi−1)(XiXi+1)(Xi+2 · · ·Xt)v

= (X1 · · ·Xi−1)(Xi+1Xi)(Xi+2 · · ·Xt)v

for any v ∈ V sin
e (Xi+2 · · ·Xt)v ∈ V and all the matri
es Ai 
ommute on V . This

easily implies that (X1 · · ·Xt)v = (Xσ(1) · · ·Xσ(t))v for any permutation σ of the set

{1, . . . , t}, and thus,

(Ak1

1 · · ·Aks
s )(Al1

1 · · ·Als
s )v = (Ak1+l1

1 · · ·Aks+ls
s )v = (Al1

1 · · ·Als
s )(A

k1

1 · · ·Aks
s )v

for any ki, lj ≥ 0 and v ∈ V . Hen
e, v ∈ ker[Ak1

1 · · ·Aks
s , Al1

1 · · ·Als
s ] and so V ⊆ M.

(2) Assume that v ∈ Cn
is a 
ommon eigenve
tor of Ai and V is the one-

dimensional ve
tor spa
e generated by v. Then there are 
omplex numbers αi su
h

that Aiv = αiv for any i. Observe that (AiAj)v = αiαjv = (AjAi)v and so

(AiAj)v = Ai(Ajv) ∈ V . Hen
e, the subspa
e V is Ai-invariant and the matri
es

Ai 
ommute on V . Therefore it follows by (1) that V ⊆ M, and so v ∈ M. This

yields any 
ommon eigenspa
e W of Ai is 
ontained in M, be
ause W is a set of


ommon eigenve
tors of Ai.

Now we de�ne another subspa
e related to the problem of the existen
e of a


ommon eigenve
tor. This subspa
e allows us to formulate a 
omputable 
riterion

analogous to the one presented in Theorem 2.1. The 
riterion requires less 
ompu-

tation than the �rst one, but needs an additional assumption. We start with the

following general observation.

Proposition 2.3. Assume that H,A1, . . . , As ∈ Mn(C) and H has pairwise

di�erent eigenvalues. If the subspa
e X ⊆ Cn
is nonzero H-invariant and (HAi)x =
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(AiH)x for any i and any x ∈ X, then there exists a 
ommon eigenve
tor v ∈ X of

the matri
es H,A1, . . . , As.

Proof. Assume that 0 6= X ⊆ Cn
is H-invariant and (HAi)x = (AiH)x for any

x ∈ X . Sin
e X is H-invariant and H is a matrix over an algebrai
ally 
losed �eld

C of 
omplex numbers, there exists α ∈ C and a nonzero ve
tor v ∈ X su
h that

Hv = αv. Moreover,

H(Aiv) = (HAi)v = (AiH)v = Ai(Hv) = α(Aiv)

for any i sin
e v ∈ X and the matrix H 
ommutes with Ai on the subspa
e X . This

yields that Aiv is an eigenve
tor of H 
orresponding to the eigenvalue α. Be
ause H

does not have multiple eigenvalues, the spa
e of all eigenve
tors 
orresponding to α

is one-dimensional. This implies that the ve
tors v and Aiv are linearly dependent

and so Aiv = βiv for some 
omplex numbers βi. Consequently, Hv = αv, Aiv = βiv

and so v is a 
ommon eigenve
tor of H,A1, . . . , As.

The following theorem gives an interesting alternative to Theorem 2.1.

Theorem 2.4. Assume that H,A1, . . . , As ∈ Mn(C) and de�ne

N (H,A1, . . . , As) :=

∞⋂

k=1

s⋂

i=1

ker[Hk, Ai].

(1) The subspa
e N (H,A1, . . . , As) is H-invariant and (HAi)x = (AiH)x for

any x ∈ N (H,A1, . . . , As).

(2) Assume that H has pairwise di�erent eigenvalues. Then the matri
es H,

A1, . . . , As have a 
ommon eigenve
tor if and only if N (H,A1, . . . , As) 6= 0.

(3) We have

N (H,A1, . . . , As) =

n−1⋂

k=1

s⋂

i=1

ker[Hk, Ai]

and 
onsequently N (H,A1, . . . , As) = kerK where

K =

n−1∑

k=1

s∑

i=1

[Hk, Ai]
∗[Hk, Ai].

Proof. (1) We show that the subspa
e N (H,A1, . . . , As) is H-invariant. The

se
ond 
ondition follows from the fa
t that N (H,A1, . . . , As) ⊆
⋂s

i=1 ker[H,Ai].

If N (H,A1, . . . , As) = 0 then N (H,A1, . . . , As) is H-invariant. Hen
e, assume

that N (H,A1, . . . , As) 6= 0 and let v ∈ N (H,A1, . . . , As). Then (HkAi)v = (AiH
k)v

for any k and i = 1, . . . , s whi
h implies that

(HkAi)Hv = Hk(AiH)v = Hk(HAi)v = (Hk+1Ai)v = (AiH
k+1)v = (AiH

k)Hv
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for any k ∈ N and any i = 1, . . . , s. Hen
e, we get Hv ∈ ker[Hk, Ai] for any k and i,

and thus, Hv ∈ N (H,A1, . . . , As). Consequently, the subspa
e N (H,A1, . . . , As) is

H-invariant.

(2) Assume that the matri
es H,A1, . . . , As have a 
ommon eigenve
tor. Then

there are 
omplex numbers αH , α1, . . . , αs and a nonzero ve
tor v ∈ Cn
su
h that

Hv = αHv and Aiv = αiv for any i. Observe that (HkAi)v = αk
Hαiv = (AiH

k)v,

and hen
e, v ∈ ker[Hk, Ai] for any k ∈ N and any i = 1, . . . , s. This implies that

v ∈ N (H,A1, . . . , As) and so N (H,A1, . . . , As) 6= 0.

Conversely, it follows by (1) that the subspa
e N (H,A1, . . . , As) is H-invariant

and (HAi)x = (AiH)x for any x ∈ N (H,A1, . . . , As). Hen
e, it follows by Proposition

2.2 that if N (H,A1, . . . , As) 6= 0, then the matri
es H,A1, . . . , As have a 
ommon

eigenve
tor.

(3) The �rst identity follows easily by the Cayley-Hamilton theorem. For the proof

of the se
ond one, observe that ker(A∗A+B∗B) = kerA∩kerB for any A,B ∈ Mn(C),

be
ause the matri
es A∗A,B∗B are positive semi-de�nite.

In the �nal theorem of this se
tion, we show a relation between 
ommon redu
ing

unitary subspa
es, 
ommon eigenspa
es and the subspa
e M introdu
ed in Theorem

2.1 and studied for the �rst time in [9℄.

Theorem 2.5. Assume that A1, . . . , As ∈ Mn(C) and W is a subspa
e of Cn
.

The subspa
e W is a 
ommon redu
ing unitary subspa
e of A1, . . . , As if and only

if W is an Ai-redu
ing 
ommon eigenspa
e of A∗
iAj su
h that W ⊆ M(A1, . . . , As,

A∗
1, . . . , A

∗
s).

Proof. ⇒ Assume that W is a 
ommon redu
ing unitary subspa
e of A1, . . . , As.

Then W is Ai-redu
ing and there are 
omplex numbers gi and a unitary operator

U : W → W su
h that Aiw = (giU)w for any w ∈ W . Hen
e,

(A∗
iAj)w = A∗

i (Ajw) = A∗
i (gjU)w = gjA

∗
i (Uw) = (gjgiU

∗U)w = gjgiw

for any w ∈ W , be
ause Uw ∈ W . Thus, W is a 
ommon eigenspa
e of A∗
iAj .

Similar 
al
ulations show that (AjA
∗
i )w = gigjw, (AiAj)w = (gigjU

2)w and

(A∗
iA

∗
j )w = (gigjU

∗2)w, and thus, all the matri
es A1, . . . , As, A
∗
1, . . . , A

∗
s 
ommute

on W . It follows from Proposition 2.2 (1) that W ⊆ M(A1, . . . , As, A
∗
1, . . . , A

∗
s).

⇐ Assume that W is an Ai-redu
ing 
ommon eigenspa
e of A∗
iAj su
h that

W ⊆ M(A1, . . . , As, A
∗
1, . . . , A

∗
s).

Sin
e W is a 
ommon eigenspa
e of A∗
iAj , there are 
omplex numbers αij su
h

that (A∗
iAj)w = αijw for any w ∈ W and i, j = 1, . . . , s. Moreover, (A∗

iAi)w =

(AiA
∗
i )w for any w ∈ W by Proposition 2.2 (1).
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Consequently, (A∗
iAi)w = (AiA

∗
i )w = αiw for any w ∈ W where αi = αii.

Be
ause the operators A∗
iAi are positive semi-de�nite, the numbers αi are real non-

negative.

Assume that αk = 0 for some k. Then (A∗
kAk)w = 0, and thus, 0 = 〈w|(A∗

kAk)w〉
= 〈Akw|Akw〉 = ||Akw||2, where 〈·|·〉 and || · || denote the standard s
alar produ
t and
the standard norm in Cn

, respe
tively. This implies that Akw = 0 for any w ∈ W ,

and hen
e, Akw = (0 · U)w for any unitary operator U : W → W .

Assume that αk > 0 for some k and take any rk ∈ C su
h that rkrk = 1
αk
. Then

(rkA
∗
k)(rkAk)w = (rkAk)(rkA

∗
k)w = w, and hen
e, the operator rkAk : W → W is

unitary. This implies that there is a nonzero 
omplex number sk = 1
rk

and a unitary

operator Uk : W → W su
h that Akw = (skUk)w for any w ∈ W .

Assume that αk > 0 and αl > 0 for some k, l. Then there are nonzero 
omplex

numbers sk, sl and unitary operators Uk, Ul : W → W su
h that

αklw = (A∗
kAl)w = A∗

k(Alw) = skU
∗
k (Alw) = (skU

∗
k slUl)w = (skslU

∗
kUl)w

and hen
e

(αklUk)w = Uk(αklw) = Uk(skslU
∗
kUl)w = (skslUkU

∗
kUl)w = (skslUl)w

for any w ∈ W . Therefore Ulw = ( αkl

sksl
Uk)w sin
e sk, sl 6= 0 and so Ul and Uk are

linearly dependent. Obviously αkl 6= 0, be
ause Ul is nonzero as a unitary operator.

The above arguments yield the existen
e of a unitary operator U : W → W and


omplex numbers gi su
h that Aiw = (giU)w for any w ∈ W .

Indeed, if there is k su
h that αk > 0, then U = Uk, where Uk : W → W is the

unique unitary operator satisfying Akw = (skUk)w for some nonzero 
omplex number

sk. We set gi = 0 if and only if αi = 0. Thus, in the 
ase αi = 0 for any i, we may

assume U is an arbitrary unitary operator, for example an identity. We 
on
lude that

W is a 
ommon redu
ing unitary subspa
e of A1, . . . , As.

Theorem 2.5 implies that the problem of the existen
e of 
ommon redu
ing unitary

subspa
es is equivalent, in the above sense, to the problem of the existen
e of 
ommon

eigenspa
es. The latter problem 
omes down to the existen
e of d linearly independent


ommon eigenve
tors w1, . . . , wd asso
iated to a �xed sequen
e of eigenvalues, where

d is an arbitrary natural number. It is thus interesting to ask whether the results of

Theorem 2.1 and Theorem 2.4 are somehow su�
ient to solve the general problem of


ommon redu
ing unitary subspa
es.
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Sin
e the subspa
es M and N 
onsidered in the se
tion are 
ru
ial in Theorem

2.1 and Theorem 2.4, respe
tively, we make a 
omparison of these two subspa
es,

pointing out similarities and di�eren
es between them.

Remark 2.6. Assume that H,A1, . . . , As ∈ Mn(C) and set M = M(H,A1, . . . ,

As) and N = N (H,A1, . . . , As).

1. It is easy to see that M ⊆ N , so M 6= 0 implies N 6= 0. The 
onverse

impli
ation does not hold in general.

2. The 
onditionN 6= 0 requires mu
h less 
omputation than the 
onditionM 6=
0. From the other hand, the subspa
e N is related to 
ommon eigenve
tors

only if we assume that H do not have multiple eigenvalues. This assumption

is unimportant if we 
onsider the subspa
e M.

3. The subspa
e M is a 
ommon invariant subspa
e of H,A1, . . . , As by Theo-

rem 2.1 (1). The subspa
e N is, in general, only H-invariant, see Theorem

2.4 (1).

4. The subspa
e M is the biggest 
ommon invariant subspa
e of H,A1, . . . , As

on whi
h all these matri
es 
ommute, by Proposition 2.2 (1). It 
an be

shown similarly as in Proposition 2.2 (1) that the subspa
e N is the biggest

H-invariant subspa
e on whi
h the matrix H 
ommutes with Ai, for any i.

In general, the matri
es Ai do not 
ommute with ea
h other on N .

5. Sin
e M ⊆ N and M 
ontains any 
ommon eigenve
tor of H,A1, . . . , As by

Proposition 2.2 (2), this is also the 
ase for N .

3. Main results and appli
ations to quantum 
hannels. In this se
tion,

we dedu
e the main results of the paper. First, we formulate them in the language

of 
ommon redu
ing unitary subspa
es and then in the language of de
oheren
e-free

subspa
es for quantum 
hannels. We apply here the results of the Se
tion 2.

We distinguish the 
ase of nontrivial and the 
ase of arbitrary 
ommon redu
ing

unitary subspa
es, see Se
tion 1 for the de�nitions. Both of these 
ases seem to be

important, as we demonstrate in Se
tion 4. Assume that X1, . . . , Xs ∈ Mn(C) and

de�ne

K(X1, . . . , Xs) = {v ∈ C
n;Xiv = 0 for any i}.

We set K = K(X1, . . . , Xs), M = M(X1, . . . , Xs) and N = N (X1, . . . , Xs). It follows

from Proposition 2.2 (1) that K ⊆ M,N sin
e K is Xi-invariant and all the matri
es

X1, . . . , Xs 
ommute on K.
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We de�ne M′ = M′(X1, . . . , Xt) and N ′ = N ′(X1, . . . , Xt) as the unique sub-

spa
es of M and N , respe
tively, su
h that K ∩M = K ∩N = 0 and K ⊕M′ = M,

K ⊕N ′ = N . Observe that M′ = (Cn ⊖K) ∩M and N ′ = (Cn ⊖K) ∩ N .

Theorem 3.1. Assume that H,A1, . . . , As ∈ Mn(C) and set

M = M(H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s),

N = N (H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s),

K = K(H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s).

Assume that M′
and N ′

are de�ned a

ording to the notation introdu
ed above.

(1) Matri
es H,A1, . . . , As have a 
ommon redu
ing unitary subspa
e of dimen-

sion one if and only if M 6= 0.

(1') Matri
es H,A1, . . . , As have a nontrivial 
ommon redu
ing unitary subspa
e

of dimension one if and only if M′ 6= 0.

(2) Assume that H has pairwise di�erent eigenvalues. Then H,A1, . . . , As have

a 
ommon redu
ing unitary subspa
e of dimension one if and only if N 6= 0.

(2') Assume that H has pairwise di�erent eigenvalues. Then H,A1, . . . , As have

a nontrivial 
ommon redu
ing unitary subspa
e of dimension one if and only

if N ′ 6= 0.

(3) The 
onditions M 6= 0, M′ 6= 0, N 6= 0, N ′ 6= 0 are 
omputable.

Proof. (1) and (2) Assume that X1, . . . , Xt are arbitrary n×n 
omplex matri
es.

It is easy to see that there exists a 
ommon redu
ing unitary subspa
e of Xi of dimen-

sion one if and only if there exists a 
ommon eigenve
tor of X1, . . . , Xt, X
∗
1 , . . . , X

∗
t .

Hen
e, the assertion of (1) follows from Theorem 2.1 (2) and that of (2) follows from

Theorem 2.4 (2).

(1') (⇒) Assume that V is a nontrivial one-dimensional 
ommon redu
ing unitary

subspa
e of H,A1, . . . , As. Then there is a nonzero 
ommon eigenve
tor v ∈ V of

H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s. Hen
e, v ∈ M by Proposition 2.2 (2) and there are


omplex numbers αH , α1, . . . , αs su
h that Hv = αHv, H∗v = αHv, Aiv = αiv,

A∗
i v = αiv. Sin
e V is nontrivial, we get αH 6= 0 or αt 6= 0 for some t, and thus,

Hv = αHv 6= 0 or Atv = αtv 6= 0. It follows that v /∈ K, so v ∈ M′
and M′ 6= 0.

(⇐) Observe that the subspa
e M′
is H,A1, . . . , As-redu
ing. Indeed, we have

thatM′ = (Cn⊖K)∩M, M isH,A1, . . . , As-redu
ing by Theorem 2.1 (1) and Cn⊖K
is H,A1, . . . , As-redu
ing, be
ause K is H,A1, . . . , As-redu
ing. Moreover, M′ ⊆ M
and so the matri
es H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s 
ommute on M′

by Proposition 2.2

(1).

Sin
e the subspa
e M′
is nonzero H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s-invariant and all

these matri
es 
ommute on M′
, we get by a known result that there exists a 
ommon
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eigenve
tor v ∈ M′
of H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s, see for example [6℄. Hen
e, the

subspa
e V generated by v is a one-dimensional 
ommon redu
ing unitary subspa
e

of H,A1, . . . , As. This subspa
e is nontrivial, be
ause V ⊆ M′ ⊆ Cn ⊖K.

(2') (⇒) This follows by (1') sin
e M′ ⊆ N ′
.

(⇐) We show similarly as in (1') that the subspa
e N ′
is H-invariant, although

we apply Theorem 2.4 (1). Sin
e N ′ ⊆ N , we have that H 
ommutes with A1, . . . , As,

H∗, A∗
1, . . . , A

∗
s on N ′

by Theorem 2.4 (1). Be
auseN ′
is nonzero, it follows by Propo-

sition 2.3 that there is a 
ommon eigenve
tor v ∈ N ′
of H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s .

Hen
e, the subspa
e V generated by v is a one-dimensional 
ommon redu
ing unitary

subspa
e of H,A1, . . . , As. This subspa
e is nontrivial, be
ause V ⊆ N ′ ⊆ Cn ⊖K.

(3) The fa
t that the 
onditions M 6= 0 and N 6= 0 are 
omputable follows from

Theorem 2.1 and Theorem 2.4, respe
tively.

Observe that kerX ∩ kerY = ker(X∗X + Y ∗Y ) for any matri
es X,Y ∈ Mn(C),

be
ause X∗X,Y ∗Y are positive semi-de�nite.

Sin
e the subspa
e K is an interse
tion of kernels of the matri
es H,A1, . . . , As,

H∗, A∗
1, . . . , A

∗
s, the observation implies that the linear basis of K 
an be dire
tly


omputed. This is also the 
ase for M and N , see Theorem 2.1 and Theorem 2.4.

Hen
e, we 
an expli
itly 
al
ulate the dimensions dimCK, dimCM, dimCN , and

thus, the assertion follows from the fa
t that dimCM′ = dimCM − dimCK and

dimCN ′ = dimCN − dimCK.

The above theorem solves the problem of the existen
e of 
ommon redu
ing uni-

tary subspa
es of dimension one. In the following theorem, we 
onsider another

spe
ial 
ase of the general problem of 
ommon redu
ing unitary subspa
es. Namely,

we assume that all the numbers gi from the de�nition of a 
ommon redu
ing unitary

subspa
e are equal to 1.

Theorem 3.2. Assume that A1, . . . , As ∈ Mn(C) and de�ne J = J (A1, . . . , As)

as the interse
tion of the following subspa
es:

• M(A1, . . . , As, A
∗
1, . . . , A

∗
s),

• {v ∈ Cn;Aiv = Ajv and A∗
i v = A∗

jv for any i, j},
• {v ∈ C

n; (A∗
iAi)v = v for any i}.

(1) The subspa
e J is a 
ommon redu
ing subspa
e of A1, . . . , As.

(2) If J 6= 0, then there exists a unitary operator U : J → J su
h that Aiv = Uv

for any i and any v ∈ J . Hen
e, J is a 
ommon redu
ing unitary subspa
e.
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(3) If W is a 
ommon redu
ing unitary subspa
e of A1, . . . , As su
h that Aiw =

Uw for some unitary operator U : W → W and any i = 1, . . . , s and w ∈ W ,

then W ⊆ J .

Proof. (1) We set M = M(A1, . . . , As, A
∗
1, . . . , A

∗
s).

Assume that x ∈ J and k ∈ {1, . . . , s}. We prove that Akx,A
∗
kx ∈ J . Sin
e

x ∈ M and M is Ai, A
∗
i -invariant by Theorem 2.1 (1), we get Akx,A

∗
kx ∈ M.

Be
ause J ⊆ M, it follows from Proposition 2.2 (1) that the matri
es A1, . . . , As,

A∗
1, . . . , A

∗
s 
ommute on J . Moreover, Aix = Ajx and A∗

i x = A∗
jx, so

Ai(Akx) = (AiAk)x = (AkAi)x = (AkAj)x = (AjAk)x = Aj(Akx)

and similarly A∗
i (Akx) = A∗

j (Akx), Ai(A
∗
kx) = Aj(A

∗
kx), A

∗
i (A

∗
kx) = A∗

j (A
∗
kx) for any

i, j, k = 1, . . . , s. Therefore, we obtain

Akx,A
∗
kx ∈ {v ∈ C

n;Aiv = Ajv and A∗
i v = A∗

jv for any i, j}.

Assume that Bk = Ak or Bk = A∗
k. Be
ause the matri
es A1, . . . , As, A

∗
1, . . . , A

∗
s


ommute on J , we easily get (A∗
iAi)Bkx = Bk(A

∗
iAi)x. It follows that (A

∗
iAi)Bkx =

Bkx sin
e (A∗
iAi)x = x, and thus,

Akx,A
∗
kx ∈ {v ∈ C

n; (A∗
iAi)v = v for any i}.

We 
on
lude from the above arguments that if x ∈ J , then Akx,A
∗
kx ∈ J , and

hen
e, the subspa
e J is Ai-redu
ing.

(2) Observe that (A∗
iAi)x = (AiA

∗
i )x = x for any x ∈ J and sin
e J 6= 0, all the

operators Ai|J : J → J are unitary. Moreover, Ai|J = Aj |J for any i, j, be
ause

Aix = Ajx for any x ∈ J . This proves the assertion.

(3) Assume that W is a 
ommon redu
ing unitary subspa
e of Ai su
h that

Aiw = Uw for some unitary operator U : W → W . It follows from Theorem 2.5 that

W ⊆ M and sin
e A∗
iw = U∗w = A∗

jw and (A∗
iAi)w = (U∗U)w = w for any w ∈ W ,

we get W ⊆ J .

Let us observe that the 
onstru
tion of the subspa
e J from the above theorem

seems to be natural in view of Theorem 2.5.

The following theorem applies the results of Theorem 3.1 and Theorem 3.2 to

de
oheren
e-free subspa
es for quantum 
hannels.

Theorem 3.3. Assume that Φ(X) =
∑s

i=1 AiXA∗
i is a quantum 
hannel.

(1) Any 
ommon redu
ing unitary subspa
e of Ai is nontrivial.
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(2) There exists a one-dimensional de
oheren
e-free subspa
e for Φ if and only if

M(A1, . . . , As, A
∗
1, . . . , A

∗
s) 6= 0. This 
ondition is 
omputational.

(2') Asume that there exists t su
h that At has pairwise di�erent eigenvalues. We

inter
hange At with A1. Then there exists a one-dimensional de
oheren
e-free

subspa
e for Φ if and only if N (A1, . . . , As, A
∗
1, . . . , A

∗
s) 6= 0. This 
ondition

is 
omputational.

(3) Assume that J = J (
√
sA1, . . . ,

√
sAs). If J 6= 0, then J is a 
ommon

redu
ing unitary subspa
e of A1, . . . , As and 
onsequently, a de
oheren
e-free

subspa
e for Φ. The 
ondition J 6= 0 is 
omputable.

Proof. (1) Assume that W is a 
ommon redu
ing unitary subspa
e of Ai su
h

that Aiw = (giU)w for some gi ∈ C and a unitary operator U : W → W , for any

w ∈ W . Sin
e

∑s

i=1 A
∗
iAi = In, we get

∑s

i=1 |gi| = 1 and hen
e there is t su
h that

gt 6= 0. Thus, W is nontrivial.

(2) and (2') Assume that W is a one-dimensional de
oheren
e-free subspa
e for Φ.

It follows from De�nition 1.1 and De�nition 1.2 that W is a 
ommon redu
ing unitary

subspa
e of A1, . . . , As of dimension one. We know from (1) that W is nontrivial, and

hen
e, there are equivalen
es (1)⇔(1') and (2)⇔(2') of the 
onditions from Theorem

3.1. Thus, the assertions follow from Theorem 3.1.

(3) We know from Theorem 3.2 that (
√
sAi)|J = U for some unitary operator

U : J → J . Thus, Ai|J = 1√
s
U , so J is a 
ommon redu
ing unitary subspa
e of

A1, . . . , As and 
onsequently, a de
oheren
e-free subspa
e for Φ. The 
ondition J 6= 0

is 
omputable sin
e the subspa
e J is an interse
tion of suitable kernels.

Observe that there exist quantum 
hannels Φ(X) =
∑s

i=1 AiXA∗
i with the prop-

erty J (
√
sA1, . . . ,

√
sAs) 6= 0. Indeed, assume that the matri
es A1, . . . , As ∈ Mn(C)

have the following blo
k-diagonal form

Ai =

[
1√
s
U 0

0 Ei

]

where U : Ck → Ck
is an arbitrary unitary operator and the matri
es Ei ∈ Mn−k(C)

satisfy the 
ondition

∑s
i=1 E

∗
i Ei = In−k. Then obviously

∑s
i=1 A

∗
iAi = In and

(
√
sAi)|Ck = U . This implies that the assertion of Theorem 3.3 (3) may be useful in

pra
ti
al appli
ations.

4. Remarks. This se
tion is devoted to present some additional 
omments on

the subje
t matter of the paper. In parti
ular, we relate the results of Se
tion 2 with

the problem of the existen
e of 
ommon invariant subspa
es of arbitrary dimensions.

4.1. The trivial and the nontrivial 
ase. The proof of the assertions (2)

and (2') of Theorem 3.3 
onvin
es to 
onsider general 
onditions for the existen
e of
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ommon redu
ing unitary subspa
es, i.e., not ne
essarily 
onditions only for nontrivial

ones, see Se
tion 1 for the de�nition. Indeed, in some important 
ases any 
ommon

redu
ing unitary subspa
e is nontrivial, see Theorem 3.3 (1).

Despite of this fa
t, only the problem of the existen
e of nontrivial 
ommon

redu
ing unitary subspa
es is 
hallenging. Indeed, assume that X1, . . . , Xs ∈ Mn(C).

It is easy to see that the subspa
e K = K(X1, . . . , Xs) introdu
ed in Se
tion 3 is a

trivial 
ommon redu
ing unitary subspa
e of Xi. Moreover, any su
h a subspa
e is


ontained in K. Hen
e, there exists a trivial 
ommon redu
ing unitary subspa
e of

Xi if and only if K 6= 0.

It may be sometimes 
onvenient to 
ompletely eliminate the 
ase of trivial 
om-

mon redu
ing unitary subspa
es from our 
onsiderations. This 
an be done in the

following way.

Observe that V ∩ V ′ = 0 for any nontrivial 
ommon redu
ing unitary subspa
e

V of Xi and any trivial one V ′
. Assume that Yi : C

n ⊖ K → Cn ⊖ K is de�ned by

Yi = Xi|(Cn ⊖ K) and let W be a subspa
e of Cn
. The observation yields that the

subspa
e W is a nontrivial 
ommon redu
ing unitary subspa
e of Xi if and only if W

is 
ontained in Cn⊖K andW is a 
ommon redu
ing unitary subspa
e of Yi. Moreover,

any 
ommon redu
ing unitary subspa
e of Yi is nontrivial. These arguments imply

that we 
an study the matri
es Yi instead of Xi if we wish to 
onsider only nontrivial


ommon redu
ing unitary subspa
es of Xi.

4.2. Common invariant subspa
es. Assume that A1, . . . , As ∈ Mn(C) have

pairwise di�erent eigenvalues. We prove in [9, Corollary 3.3℄ (see also [1℄, [5℄, [17℄)

that in this 
ase, the matri
es Ai have a 
ommon invariant subspa
e of dimension k if

and only if the matri
es Ck(Ãi) have a 
ommon eigenve
tor where Ãi = Ai − tiIn for

some ti ∈ N and Ck(Ãi) denotes the k-th 
ompound of Ãi, see [14℄ for the de�nition

and main properties.

In [9, Corollary 3.3℄ we apply the 
ondition M 6= 0 for the existen
e of a 
ommon

eigenve
tor of Ai, see also Theorem 2.1. The results of Se
tion 2 show that we 
an

suitably ex
hange the 
ondition M 6= 0 used in [9, Corollary 3.3℄ to the 
ondition

N 6= 0, see Theorem 2.4. As dis
ussed in Se
tion 2, this 
ondition requires less


omputation than the �rst one. Consequently, we obtain more e�
ient 
omputational


ondition for the existen
e of a 
ommon invariant subspa
e of dimension k. Note

that this 
ondition may be applied as in Se
tion 3 and Se
tion 4 of [9℄ in 
he
king

irredu
ibility of a given 
ompletely positive map. Indeed, it follows by [4℄ that a


ompletely positive map Φ su
h that Φ(X) =
∑s

i=1 AiXA∗
i for any X ∈ Mn(C) and

some Ai ∈ Mn(C) is irredu
ible if and only if the matri
es Ai do not have a nontrivial


ommon invariant subspa
e. Re
all that, by the de�nition, a 
ompletely positive map
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Φ is irredu
ible if and only if there is no nontrivial proje
tor P su
h that Φ(P ) ≤ λP

for some λ > 0.

4.3. Pairwise di�erent eigenvalues. The assumption that the matrix H from

Theorem 2.4 has pairwise di�erent eigenvalues seems not to be so strong in pra
ti-


al appli
ations. Indeed, it follows from [3, Lemma 3.1℄ or [7, Chapter I, Corollary

10℄ that the set of all n × n 
omplex matri
es having at least one multiple eigen-

value is Lebesgue-measurable, and of measure zero. So if H is random, it should be

expe
ted that H has pairwise di�erent eigenvalues. These arguments imply that if

Φ(X) =
∑s

i=1 AiXA∗
i is a quantum 
hannel, then we 
an use the e�
ient 
ondition

N (A1, . . . , As, A
∗
1, . . . , A

∗
s) 6= 0 to 
he
k whether there is a de
oheren
e-free subspa
e

for Φ of dimension one.

5. A numeri
al example. In the last se
tion, we present an appli
ation of

the 
riterion given in Theorem 3.1 to three 
on
rete 3 × 3 matri
es A, B and C.

Spe
i�
ally, we 
he
k whether A, B, C have a 
ommon redu
ing unitary subspa
e of

dimension one (trivial or nontrivial). These matri
es were randomly generated in a


omputer algebra system under the assumption that their entries belong to the set

{−3,−2,−1, 0, 1, 2, 3}. All 
al
ulations given below were performed using the same

software.

Assume that

A =




3 0 1

3 1 −1

2 0 −1


 , B =




1 0 −2

−3 1 1

−3 −3 −2


 , C =




3 −1 −1

−3 2 3

−1 −2 1


 .

We prefer to apply the 
onditions (2) and (2′) of Theorem 3.1 sin
e these are more

e�
ient than the remaining ones. For this purpose, we 
he
k whether A, B or C has

pairwise di�erent eigenvalues.

Re
all that the dis
riminant dis
(f) of a polynomial f ∈ C[x] is the resultant of

f and f ′
where f ′

denotes the formal derivative of f , see [11, Chapter IV, Se
tion 8℄.

It is 
ommonly known that dis
(f) = 0 if and only if f has a multiple root. Hen
e,

a matrix Y ∈ Mn(C) has a pairwise di�erent eigenvalues if and only if dis
(χY ) 6= 0

where χY denotes the 
hara
teristi
 polynomial of Y .

We get that dis
(χA) = 864, dis
(χB) = −13419 and dis
(χC) = −976. Thus,

all the matri
es has pairwise di�erent eigenvalues and the 
onditions (2) and (2′) of

Theorem 3.1 are appli
able. Note that this is 
onsistent with Se
tion 4.3.

We set H = A, A1 = B, A2 = C, A3 = A∗
, A4 = B∗

and A5 = C∗
. Then

N (A,B,C,A∗, B∗, C∗) = N (H,A1, . . . , A5) =

2⋂

k=1

5⋂

i=1

ker[Hk, Ai] = kerK
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where

K =

2∑

k=1

5∑

i=1

[Hk, Ai]
∗[Hk, Ai] =




14292 −4376 −1769

−4376 5698 3389

−1769 3389 4484


 .

Sin
e detK = 149782564282 6= 0, we get N (H,A1, . . . , A5) = 0 and hen
e Theorem

3.1 (2) implies that the matri
es A, B, C do not have a 
ommon redu
ing unitary sub-

spa
e of dimension one. This obviously yields these matri
es do not have a nontrivial


ommon redu
ing unitary subspa
e of dimension one either.

To make the 
omparison of subspa
es M and N from Se
tion 2 more 
on
rete

(see Remark 2.6), we 
ompute also M(A,B,C,A∗, B∗, C∗). It follows from Theorem

2.1 that M(A,B,C,A∗, B∗, C∗) = kerK ′
where

K ′ =
∑

ki,lj∈{0,1,2}
[Bk1

1 · · ·Bk6

6 , Bl1
1 · · ·Bl6

6 ]∗[Bk1

1 · · ·Bk6

6 , Bl1
1 · · ·Bl6

6 ]

for k1 + · · · + k6 6= 0, l1 + · · · + l6 6= 0 and B1 = A, B2 = B, B3 = C, B4 = A∗
,

B5 = B∗
, B6 = C∗

. We get

K ′ ·




1

0

0


 =




90269511662695957111656

−72804159139519208105154

26474422056095133884250


 ,

K ′ ·




0

1

0


 =




−72804159139519208105154

85381405854804833456880

−30062218685628270512574


 ,

K ′ ·




0

0

1


 =




2647442205609513!3884250

−30062218685628270512574

20348385815244430069452




and detK ′
is a nonzero integer having the number of de
imal digits equal to 68.

We note that it takes only 9 se
onds to 
al
ulate K whereas about 165 minutes

to 
al
ulate K ′
. This emphasizes the fa
t that the 
ondition N 6= 0 requires mu
h

less 
omputation than the 
ondition M 6= 0.
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