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Abstrat. Maps of the form Φ(X) =
∑

s

i=1
AiXA∗

i
, where A1, . . . , As are �xed omplex n× n

matries and X is any omplex n × n matrix, are used in quantum information theory as repre-

sentations of quantum hannels. This artile deals with omputable onditions for the existene

of deoherene-free subspaes for Φ. Sine the de�nition of deoherene-free subspae for quantum

hannels relies only on the matries A1, . . . , As, the term of ommon reduing unitary subspae is

used instead of the original one. Among the main results of the paper, there are omputable on-

ditions for the existene of ommon eigenvetors. These are related to ommon reduing unitary

subspaes of dimension one. The new results on ommon eigenvetors provide new e�etive ondition

for the existene of ommon invariant subspaes of arbitrary dimensions.

Key words. Deoherene-free subspaes, Quantum hannels, Common eigenvetors, Common

eigenspaes, Common invariant subspaes.
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1. Introdution and preliminary fats. Quantum information theory is one

of the entral topis of study in quantum mehanis [15℄. Quantum information may

be understood as physial information that is held in the state of a quantum system,

see [8℄ for basi onepts and terminology of quantum theory. The smallest possible

unit of quantum information is the qubit. Qubits may be transmited through quantum

hannels.

There are many fundamental di�erenes between qubits and bits that are used

to store lassial information. For example, a lassial bit of information takes the

value 0 or 1 whereas a qubit an take the the values 0 and 1 and all intermediate

ones. This is a onsequene of a fundamental property of quantum states. We an

onstrut linear superpositions of a state in whih qubit has the value 0 and of a state

in whih it has the value 1. In this sense, qubits are able to onvey lassial bits and

∗
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are more apaious. Furthermore, a qubit annot be opied or destroyed, whih is

obviously not the ase for a lassial bit.

The above omparison suggests that storing and proessing information in quan-

tum systems is safer and more eonomi than in the lassial way. This justi�es huge

e�orts already put in the onstrution of a large sale quantum omputer.

Unfortunately, quantum information may be easily orrupted by a number of fa-

tors [13℄. We have among them various random driving fores from the environment,

possible interations between the system and the environment, and statistial impre-

ision as well (i.e., timing errors). Any suh a fator that an a�et a quantum system

is desribed as deoherene. Deoherene is an obstale whih must be overome and

managed before quantum omputers an be built.

One way to overome the e�ets of quantum deoherene is to "hide" quantum

information from the environment in some "quiet orner". This quiet orner is alled

the deoherene-free subspae (DFS). Deoherene-free subspae is a part of the quan-

tum system's Hilbert spae where the system is deoupled from the environment and

its evolution is ompletely unitary. Although this de�nition is ommonly used, it is

not fully preise. This resulted in the developement of few di�erent mathematial

de�nitions of DFS in the literature, see [10℄ for the details.

Regardless of this ambiguity, it seems that the de�nition of a deoherene-free

subspae for a quantum hannel, whih is a very speial quantum system, is already

settled and takes the form studied in [18℄, see also [12℄ and Chapter 3 of [13℄.

Reall that a quantum hannel is a trae preserving ompletely positive map

Φ : Mn(C) → Mn(C) (see [8℄, [2℄ for de�nitions of these notions), where Mn(C)

denotes the vetor spae of all n × n omplex matries. This implies that there are

matries A1, . . . , As ∈ Mn(C) suh that

Φ(X) =

s∑

i=1

AiXA∗
i

for any X ∈ Mn(C), and
∑s

i=1 A
∗
iAi = In where A∗

denotes matrix adjoint to A and

In is the n×n identity matrix, see [8, 5.2.3℄ for details on operator sum deomposition

of quantum hannels. The latter ondition is known as the normalization rule.

Before we state the de�nition of a deoherene-free subspae for a quantum han-

nel, let us reall some terminology.

Assume that A ∈ Mn(C) and W is a subspae of Cn
. We say that W is an

invariant subspae of A (or A-invariant) if and only if Aw ∈ W for any w ∈ W .

We say that W is a reduing subspae of A (or A-reduing) if and only if W is an

invariant subspae of both A and A∗
.
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Assume that A1, . . . , As ∈ Mn(C) and W is a subspae of Cn
. We say that W

is a ommon invariant subspae of all Ai if and only if W is Ai-invariant for any

i = 1, . . . , s. We say that W is a ommon reduing subspae of all Ai if and only if W

is Ai-reduing for any i = 1, . . . , s.

The de�nition below is a preise formulation of the one taken from [12℄ and [13℄.

Definition 1.1. Assume that A1, . . . , As ∈ Mn(C) and Φ(X) =
∑s

i=1 AiXA∗
i

is a quantum hannel. A nonzero subspae W of Cn
is a deoherene-free subspae

for Φ if and only if W is a ommon reduing subspae of A1, . . . , As and there exists

a unitary operator U : W → W and omplex numbers g1, . . . , gs suh that Aiw =

(giU)w for any w ∈ W and i = 1, . . . , s.

This paper is devoted to present some omputable onditions for the existene

of deoherene-free subspaes for quantum hannels. By a omputable ondition (or

a omputable riterion) we mean any proedure employing only �nite number of

arithmeti operations. We emphasize that in appliations of mathematis to physis

and other sienes it is often ruial to have rather omputable than purely theoretial

onditions sine the latter ones an be hard in veri�ation.

It follows from the de�nition that deoherene-free subspaes for quantum han-

nels may be studied without any referene to onrete examples taken from quantum

mehanis. Indeed, the formulation of De�nition 1.1 depends only on the matries

A1, . . . , As. This is the reason why we rather use the term of ommon reduing unitary

subspae than the original one. We thus propose the following de�nition.

Definition 1.2. Assume that A1, . . . , As ∈ Mn(C) and W is a nonzero ommon

reduing subspae of Ai. We say that W is a ommon reduing unitary subspae of

Ai if and only if there exists a unitary operator U : W → W and omplex numbers

gi suh that Aiw = (giU)w for any w ∈ W and i = 1, . . . , s.

It is lear that W is a ommon reduing unitary subspae of A1, . . . , As ∈ Mn(C)

if and only if W is a deoherene-free subspae for a quantum hannel Φ(X) =∑s
i=1 AiXA∗

i , as long as the ondition

∑s
i=1 A

∗
iAi = In holds. However, it is on-

venient to study the general problem of ommon reduing unitary subspaes, i.e.,

without assuming the normalization rule.

The paper is organized as follows. In Setion 2, we give and ompare two om-

putable onditions for the existene of a ommon eigenvetor of s omplex matries.

One of these onditions is already known from [9℄, but here we obtain its new appli-

ations.

Reall that a nonzero vetor v ∈ C
n
is a ommon eigenvetor of A1, . . . , As ∈

Mn(C) if and only if v is an eigenvetor of every Ai, that is, Aiv = αiv for some
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αi ∈ C. Obviously, v is a ommon eigenvetor of Ai if and only if the one-dimensional

subspae V generated by v is Ai-invariant.

In the setion, we also prove that the general problem of the existene of ommon

reduing unitary subspaes is equivalent, in some sense, to the problem of the existene

of ommon eigenspaes. A ommon eigenspae is a ommon reduing unitary subspae

with the unitary operator being equal to identity.

Setion 3 is devoted to present main results of the paper, whih we derive from the

results of Setion 2. Among other things, we show there is a omputable riterion for

the existene of a ommon reduing unitary subspae of Ai ∈ Mn(C) of dimension one.

Observe that suh a subspae exists if and only if there exists a ommon eigenvetor

of A1, . . . , As, A
∗
1, . . . , A

∗
s .

We �rst formulate the results of Setion 3 in the language of ommon reduing

unitary subspaes and then in the language of deoherene-free subspaes for quantum

hannels. As we shall see, both formulations are useful.

In Setion 4, we give some additional omments on the problems disussed. For

example, we apply our results from Setion 2 onerning ommon eigenvetors to the

problem of ommon invariant subspaes of arbitrary dimensions. This is done in the

spirit of [9℄. Note that ommon invariant subspaes of arbitrary dimensions have an

appliation in quantum information theory as well, see for example [4℄.

In the �nal setion of the paper, we illustrate our omputable riterions with a

onrete numerial example. In this example, we verify the existene of a ommon

reduing unitary subspae of dimension one for three omplex 3×3 matries randomly

generated in a omputer algebra system.

Let us now introdue some notation and reall few basi fats that we use in the

paper. Assume that B(Cn) is the vetor spae of all linear operators on Cn
. If we

�x a basis of Cn
, then B(Cn) is isomorphi with the vetor spae Mn(C) of all n× n

omplex matries. From now on we identify B(Cn) with Mn(C), and thus, we all an

element A of Mn(C) an operator or a matrix.

Assume that A ∈ Mn(C) and W is an invariant subspae of A. A restrition of A

on W is the operator A|W : W → W de�ned by (A|W )w = Aw ∈ W for any w ∈ W .

Observe that if W is A-reduing, then (A|W )∗ = A∗|W .

Assume that A ∈ Mn(C) and W is a subspae of Cn
. Then W is A-reduing if

and only if W is A∗
-reduing. Moreover, W is reduing for A if and only if both W

and Cn ⊖ W are A-invariant where Cn ⊖ W denotes the unique subspae V of Cn

suh that W ⊕ V = C
n
.
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Assume that W is a ommon reduing unitary subspae of A1, . . . , As ∈ Mn(C)

suh that Aiw = (giU)w for some omplex numbers gi and a unitary operator U :

W → W , for any w ∈ W . We all W trivial, if gi = 0 for any i. If W is not trivial,

we all W nontrivial.

Note that if W is a ommon reduing unitary subspae as above, then we have

A∗
iw = (giU)w, where gi denotes the omplex onjugate of gi ∈ C.

2. Common eigenvetors, ommon eigenspaes and ommon reduing

unitary subspaes. This setion is devoted to show and ompare two omputable

onditions for the existene of a ommon eigenvetor. It is easy to see that there is

a ommon reduing unitary subspae of A1, . . . , As of dimension one if and only if

there exists a ommon eigenvetor of A1, . . . , As, A
∗
1, . . . , A

∗
s. Thus, the problem of

the existene of a ommon reduing unitary subspae of dimension one omes down

to the problem of the existene of a ommon eigenvetor.

The notion of a ommon eigenspae is a natural generalization of a ommon eigen-

vetor. Assume that W is a nonzero subspae of Cn
. We all W a ommon eigenspae

of A1, . . . , As ∈ Mn(C) if and only if there exist omplex numbers α1, . . . , αs suh that

Aiw = αiw for any w ∈ W . We prove in Theorem 2.5 that the general problem of

the existene of ommon reduing unitary subspaes is equivalent to the problem of

the existene of ommon eigenspaes.

Assume that A,B ∈ Mn(C). We denote by [A,B] = AB − BA the ommutator

of A and B, and by kerA = {v ∈ Cn;Av = 0} the kernel of A.

In [9℄, we proved the following omputable riterion for the existene of a ommon

eigenvetor of s ≥ 2 omplex square matries. This is the generalized version of [16,

Theorem 3.1℄.

Theorem 2.1. Assume that A1, . . . , As ∈ Mn(C) and

M(A1, . . . , As) =
n−1⋂

ki,lj≥0

ker[Ak1

1 · · ·Aks

s , Al1
1 · · ·Als

s ]

where k1 + k2 + · · ·+ ks 6= 0 and l1 + l2 + · · ·+ ls 6= 0.

(1) The subspae M(A1, . . . , As) is Ai-invariant for any i = 1, . . . , s.

(2) Matries Ai have a ommon eigenvetor if and only if M(A1, . . . , As) 6= 0.

(3) We have M(A1, . . . , As) = kerK where

K =

n−1∑

ki,lj≥0

[Ak1

1 · · ·Aks
s , Al1

1 · · ·Als
s ]

∗[Ak1

1 · · ·Aks
s , Al1

1 · · ·Als
s ]

and k1 + k2 + · · ·+ ks 6= 0, l1 + l2 + · · ·+ ls 6= 0.
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We show in the proposition below that the subspae M(A1, . . . , As) has other

interesting properies. These properties are related to the subjet of our study.

Proposition 2.2. Assume A1, . . . , As ∈ Mn(C) and let M = M(A1, . . . , As).

(1) We have (AiAj)w = (AjAi)w for any i, j and any w ∈ M. Moreover, if

V ⊆ Cn
is Ai-invariant and (AiAj)v = (AjAi)v for any i, j and any v ∈ V ,

then V ⊆ M.

(2) If v ∈ Cn
is a ommon eigenvetor of Ai, then v ∈ M. Consequently, any

ommon eigenspae of Ai is ontained in M.

Proof. (1) Obviously, if w ∈ M, then w ∈ ker[Ai, Aj ] and so (AiAj)w = (AjAi)w

for any i, j.

Assume that V ⊆ Cn
is Ai-invariant, and (AiAj)v = (AjAi)v for any i, j and v ∈

V . Let t ≥ 2, X1, . . . , Xt ∈ {A1, . . . , As} and 1 ≤ i < t− 1. We set X1 · · ·Xi−1 = In,

if i = 1 and Xi+2 · · ·Xt = In, if i = t− 1. Then

(X1 · · ·Xt)v = (X1 · · ·Xi−1)(XiXi+1)(Xi+2 · · ·Xt)v

= (X1 · · ·Xi−1)(Xi+1Xi)(Xi+2 · · ·Xt)v

for any v ∈ V sine (Xi+2 · · ·Xt)v ∈ V and all the matries Ai ommute on V . This

easily implies that (X1 · · ·Xt)v = (Xσ(1) · · ·Xσ(t))v for any permutation σ of the set

{1, . . . , t}, and thus,

(Ak1

1 · · ·Aks
s )(Al1

1 · · ·Als
s )v = (Ak1+l1

1 · · ·Aks+ls
s )v = (Al1

1 · · ·Als
s )(A

k1

1 · · ·Aks
s )v

for any ki, lj ≥ 0 and v ∈ V . Hene, v ∈ ker[Ak1

1 · · ·Aks
s , Al1

1 · · ·Als
s ] and so V ⊆ M.

(2) Assume that v ∈ Cn
is a ommon eigenvetor of Ai and V is the one-

dimensional vetor spae generated by v. Then there are omplex numbers αi suh

that Aiv = αiv for any i. Observe that (AiAj)v = αiαjv = (AjAi)v and so

(AiAj)v = Ai(Ajv) ∈ V . Hene, the subspae V is Ai-invariant and the matries

Ai ommute on V . Therefore it follows by (1) that V ⊆ M, and so v ∈ M. This

yields any ommon eigenspae W of Ai is ontained in M, beause W is a set of

ommon eigenvetors of Ai.

Now we de�ne another subspae related to the problem of the existene of a

ommon eigenvetor. This subspae allows us to formulate a omputable riterion

analogous to the one presented in Theorem 2.1. The riterion requires less ompu-

tation than the �rst one, but needs an additional assumption. We start with the

following general observation.

Proposition 2.3. Assume that H,A1, . . . , As ∈ Mn(C) and H has pairwise

di�erent eigenvalues. If the subspae X ⊆ Cn
is nonzero H-invariant and (HAi)x =
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(AiH)x for any i and any x ∈ X, then there exists a ommon eigenvetor v ∈ X of

the matries H,A1, . . . , As.

Proof. Assume that 0 6= X ⊆ Cn
is H-invariant and (HAi)x = (AiH)x for any

x ∈ X . Sine X is H-invariant and H is a matrix over an algebraially losed �eld

C of omplex numbers, there exists α ∈ C and a nonzero vetor v ∈ X suh that

Hv = αv. Moreover,

H(Aiv) = (HAi)v = (AiH)v = Ai(Hv) = α(Aiv)

for any i sine v ∈ X and the matrix H ommutes with Ai on the subspae X . This

yields that Aiv is an eigenvetor of H orresponding to the eigenvalue α. Beause H

does not have multiple eigenvalues, the spae of all eigenvetors orresponding to α

is one-dimensional. This implies that the vetors v and Aiv are linearly dependent

and so Aiv = βiv for some omplex numbers βi. Consequently, Hv = αv, Aiv = βiv

and so v is a ommon eigenvetor of H,A1, . . . , As.

The following theorem gives an interesting alternative to Theorem 2.1.

Theorem 2.4. Assume that H,A1, . . . , As ∈ Mn(C) and de�ne

N (H,A1, . . . , As) :=

∞⋂

k=1

s⋂

i=1

ker[Hk, Ai].

(1) The subspae N (H,A1, . . . , As) is H-invariant and (HAi)x = (AiH)x for

any x ∈ N (H,A1, . . . , As).

(2) Assume that H has pairwise di�erent eigenvalues. Then the matries H,

A1, . . . , As have a ommon eigenvetor if and only if N (H,A1, . . . , As) 6= 0.

(3) We have

N (H,A1, . . . , As) =

n−1⋂

k=1

s⋂

i=1

ker[Hk, Ai]

and onsequently N (H,A1, . . . , As) = kerK where

K =

n−1∑

k=1

s∑

i=1

[Hk, Ai]
∗[Hk, Ai].

Proof. (1) We show that the subspae N (H,A1, . . . , As) is H-invariant. The

seond ondition follows from the fat that N (H,A1, . . . , As) ⊆
⋂s

i=1 ker[H,Ai].

If N (H,A1, . . . , As) = 0 then N (H,A1, . . . , As) is H-invariant. Hene, assume

that N (H,A1, . . . , As) 6= 0 and let v ∈ N (H,A1, . . . , As). Then (HkAi)v = (AiH
k)v

for any k and i = 1, . . . , s whih implies that

(HkAi)Hv = Hk(AiH)v = Hk(HAi)v = (Hk+1Ai)v = (AiH
k+1)v = (AiH

k)Hv
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for any k ∈ N and any i = 1, . . . , s. Hene, we get Hv ∈ ker[Hk, Ai] for any k and i,

and thus, Hv ∈ N (H,A1, . . . , As). Consequently, the subspae N (H,A1, . . . , As) is

H-invariant.

(2) Assume that the matries H,A1, . . . , As have a ommon eigenvetor. Then

there are omplex numbers αH , α1, . . . , αs and a nonzero vetor v ∈ Cn
suh that

Hv = αHv and Aiv = αiv for any i. Observe that (HkAi)v = αk
Hαiv = (AiH

k)v,

and hene, v ∈ ker[Hk, Ai] for any k ∈ N and any i = 1, . . . , s. This implies that

v ∈ N (H,A1, . . . , As) and so N (H,A1, . . . , As) 6= 0.

Conversely, it follows by (1) that the subspae N (H,A1, . . . , As) is H-invariant

and (HAi)x = (AiH)x for any x ∈ N (H,A1, . . . , As). Hene, it follows by Proposition

2.2 that if N (H,A1, . . . , As) 6= 0, then the matries H,A1, . . . , As have a ommon

eigenvetor.

(3) The �rst identity follows easily by the Cayley-Hamilton theorem. For the proof

of the seond one, observe that ker(A∗A+B∗B) = kerA∩kerB for any A,B ∈ Mn(C),

beause the matries A∗A,B∗B are positive semi-de�nite.

In the �nal theorem of this setion, we show a relation between ommon reduing

unitary subspaes, ommon eigenspaes and the subspae M introdued in Theorem

2.1 and studied for the �rst time in [9℄.

Theorem 2.5. Assume that A1, . . . , As ∈ Mn(C) and W is a subspae of Cn
.

The subspae W is a ommon reduing unitary subspae of A1, . . . , As if and only

if W is an Ai-reduing ommon eigenspae of A∗
iAj suh that W ⊆ M(A1, . . . , As,

A∗
1, . . . , A

∗
s).

Proof. ⇒ Assume that W is a ommon reduing unitary subspae of A1, . . . , As.

Then W is Ai-reduing and there are omplex numbers gi and a unitary operator

U : W → W suh that Aiw = (giU)w for any w ∈ W . Hene,

(A∗
iAj)w = A∗

i (Ajw) = A∗
i (gjU)w = gjA

∗
i (Uw) = (gjgiU

∗U)w = gjgiw

for any w ∈ W , beause Uw ∈ W . Thus, W is a ommon eigenspae of A∗
iAj .

Similar alulations show that (AjA
∗
i )w = gigjw, (AiAj)w = (gigjU

2)w and

(A∗
iA

∗
j )w = (gigjU

∗2)w, and thus, all the matries A1, . . . , As, A
∗
1, . . . , A

∗
s ommute

on W . It follows from Proposition 2.2 (1) that W ⊆ M(A1, . . . , As, A
∗
1, . . . , A

∗
s).

⇐ Assume that W is an Ai-reduing ommon eigenspae of A∗
iAj suh that

W ⊆ M(A1, . . . , As, A
∗
1, . . . , A

∗
s).

Sine W is a ommon eigenspae of A∗
iAj , there are omplex numbers αij suh

that (A∗
iAj)w = αijw for any w ∈ W and i, j = 1, . . . , s. Moreover, (A∗

iAi)w =

(AiA
∗
i )w for any w ∈ W by Proposition 2.2 (1).
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Consequently, (A∗
iAi)w = (AiA

∗
i )w = αiw for any w ∈ W where αi = αii.

Beause the operators A∗
iAi are positive semi-de�nite, the numbers αi are real non-

negative.

Assume that αk = 0 for some k. Then (A∗
kAk)w = 0, and thus, 0 = 〈w|(A∗

kAk)w〉
= 〈Akw|Akw〉 = ||Akw||2, where 〈·|·〉 and || · || denote the standard salar produt and
the standard norm in Cn

, respetively. This implies that Akw = 0 for any w ∈ W ,

and hene, Akw = (0 · U)w for any unitary operator U : W → W .

Assume that αk > 0 for some k and take any rk ∈ C suh that rkrk = 1
αk
. Then

(rkA
∗
k)(rkAk)w = (rkAk)(rkA

∗
k)w = w, and hene, the operator rkAk : W → W is

unitary. This implies that there is a nonzero omplex number sk = 1
rk

and a unitary

operator Uk : W → W suh that Akw = (skUk)w for any w ∈ W .

Assume that αk > 0 and αl > 0 for some k, l. Then there are nonzero omplex

numbers sk, sl and unitary operators Uk, Ul : W → W suh that

αklw = (A∗
kAl)w = A∗

k(Alw) = skU
∗
k (Alw) = (skU

∗
k slUl)w = (skslU

∗
kUl)w

and hene

(αklUk)w = Uk(αklw) = Uk(skslU
∗
kUl)w = (skslUkU

∗
kUl)w = (skslUl)w

for any w ∈ W . Therefore Ulw = ( αkl

sksl
Uk)w sine sk, sl 6= 0 and so Ul and Uk are

linearly dependent. Obviously αkl 6= 0, beause Ul is nonzero as a unitary operator.

The above arguments yield the existene of a unitary operator U : W → W and

omplex numbers gi suh that Aiw = (giU)w for any w ∈ W .

Indeed, if there is k suh that αk > 0, then U = Uk, where Uk : W → W is the

unique unitary operator satisfying Akw = (skUk)w for some nonzero omplex number

sk. We set gi = 0 if and only if αi = 0. Thus, in the ase αi = 0 for any i, we may

assume U is an arbitrary unitary operator, for example an identity. We onlude that

W is a ommon reduing unitary subspae of A1, . . . , As.

Theorem 2.5 implies that the problem of the existene of ommon reduing unitary

subspaes is equivalent, in the above sense, to the problem of the existene of ommon

eigenspaes. The latter problem omes down to the existene of d linearly independent

ommon eigenvetors w1, . . . , wd assoiated to a �xed sequene of eigenvalues, where

d is an arbitrary natural number. It is thus interesting to ask whether the results of

Theorem 2.1 and Theorem 2.4 are somehow su�ient to solve the general problem of

ommon reduing unitary subspaes.
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Sine the subspaes M and N onsidered in the setion are ruial in Theorem

2.1 and Theorem 2.4, respetively, we make a omparison of these two subspaes,

pointing out similarities and di�erenes between them.

Remark 2.6. Assume that H,A1, . . . , As ∈ Mn(C) and set M = M(H,A1, . . . ,

As) and N = N (H,A1, . . . , As).

1. It is easy to see that M ⊆ N , so M 6= 0 implies N 6= 0. The onverse

impliation does not hold in general.

2. The onditionN 6= 0 requires muh less omputation than the onditionM 6=
0. From the other hand, the subspae N is related to ommon eigenvetors

only if we assume that H do not have multiple eigenvalues. This assumption

is unimportant if we onsider the subspae M.

3. The subspae M is a ommon invariant subspae of H,A1, . . . , As by Theo-

rem 2.1 (1). The subspae N is, in general, only H-invariant, see Theorem

2.4 (1).

4. The subspae M is the biggest ommon invariant subspae of H,A1, . . . , As

on whih all these matries ommute, by Proposition 2.2 (1). It an be

shown similarly as in Proposition 2.2 (1) that the subspae N is the biggest

H-invariant subspae on whih the matrix H ommutes with Ai, for any i.

In general, the matries Ai do not ommute with eah other on N .

5. Sine M ⊆ N and M ontains any ommon eigenvetor of H,A1, . . . , As by

Proposition 2.2 (2), this is also the ase for N .

3. Main results and appliations to quantum hannels. In this setion,

we dedue the main results of the paper. First, we formulate them in the language

of ommon reduing unitary subspaes and then in the language of deoherene-free

subspaes for quantum hannels. We apply here the results of the Setion 2.

We distinguish the ase of nontrivial and the ase of arbitrary ommon reduing

unitary subspaes, see Setion 1 for the de�nitions. Both of these ases seem to be

important, as we demonstrate in Setion 4. Assume that X1, . . . , Xs ∈ Mn(C) and

de�ne

K(X1, . . . , Xs) = {v ∈ C
n;Xiv = 0 for any i}.

We set K = K(X1, . . . , Xs), M = M(X1, . . . , Xs) and N = N (X1, . . . , Xs). It follows

from Proposition 2.2 (1) that K ⊆ M,N sine K is Xi-invariant and all the matries

X1, . . . , Xs ommute on K.
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We de�ne M′ = M′(X1, . . . , Xt) and N ′ = N ′(X1, . . . , Xt) as the unique sub-

spaes of M and N , respetively, suh that K ∩M = K ∩N = 0 and K ⊕M′ = M,

K ⊕N ′ = N . Observe that M′ = (Cn ⊖K) ∩M and N ′ = (Cn ⊖K) ∩ N .

Theorem 3.1. Assume that H,A1, . . . , As ∈ Mn(C) and set

M = M(H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s),

N = N (H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s),

K = K(H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s).

Assume that M′
and N ′

are de�ned aording to the notation introdued above.

(1) Matries H,A1, . . . , As have a ommon reduing unitary subspae of dimen-

sion one if and only if M 6= 0.

(1') Matries H,A1, . . . , As have a nontrivial ommon reduing unitary subspae

of dimension one if and only if M′ 6= 0.

(2) Assume that H has pairwise di�erent eigenvalues. Then H,A1, . . . , As have

a ommon reduing unitary subspae of dimension one if and only if N 6= 0.

(2') Assume that H has pairwise di�erent eigenvalues. Then H,A1, . . . , As have

a nontrivial ommon reduing unitary subspae of dimension one if and only

if N ′ 6= 0.

(3) The onditions M 6= 0, M′ 6= 0, N 6= 0, N ′ 6= 0 are omputable.

Proof. (1) and (2) Assume that X1, . . . , Xt are arbitrary n×n omplex matries.

It is easy to see that there exists a ommon reduing unitary subspae of Xi of dimen-

sion one if and only if there exists a ommon eigenvetor of X1, . . . , Xt, X
∗
1 , . . . , X

∗
t .

Hene, the assertion of (1) follows from Theorem 2.1 (2) and that of (2) follows from

Theorem 2.4 (2).

(1') (⇒) Assume that V is a nontrivial one-dimensional ommon reduing unitary

subspae of H,A1, . . . , As. Then there is a nonzero ommon eigenvetor v ∈ V of

H,A1, . . . , As, H
∗, A∗

1, . . . , A
∗
s. Hene, v ∈ M by Proposition 2.2 (2) and there are

omplex numbers αH , α1, . . . , αs suh that Hv = αHv, H∗v = αHv, Aiv = αiv,

A∗
i v = αiv. Sine V is nontrivial, we get αH 6= 0 or αt 6= 0 for some t, and thus,

Hv = αHv 6= 0 or Atv = αtv 6= 0. It follows that v /∈ K, so v ∈ M′
and M′ 6= 0.

(⇐) Observe that the subspae M′
is H,A1, . . . , As-reduing. Indeed, we have

thatM′ = (Cn⊖K)∩M, M isH,A1, . . . , As-reduing by Theorem 2.1 (1) and Cn⊖K
is H,A1, . . . , As-reduing, beause K is H,A1, . . . , As-reduing. Moreover, M′ ⊆ M
and so the matries H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s ommute on M′

by Proposition 2.2

(1).

Sine the subspae M′
is nonzero H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s-invariant and all

these matries ommute on M′
, we get by a known result that there exists a ommon

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 253-270, June 2015



ELA

264 G. Pastuszak and A. Jamioªkowski

eigenvetor v ∈ M′
of H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s, see for example [6℄. Hene, the

subspae V generated by v is a one-dimensional ommon reduing unitary subspae

of H,A1, . . . , As. This subspae is nontrivial, beause V ⊆ M′ ⊆ Cn ⊖K.

(2') (⇒) This follows by (1') sine M′ ⊆ N ′
.

(⇐) We show similarly as in (1') that the subspae N ′
is H-invariant, although

we apply Theorem 2.4 (1). Sine N ′ ⊆ N , we have that H ommutes with A1, . . . , As,

H∗, A∗
1, . . . , A

∗
s on N ′

by Theorem 2.4 (1). BeauseN ′
is nonzero, it follows by Propo-

sition 2.3 that there is a ommon eigenvetor v ∈ N ′
of H,A1, . . . , As, H

∗, A∗
1, . . . , A

∗
s .

Hene, the subspae V generated by v is a one-dimensional ommon reduing unitary

subspae of H,A1, . . . , As. This subspae is nontrivial, beause V ⊆ N ′ ⊆ Cn ⊖K.

(3) The fat that the onditions M 6= 0 and N 6= 0 are omputable follows from

Theorem 2.1 and Theorem 2.4, respetively.

Observe that kerX ∩ kerY = ker(X∗X + Y ∗Y ) for any matries X,Y ∈ Mn(C),

beause X∗X,Y ∗Y are positive semi-de�nite.

Sine the subspae K is an intersetion of kernels of the matries H,A1, . . . , As,

H∗, A∗
1, . . . , A

∗
s, the observation implies that the linear basis of K an be diretly

omputed. This is also the ase for M and N , see Theorem 2.1 and Theorem 2.4.

Hene, we an expliitly alulate the dimensions dimCK, dimCM, dimCN , and

thus, the assertion follows from the fat that dimCM′ = dimCM − dimCK and

dimCN ′ = dimCN − dimCK.

The above theorem solves the problem of the existene of ommon reduing uni-

tary subspaes of dimension one. In the following theorem, we onsider another

speial ase of the general problem of ommon reduing unitary subspaes. Namely,

we assume that all the numbers gi from the de�nition of a ommon reduing unitary

subspae are equal to 1.

Theorem 3.2. Assume that A1, . . . , As ∈ Mn(C) and de�ne J = J (A1, . . . , As)

as the intersetion of the following subspaes:

• M(A1, . . . , As, A
∗
1, . . . , A

∗
s),

• {v ∈ Cn;Aiv = Ajv and A∗
i v = A∗

jv for any i, j},
• {v ∈ C

n; (A∗
iAi)v = v for any i}.

(1) The subspae J is a ommon reduing subspae of A1, . . . , As.

(2) If J 6= 0, then there exists a unitary operator U : J → J suh that Aiv = Uv

for any i and any v ∈ J . Hene, J is a ommon reduing unitary subspae.
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(3) If W is a ommon reduing unitary subspae of A1, . . . , As suh that Aiw =

Uw for some unitary operator U : W → W and any i = 1, . . . , s and w ∈ W ,

then W ⊆ J .

Proof. (1) We set M = M(A1, . . . , As, A
∗
1, . . . , A

∗
s).

Assume that x ∈ J and k ∈ {1, . . . , s}. We prove that Akx,A
∗
kx ∈ J . Sine

x ∈ M and M is Ai, A
∗
i -invariant by Theorem 2.1 (1), we get Akx,A

∗
kx ∈ M.

Beause J ⊆ M, it follows from Proposition 2.2 (1) that the matries A1, . . . , As,

A∗
1, . . . , A

∗
s ommute on J . Moreover, Aix = Ajx and A∗

i x = A∗
jx, so

Ai(Akx) = (AiAk)x = (AkAi)x = (AkAj)x = (AjAk)x = Aj(Akx)

and similarly A∗
i (Akx) = A∗

j (Akx), Ai(A
∗
kx) = Aj(A

∗
kx), A

∗
i (A

∗
kx) = A∗

j (A
∗
kx) for any

i, j, k = 1, . . . , s. Therefore, we obtain

Akx,A
∗
kx ∈ {v ∈ C

n;Aiv = Ajv and A∗
i v = A∗

jv for any i, j}.

Assume that Bk = Ak or Bk = A∗
k. Beause the matries A1, . . . , As, A

∗
1, . . . , A

∗
s

ommute on J , we easily get (A∗
iAi)Bkx = Bk(A

∗
iAi)x. It follows that (A

∗
iAi)Bkx =

Bkx sine (A∗
iAi)x = x, and thus,

Akx,A
∗
kx ∈ {v ∈ C

n; (A∗
iAi)v = v for any i}.

We onlude from the above arguments that if x ∈ J , then Akx,A
∗
kx ∈ J , and

hene, the subspae J is Ai-reduing.

(2) Observe that (A∗
iAi)x = (AiA

∗
i )x = x for any x ∈ J and sine J 6= 0, all the

operators Ai|J : J → J are unitary. Moreover, Ai|J = Aj |J for any i, j, beause

Aix = Ajx for any x ∈ J . This proves the assertion.

(3) Assume that W is a ommon reduing unitary subspae of Ai suh that

Aiw = Uw for some unitary operator U : W → W . It follows from Theorem 2.5 that

W ⊆ M and sine A∗
iw = U∗w = A∗

jw and (A∗
iAi)w = (U∗U)w = w for any w ∈ W ,

we get W ⊆ J .

Let us observe that the onstrution of the subspae J from the above theorem

seems to be natural in view of Theorem 2.5.

The following theorem applies the results of Theorem 3.1 and Theorem 3.2 to

deoherene-free subspaes for quantum hannels.

Theorem 3.3. Assume that Φ(X) =
∑s

i=1 AiXA∗
i is a quantum hannel.

(1) Any ommon reduing unitary subspae of Ai is nontrivial.
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(2) There exists a one-dimensional deoherene-free subspae for Φ if and only if

M(A1, . . . , As, A
∗
1, . . . , A

∗
s) 6= 0. This ondition is omputational.

(2') Asume that there exists t suh that At has pairwise di�erent eigenvalues. We

interhange At with A1. Then there exists a one-dimensional deoherene-free

subspae for Φ if and only if N (A1, . . . , As, A
∗
1, . . . , A

∗
s) 6= 0. This ondition

is omputational.

(3) Assume that J = J (
√
sA1, . . . ,

√
sAs). If J 6= 0, then J is a ommon

reduing unitary subspae of A1, . . . , As and onsequently, a deoherene-free

subspae for Φ. The ondition J 6= 0 is omputable.

Proof. (1) Assume that W is a ommon reduing unitary subspae of Ai suh

that Aiw = (giU)w for some gi ∈ C and a unitary operator U : W → W , for any

w ∈ W . Sine

∑s

i=1 A
∗
iAi = In, we get

∑s

i=1 |gi| = 1 and hene there is t suh that

gt 6= 0. Thus, W is nontrivial.

(2) and (2') Assume that W is a one-dimensional deoherene-free subspae for Φ.

It follows from De�nition 1.1 and De�nition 1.2 that W is a ommon reduing unitary

subspae of A1, . . . , As of dimension one. We know from (1) that W is nontrivial, and

hene, there are equivalenes (1)⇔(1') and (2)⇔(2') of the onditions from Theorem

3.1. Thus, the assertions follow from Theorem 3.1.

(3) We know from Theorem 3.2 that (
√
sAi)|J = U for some unitary operator

U : J → J . Thus, Ai|J = 1√
s
U , so J is a ommon reduing unitary subspae of

A1, . . . , As and onsequently, a deoherene-free subspae for Φ. The ondition J 6= 0

is omputable sine the subspae J is an intersetion of suitable kernels.

Observe that there exist quantum hannels Φ(X) =
∑s

i=1 AiXA∗
i with the prop-

erty J (
√
sA1, . . . ,

√
sAs) 6= 0. Indeed, assume that the matries A1, . . . , As ∈ Mn(C)

have the following blok-diagonal form

Ai =

[
1√
s
U 0

0 Ei

]

where U : Ck → Ck
is an arbitrary unitary operator and the matries Ei ∈ Mn−k(C)

satisfy the ondition

∑s
i=1 E

∗
i Ei = In−k. Then obviously

∑s
i=1 A

∗
iAi = In and

(
√
sAi)|Ck = U . This implies that the assertion of Theorem 3.3 (3) may be useful in

pratial appliations.

4. Remarks. This setion is devoted to present some additional omments on

the subjet matter of the paper. In partiular, we relate the results of Setion 2 with

the problem of the existene of ommon invariant subspaes of arbitrary dimensions.

4.1. The trivial and the nontrivial ase. The proof of the assertions (2)

and (2') of Theorem 3.3 onvines to onsider general onditions for the existene of
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ommon reduing unitary subspaes, i.e., not neessarily onditions only for nontrivial

ones, see Setion 1 for the de�nition. Indeed, in some important ases any ommon

reduing unitary subspae is nontrivial, see Theorem 3.3 (1).

Despite of this fat, only the problem of the existene of nontrivial ommon

reduing unitary subspaes is hallenging. Indeed, assume that X1, . . . , Xs ∈ Mn(C).

It is easy to see that the subspae K = K(X1, . . . , Xs) introdued in Setion 3 is a

trivial ommon reduing unitary subspae of Xi. Moreover, any suh a subspae is

ontained in K. Hene, there exists a trivial ommon reduing unitary subspae of

Xi if and only if K 6= 0.

It may be sometimes onvenient to ompletely eliminate the ase of trivial om-

mon reduing unitary subspaes from our onsiderations. This an be done in the

following way.

Observe that V ∩ V ′ = 0 for any nontrivial ommon reduing unitary subspae

V of Xi and any trivial one V ′
. Assume that Yi : C

n ⊖ K → Cn ⊖ K is de�ned by

Yi = Xi|(Cn ⊖ K) and let W be a subspae of Cn
. The observation yields that the

subspae W is a nontrivial ommon reduing unitary subspae of Xi if and only if W

is ontained in Cn⊖K andW is a ommon reduing unitary subspae of Yi. Moreover,

any ommon reduing unitary subspae of Yi is nontrivial. These arguments imply

that we an study the matries Yi instead of Xi if we wish to onsider only nontrivial

ommon reduing unitary subspaes of Xi.

4.2. Common invariant subspaes. Assume that A1, . . . , As ∈ Mn(C) have

pairwise di�erent eigenvalues. We prove in [9, Corollary 3.3℄ (see also [1℄, [5℄, [17℄)

that in this ase, the matries Ai have a ommon invariant subspae of dimension k if

and only if the matries Ck(Ãi) have a ommon eigenvetor where Ãi = Ai − tiIn for

some ti ∈ N and Ck(Ãi) denotes the k-th ompound of Ãi, see [14℄ for the de�nition

and main properties.

In [9, Corollary 3.3℄ we apply the ondition M 6= 0 for the existene of a ommon

eigenvetor of Ai, see also Theorem 2.1. The results of Setion 2 show that we an

suitably exhange the ondition M 6= 0 used in [9, Corollary 3.3℄ to the ondition

N 6= 0, see Theorem 2.4. As disussed in Setion 2, this ondition requires less

omputation than the �rst one. Consequently, we obtain more e�ient omputational

ondition for the existene of a ommon invariant subspae of dimension k. Note

that this ondition may be applied as in Setion 3 and Setion 4 of [9℄ in heking

irreduibility of a given ompletely positive map. Indeed, it follows by [4℄ that a

ompletely positive map Φ suh that Φ(X) =
∑s

i=1 AiXA∗
i for any X ∈ Mn(C) and

some Ai ∈ Mn(C) is irreduible if and only if the matries Ai do not have a nontrivial

ommon invariant subspae. Reall that, by the de�nition, a ompletely positive map
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Φ is irreduible if and only if there is no nontrivial projetor P suh that Φ(P ) ≤ λP

for some λ > 0.

4.3. Pairwise di�erent eigenvalues. The assumption that the matrix H from

Theorem 2.4 has pairwise di�erent eigenvalues seems not to be so strong in prati-

al appliations. Indeed, it follows from [3, Lemma 3.1℄ or [7, Chapter I, Corollary

10℄ that the set of all n × n omplex matries having at least one multiple eigen-

value is Lebesgue-measurable, and of measure zero. So if H is random, it should be

expeted that H has pairwise di�erent eigenvalues. These arguments imply that if

Φ(X) =
∑s

i=1 AiXA∗
i is a quantum hannel, then we an use the e�ient ondition

N (A1, . . . , As, A
∗
1, . . . , A

∗
s) 6= 0 to hek whether there is a deoherene-free subspae

for Φ of dimension one.

5. A numerial example. In the last setion, we present an appliation of

the riterion given in Theorem 3.1 to three onrete 3 × 3 matries A, B and C.

Spei�ally, we hek whether A, B, C have a ommon reduing unitary subspae of

dimension one (trivial or nontrivial). These matries were randomly generated in a

omputer algebra system under the assumption that their entries belong to the set

{−3,−2,−1, 0, 1, 2, 3}. All alulations given below were performed using the same

software.

Assume that

A =




3 0 1

3 1 −1

2 0 −1


 , B =




1 0 −2

−3 1 1

−3 −3 −2


 , C =




3 −1 −1

−3 2 3

−1 −2 1


 .

We prefer to apply the onditions (2) and (2′) of Theorem 3.1 sine these are more

e�ient than the remaining ones. For this purpose, we hek whether A, B or C has

pairwise di�erent eigenvalues.

Reall that the disriminant dis(f) of a polynomial f ∈ C[x] is the resultant of

f and f ′
where f ′

denotes the formal derivative of f , see [11, Chapter IV, Setion 8℄.

It is ommonly known that dis(f) = 0 if and only if f has a multiple root. Hene,

a matrix Y ∈ Mn(C) has a pairwise di�erent eigenvalues if and only if dis(χY ) 6= 0

where χY denotes the harateristi polynomial of Y .

We get that dis(χA) = 864, dis(χB) = −13419 and dis(χC) = −976. Thus,

all the matries has pairwise di�erent eigenvalues and the onditions (2) and (2′) of

Theorem 3.1 are appliable. Note that this is onsistent with Setion 4.3.

We set H = A, A1 = B, A2 = C, A3 = A∗
, A4 = B∗

and A5 = C∗
. Then

N (A,B,C,A∗, B∗, C∗) = N (H,A1, . . . , A5) =

2⋂

k=1

5⋂

i=1

ker[Hk, Ai] = kerK
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where

K =

2∑

k=1

5∑

i=1

[Hk, Ai]
∗[Hk, Ai] =




14292 −4376 −1769

−4376 5698 3389

−1769 3389 4484


 .

Sine detK = 149782564282 6= 0, we get N (H,A1, . . . , A5) = 0 and hene Theorem

3.1 (2) implies that the matries A, B, C do not have a ommon reduing unitary sub-

spae of dimension one. This obviously yields these matries do not have a nontrivial

ommon reduing unitary subspae of dimension one either.

To make the omparison of subspaes M and N from Setion 2 more onrete

(see Remark 2.6), we ompute also M(A,B,C,A∗, B∗, C∗). It follows from Theorem

2.1 that M(A,B,C,A∗, B∗, C∗) = kerK ′
where

K ′ =
∑

ki,lj∈{0,1,2}
[Bk1

1 · · ·Bk6

6 , Bl1
1 · · ·Bl6

6 ]∗[Bk1

1 · · ·Bk6

6 , Bl1
1 · · ·Bl6

6 ]

for k1 + · · · + k6 6= 0, l1 + · · · + l6 6= 0 and B1 = A, B2 = B, B3 = C, B4 = A∗
,

B5 = B∗
, B6 = C∗

. We get

K ′ ·




1

0

0


 =




90269511662695957111656

−72804159139519208105154

26474422056095133884250


 ,

K ′ ·




0

1

0


 =




−72804159139519208105154

85381405854804833456880

−30062218685628270512574


 ,

K ′ ·




0

0

1


 =




2647442205609513!3884250

−30062218685628270512574

20348385815244430069452




and detK ′
is a nonzero integer having the number of deimal digits equal to 68.

We note that it takes only 9 seonds to alulate K whereas about 165 minutes

to alulate K ′
. This emphasizes the fat that the ondition N 6= 0 requires muh

less omputation than the ondition M 6= 0.
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