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GENERALIZATION OF GRACIA’S RESULTS*

JUN LIAOT, HEGUO LIUt, YULEI WANG!, ZUOHUI WU, AND XINGZHONG XUT

Abstract. Let a be a linear transformation of the m X n-dimensional vector space My, xn(C)
over the complex field C such that a(X) = AX — XB, where A and B are m X m and n X n
complex matrices, respectively. In this paper, the dimension formulas for the kernels of the linear
transformations a? and o are given, which generalizes the work of Gracia in [J.M. Gracia. Dimension
of the solution spaces of the matrix equations [A, [4, X]] = 0 and [A[A, [4, X]]] = 0. Linear and
Multilinear Algebra, 9:195-200, 1980.].
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1. Introduction. The notation used in this paper is standard, see [2 3] for
example. Let C be the complex field. Suppose A € M, xm(C) and B € M,,x,(C).
Let aap be a linear transformation of M,,x,(C) defined by

aap(X)=AX — XB, for X € M, xn(C).

If A = B, then we will write a4 instead of a4 4 for brevity. In the case of no confusion,
we write &« = aq g for short.

The well known dimension formula of the kernel kera s is due to Frobenius [3]
Theorem VIL.1]. Then Gracia has obtained the dimension formulas of kera? and
kerad in [1].

It is obvious that the kernels of the liner transformations o? and o are the
solutions of the matrix equations A(AX — XB) — (AX — XB)B =0 and A[A(AX —
XB) — (AX — XB)B] — [A(AX — XB) — (AX — XB)B|B = 0, respectively. In
this paper, we obtain the dimensions of kera? and kera?®, which generalizes Gracia’s
results.
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For convenience, we introduce the following notations. Suppose that the elemen-
tary divisors of A and B are (A—A1)Pt, (A=X2)P2 ..., (A=Ay)P» and (A—pp)?, (A—
12)?, ... (A — py) %, respectively. Let E,, be the unit matrix of size n and let

o1 0 --- 0
0 0 1 0
Nn: : : .
0 0 O 1
0 0 O 0

be the square matrix of size n in which all the elements of the first superdiagonal are
1 and all the other elements are 0. Let

)‘1EP1 + NP1
)‘QEZ& + NP2 0
Ja = .
0
)\uEpu + Np,
and
p1Eq, + Ng,
p2Eq, + Ng, 0
Jp = .
0
/’[/'UEQv + N v

be respectively the Jordan normal forms of A and B. For | <a <wuwand 1 <8 <w.
Let Ffﬁ) and Ffﬁ) be defined by the following:

0 if Ao 7 p1;
F&QB) — 2min(pa7 qﬂ) - ]. 1f >\Oz = MB and Do = qﬁ;
2min(pa, qs) if Ao = 115 and pa #
and
0 if Ao 7 pg;
p® _ ) 3min(pa, gs) =2 if Ao = g and pa = gs;
af Smin(pcw qﬂ) —1 lf )\a = /’I/ﬂ and |pa _ qﬂ| — 17
3min(pa, qs) if Aq = p15 and [pa — gs| > 2.

The main results are the following:

THEOREM 1.1. Let & : Myyxn(C) = Mpxn(C) be a linear transformation such
that a(X) = AX — XB, where A and B are m X m and n x n complex matrices,
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respectively. Then the dimension formula for kera? is

dim(keraQ) = Z Z Fgg (1.1)

THEOREM 1.2. Let & : Myyxn(C) = Mpxn(C) be a linear transformation such
that a(X) = AX — XB, where A and B are m X m and n x n complex matrices,
respectively. Then the dimension formula for kera? is

dim(kera®) = Z Z FS’B) (1.2)

2. The proof of Theorem [I.Il Before proving the theorem, we first give a
lemma in the following;:

LEMMA 2.1. For a matrix M € M;x;(C), let A(M) be the set of its different
eigenvalues. If A(A) N A(B) =0, then kera® =0 for k=1,2,3,...

Proof. Tt is well known that A(A) N A(B) = 0 if and only if the unique solution
of the matrix equation AX — XB = 0 is X = 0. Thus, when A(A) N A(B) = (), we
can prove by induction on k that if A(A) N A(B) = 0, the equality o*(X) = 0 implies
X = 0. In fact, if oF(X) = 0 then a(a*1(X)) = 0 and AaF~1(X) —*~1(X)B =0.
Since A(A) N A(B) = 0, it follows that o*~1(X) = 0. By hypothesis of the induction
the equality o*~1(X) = 0 implies that X = 0. So that, A(A)NA(B) = () implies that
kera® =0 for k =1,2,3,... 0

Proof. 1t is obvious that there are invertible matrices U and V such that A =
UJaU tand B =VJgV 1. Assume X € kera?, then A(AX —XB)—(AX—-XB)B =
0. Hence,

UJsU N UJAUIX — XV gV ™Y = (UJAU'X — XVJgV HYVJgV L
Thus,
JA(JAUT'XV — U XV Jg) = (JAU ' XV —U'XV.Jg)JB.
Let X = U~'XV. Then, the equation is
Ja(JaX — XJp) = (JaX — XJp)Jp. (2.1)

Now we partition X into blocks (X,5) where X,p = (€ik)paxqs 1S @ Pa X @ matrix
for 1 <a <wand 1< g <wv. Then we get uv matrix equations from (3):

(AaEp, + Np, )[(AaEp, + Np,)Xap — Xap(upEqe, + Ny, )]
= [()‘aEpa + N, Q)Xaﬂ - XaB(Mﬂqu + Nq;s)](NBEqa + qua)-
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Write Py := Np, and Qg := Ng,. An easy calculation gives

(g — )‘a)QXaﬂ =2(pg — Aa)(PaXap — Xap@p)
+Po(XapQp — PaXap) — (XapQp — PaXap)Qp.  (2.2)

If 13 # Aa, then X3 = 0 by Lemma 2Tl Next we assume that gg = A,. In this
case, we have

Pa(PaXa,@ - Xa,@QB) = (PaXaB - XaBQ,@)QB- (2'3)

Case 1. po = q3.

If po = 1, then it is obvious that X5 = (£11).

. . IS5 e
If po = 2, an easy computation gives Xog = ( (1)1 512) .
22

If po > 3, then

€31 €32—¢€21 €33 €22 €3, g3 —€2, qg—1
€41 €42 —E€31 €43 €32 €4, a3 7E3, qg—1
€pa 1 €pa 27 Epa—1, 1 Epa 37 Epa—1, 2 " Epn g~ Epa—1, ag—1

0 “Epa 1 “Epa 2 “€pa, ag—1

0 0 0 0

0 €21 €22—E€11 €2, qg—17€1, qg—2

0  es1 €32 —€21 €3, qg—17€2, qg—2

B B

0 €pa—1,1€pa—1, 2=€pa—2, 1 " Epa—1, aqg—1"Epa—2, qg—2

0 epy 1 €pa 27 €pa—1, 1 " Epa, qg—1"Epa—1, qg—2

0 0 “E&pa 1 . “Epa, 9g—2

This leads to the following equations:
€s1 = Ep, t = 0,
Epa—1, i = 2€p,, i+1, €n2 = 26h—1, 1,
Ejk = 26j-1, k—1 — €j-2, k-2,

where 3 < s < po, 1 <t <qg—2,2<i<¢qg—2,3<7<pa 3<k<gs
—1<k—-j<gg—3and 3 <h<p,. According to these equations, we have

€32 = 2e21

€43 = 2€32 — €21

€pa, as—1 = 2Epa—1, gs—2 ~ Epa—2, q3—3

2€pa, qs—1 = Epa—1, qp—2-
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Then, €21 = €32 = -+ = €5, g1 = 0. We also have

€33 = 2€22 — €11

€pa, 5 = 2Epa—1, qz—1 ~ Epa—2, g5—2-
By induction on the subscript, we obtain €;; = (i — 1)eaa — (i — 2)e11, where 3 <4 <
Do- Note that e;, = 2e;_1, x—1 — €j—2, k—2, where 3 < j < p,, 3 < k < g3 and
1 <k —j<gpg— 3. By induction, we get e, = (r — 1)ea, h—rt2 — (r — 2)€1, h—rt1
where 3 <7 <p,, 0 <h—7r<gg—3and 3 <h <gg. Thus, we conclude that

€11 €12 €13 - €1, g5-1 €1 qp
0 e22 €23 : €2 qg
Xap = 0 0 2e32—en1 - 2e2, qp—1—€1, q5—2
0 0 O. (pa—2)822;(pa—3)€11 (pa—2)€23;(10a—3)512
0 0 0 0 (pa—1)e22—(Pa—2)e11
Let Dy = diag{1,0,—1,...,—(po — 2)} and D2 = diag{0,1,...,ps — 1} be diagonal

matrices of size p,. It is obvious that X,5 = Zgif(qul + 52,i+1D2)N;;;1- Then
the number of arbitrary parameters in X3 is 2p, — 1.

Case 2. p, # gg. We can assume that p, < gg, since the case p, > ¢g is
analogous.

If po = 1, then Xo5 = (0,...,0,€1, g5—1,€1, ¢5). In this case, gg — 2 columns are

If po = 2, then X, has the following form:

X o= 0 -+ 0 2e2,g5-1 €1,q5-1 €1,q4
aff — )
o - 0 0 €2, gs—1 €2, ¢p

and gg — 3 columns are 0.

If po > 3, then X, has the following form:

0-- 0e¢q, ag—pa €1, aqg—pa+l €1, ag—pa+2 €1, qg—2 €1, qg—1 €1, ag
0--0 0 €2, qg—pa+l €2, ag—pa+2 " €2, q5—2 €2, qg—1 €2, qg
0--0 0 0 €3, ‘1;3—1’a+2 €3, qﬁ_Q €3, ‘113_1 €3, ag

. . . . ’
0--0 0 0 0 " Epa—2,q3-2 Epa—£,q5—1 Ep(x—'Qy(lg
0--0 0 0 0 Epafl,q372 Epafl,qﬁfl Epafl,qu
0.0 0 0 0 0 €pasag—1  Epasag

where €;, gy—po—1+i = (Pa + 1 = 0)ep, go—1,6rn = (1 = 1)e2, nry2 — (1 = 2)€1, hort1
and g5 = 0,pa —qg+2<j—k <pa—1,and 3 <r < pa, 0 < h—r < g5 -3,
g8 —Pa+3 < h<gqg, 1<i<p,. In this case, gg — po — 1 columns are 0.
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Therefore, there are no = Y o _, > 5 =1 F hnearly independent solutions X ; of
(3). For each X, there are ki, ks, ..., kn,, such that X = ijl k;X ;. Note that
X = U~'XV. It is straightforward to show that every solution of A(AX — XB) -
(AX — XB)B =0 is a linear combination of ns linearly independent solutions. O

Let us illustrate Theorem [[.1] with an example.

EXAMPLE 2.2. Suppose that the elementary divisors of A and B are (A —
)\1)47 ()\—)\1)3, ()\—)\2)2, ()\—)\2) and ()\—)\1)5, ()\—)\1)3, ()\—)\2)3, ()\—)\2)2, ()\—)\3),
respectively, where A\; # Ao # A3, then

4 5
dim (kera?) ZZ FC) =8+6+6+5+4+3+2+2=36.

Let A be an n X n complex matrix with distinct eigenvalues a1,..., a, the ele-
mentary divisors of A are (A — a;)"* and Segre characteristic

Jik times
Jin o Ji2 Jimq Jr1  Jr2 Jrm
[(n11 SIS M )y, (R M ) |
where 0 < nj1 < njg < -+ < Ny, for 1 <4 < r; here we write n]”“ for ngg, ik, « + s Nk
—_—

Jir times
Then we can show the following corollaries.

COROLLARY 2.3 ([1]). Let s : Mpxn(C) = Myxn(C) be a linear transformation
such that aa(X) = AX — X A, where A is an n X n complex matriz. Then

T m; m;—1 m;
dim(kero?) = > | S @n — D73 +4 > ma g > dis
i=1 | k=1 k=1 p=k+1

Proof. Let the elementary divisors of A are (A — a;)"™*, where 1 < ¢ < r and
—_———
Jik times
1 < k < m;. Using Theorem [T we have dim(kera?) = Y u_ > _, F), where
w=>1_; > jik. The result follows from that

m; m;—1 m;
Z Z FQ) = Z > @ik — D)5 +4 ) na- gk Y dis
a=1a=1 i=1 | k=1 k=1 B=k+1

This completes the proof. O

COROLLARY 2.4. Let ag : Mpxn(C) = M,uxn(C) be a linear transformation
such that aa(X) = AX — XA, where A is an n X n complex matriz. Then n <
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dim(kera?) < n?%. Moreover, dim(kera?) = n if and only if A is similar to a diagonal
matriz diag{a1,az,...,a,}, where a; # a; if i # j.

Proof. By Corollary 23]
i T r . 2 2
: , o o (XiziJa)® _n
dim(kera?y) = [(2nia = )73 2 > _jh 2 == = - =
=1 =1
and this equality holds if and only if m; = 1,n;; = 1 and j;7 = 1,7 = n. Clearly

kera? is a subspace of the vector space M, (C), thus dim(kera%) < n2. O

3. The proof of Theorem This theorem can be proved by the same
method as employed in the previous section.

Proof. For convenience, we still use the same notations as in the proof of Theorem
LI Assume X € kera®. Then J3(JaX — 3XJp) = (XJp — 3J4X)J3, where
X = U~'XV. Consequently, we get uv matrix equations:
(AaEp, + Npo )*[(AaEp, + Npo)Xas — 3Xap(sEq, + Ny, )]
= [(AaEp, + Npo)Xap = 3Xap(ppEes + Noy)|(nsEqs + Nq@)Q;

for 1 <a<wand1l<pg<w. An easy calculation gives
(15 = Aa)*Xap = 3(1s — Aa)? (PaXap — XapQp)

_3(Mﬂ - )‘a)(Po%Xaﬂ + XaﬂQ% - 2PaXaBQﬂ)
+P2(PaXap — 3XapQp) + (3PaXap — XapQp)Q3.  (3.1)

If g # Aa then X3 = 0 by Lemma 21l We assume that pg = A,. In this case,
we have

PaQ(PaXaﬁ - 3XQ5QB) - (XaﬁQB - 3PaXaB)QQB~ (3~2)

Case 1. po = q3
If po < 4, then the number of arbitrary parameters in X,g is 3po — 2.

If po > 4, then we obtain

Eij = 0,

€n2 = 3Eh—1, 15 Epa—1, k = 3Epy,, k+1,
€n3 = 3En—1, 2 — 3Eh—2, 1,

Epa—2, k = 3Epa—1, kt1 — 3Epy, k+2,

€fg = E€f-3, g3 — 3Ef-2, g—2 + 3€5-1, g1,
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where 4 <i <pg,, i—j >3, 4<h<ps, 1<k<qgs—3,4< f<pyandd <g<ggs.
Hence, we have

€42 = 3€31
€53 = 342 — 3€31

€64 = 3€53 — 342 + €31

€pa, 4s—2 = 3Epa—1, q5—3 ~ 3Epa—2, qs—4 T Epa—3, q5—5

Epa—2, qs—4 = 3Epa—1, qz—3 — 3Epa, gs—2

€pa—1, gs—3 = 3Epa, qs—2-

Thus, €31 = €42 = -+ - = €p,,, q5—2 = 0. We also have

€43 = 3€32 — 3€21

€54 = 3€43 — 332 + €21

€pa, gs—1 = 3Epa—1, gs—2 ~ 3Epa—2, qs—3 + Ep.—3, gp—4

€pa—2, q5—3 = 3Epa—1, gs—2 — FEpa, gs—1-
By induction on the subscript, we obtain

(s =1(s = 2)(pa — 2)

—(s—2)2+1
(paf]_) (S )+ €21,

€s, s—1 =

where 2 < s < p,. Note that efy = €7_3 g—3 — 32, g—2 + 3e5_1, g—1, Where
4 < f <pq and 4 < g < gg. Continuing by induction, we finally have

(f =2)(f =3)

€fg = =5 fLg-fH1

—[f(f=4)+3Je2, g—42 + WEB, g—f+3

where 4 < f < p,,4<g<ggand 0<g— f <gg—4. Then it is evident to see that
the number of arbitrary parameters in X,g is 3po — 2.

Case 2. po # qg. We can assume that p, > gg, since the case p, < gg is
analogous.
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If po — g =1 and gg > 4, then we have

e =0,
o= EEE D (527~ e,
o=,
-+ g+ LTTIZD

where i —j > 2,3 < i < pa, 2 <8 < pa, 4 < f <pa—1,4< g < gp and
0 <g— f <gp—4. Thus, the number of arbitrary parameters in X,z is 3gs — 1.

If po — g =1 and gg < 4, then a routine computation gives rise to the result.

If po — g > 2 and gg > 4, then we have

€s,5-1 = Wsw —[(s —2)* — 1]ean,
o= LD =0+ 312, e
NESIEE N,

wherei—3j>3,3<g<pyand2<s<p,and4< f<p,—land4<g<gp 0<
g — f < gs — 4. Thus, the number of arbitrary parameters in X3 is 3¢g.

If po — g > 2 and gg < 4, then an obvious computation gives rise to the same
result.

Therefore, there are ng = ZZ=1 ZZ=1 ng linearly independent X; € kera?. For
each X € kera®, there are kq, ko, ..., ky,, such that X = 2?21 ki X;. 0O

Let us illustrate Theorem [[.2 with an example.

ExaMPLE 3.1. Suppose that the elementary divisors of A and B are (A —
A)Y (A=), (A=22)2, (A=A2), (A=Xz) and (A=A1)%, (A=A1)?, (A=X2)?, (A=X2)?,
respectively, where A1 # Ay # A3, then

5 4
dim(kera®) = Y N FY) =114+ 8+ 9+ 7 +5+4+3+2=49.
0(=1[‘3:1

Let A be an n x n complex matrix with distinct eigenvalues a1, ..., a, and the
elementary divisors of A are (A —a;)"* for 1 < k < m; and 1 < i < r. The
—_———

Jir times
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difference n; p41 — n4p is called an h-th jump of i for 1 < h < m; — 1. We denote by
i1, iz, - - - lip, the places where the jumps equal to 1 and g1 < pie < -+ < fip, -
Then we can show the following corollaries.

COROLLARY 3.2 ([1]). Let s : Mpxn(C) = Myxn(C) be a linear transformation
such that aa(X) = AX — X A, where A is an n x n complex matriz. Then

r mi Lz Pi
dim(kera;) = Z Z (3ir, — 2)ji% + Onire - ik Z Jig| —2 ij‘,w * Jigpa+1
=1 | k=1 B=k+1 =1

Proof. Let the elementary divisors of A are (A —a;)"*, where 1 < i <7, 1<
—_———
7k times
k <m; and 0 <3 it < Mig < - < i Using Theorem [[.2] we hgve dim(kera?3) =
DD D F$), where u = Sy > op Jik. Since Y4 _ St F$) is equal to

r mi Uz Pi
DA [ Bk — 2055 + 6nak - Gik D Gig| = 2D i - Fipat |
i=1 [k=1 B=k+1 =1

we have the dimension formula. O

COROLLARY 3.3. Let ag : Mpxn(C) = M,uxn(C) be a linear transformation
such that aa(X) = AX — XA, where A is an n X n complex matriz. Then n <
dim(kera3,) < n%. Moreover, dim(kera®) = n if and only if A is similar to a diagonal
matriz diag{a1,as, ..., an}, where a; # a; if i # j.

Proof. Since

T m; m; Pi
dim(kera®y) = > | > | Bnax = 2)55 + 6na - jax Y is | =2 Jipa i1 | 5
i=1 | k=1 B=k+1 =1

N2
it follows that dim(kera®) > Y0, [(3na — 2)j24] > Y0, j4 > M = "72 >n
and the equality holds if and only if m; = 1,n;; = 1 and j;; = 1,7 = n. Clearly, kera,
is a subspace of the n x n-dimensional vector space M,,x,(C), so dim(kera) < n?. O
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