

GENERALIZATION OF GRACIA'S RESULTS*

JUN LIAO^{\dagger}, HEGUO LIU^{\dagger}, YULEI WANG^{\ddagger}, ZUOHUI WU^{\dagger}, AND XINGZHONG XU^{\dagger}

Abstract. Let α be a linear transformation of the $m \times n$ -dimensional vector space $M_{m \times n}(\mathbb{C})$ over the complex field \mathbb{C} such that $\alpha(X) = AX - XB$, where A and B are $m \times m$ and $n \times n$ complex matrices, respectively. In this paper, the dimension formulas for the kernels of the linear transformations α^2 and α^3 are given, which generalizes the work of Gracia in [J.M. Gracia. Dimension of the solution spaces of the matrix equations [A, [A, X]] = 0 and [A[A, [A, X]]] = 0. Linear and Multilinear Algebra, 9:195–200, 1980.].

Key words. Linear transformation, Dimension formulas, Jordan canonical form.

AMS subject classifications. 15A24, 15A27.

1. Introduction. The notation used in this paper is standard, see [2, 3] for example. Let \mathbb{C} be the complex field. Suppose $A \in M_{m \times m}(\mathbb{C})$ and $B \in M_{n \times n}(\mathbb{C})$. Let α_{AB} be a linear transformation of $M_{m \times n}(\mathbb{C})$ defined by

$$\alpha_{AB}(X) = AX - XB, \text{ for } X \in M_{m \times n}(\mathbb{C}).$$

If A = B, then we will write α_A instead of α_{AA} for brevity. In the case of no confusion, we write $\alpha = \alpha_{AB}$ for short.

The well known dimension formula of the kernel ker α_A is due to Frobenius [3, Theorem VII.1]. Then Gracia has obtained the dimension formulas of ker α_A^2 and ker α_A^3 in [1].

It is obvious that the kernels of the liner transformations α^2 and α^3 are the solutions of the matrix equations A(AX - XB) - (AX - XB)B = 0 and A[A(AX - XB) - (AX - XB)B] = [A(AX - XB) - (AX - XB)B]B = 0, respectively. In this paper, we obtain the dimensions of ker α^2 and ker α^3 , which generalizes Gracia's results.

^{*}Received by the editors on September 18, 2014. Accepted for publication on May 1, 2015. Handling Editor: Joao Filipe Queiro.

[†]School of Mathematics and Statistics, Hubei University, Wuhan, 430062, P.R. China (jliao@hubu.edu.cn, ghliu@hubu.edu.cn, zuohuiwoo@163.com, xuxingzhong407@126.com). Supported by the National Natural Science Foundation of China (grant no. 11371124 and 11401186).

[‡]School of Mathematics, Henan University of Technology, Zhengzhou, 450001, P.R. China (yulwang@163.com). Supported by the National Natural Science Foundation of China (grant no. 11301150).

244 Jun Liao, Heguo Liu, Yulei Wang, Zuohui Wu, and Xingzhong Xu

For convenience, we introduce the following notations. Suppose that the elementary divisors of A and B are $(\lambda - \lambda_1)^{p_1}$, $(\lambda - \lambda_2)^{p_2}$, ..., $(\lambda - \lambda_u)^{p_u}$ and $(\lambda - \mu_1)^{q_1}$, $(\lambda - \mu_2)^{q_2}$, ..., $(\lambda - \mu_v)^{q_v}$, respectively. Let E_n be the unit matrix of size n and let

$$N_n = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

be the square matrix of size n in which all the elements of the first superdiagonal are 1 and all the other elements are 0. Let

$$J_A = \begin{pmatrix} \lambda_1 E_{p_1} + N_{p_1} & & \\ & \lambda_2 E_{p_2} + N_{p_2} & & 0 \\ 0 & & \ddots & \\ & & & \lambda_u E_{p_u} + N_{p_u} \end{pmatrix}$$

and

$$J_B = \begin{pmatrix} \mu_1 E_{q_1} + N_{q_1} & & \\ & \mu_2 E_{q_2} + N_{q_2} & & 0 \\ 0 & & \ddots & \\ & & & \mu_v E_{q_v} + N_{q_v} \end{pmatrix}$$

be respectively the Jordan normal forms of A and B. For $1 \le \alpha \le u$ and $1 \le \beta \le v$. Let $\mathcal{F}_{\alpha\beta}^{(2)}$ and $\mathcal{F}_{\alpha\beta}^{(3)}$ be defined by the following:

$$\mathbf{F}_{\alpha\beta}^{(2)} = \begin{cases} 0 & \text{if } \lambda_{\alpha} \neq \mu_{\beta}; \\ 2\min(p_{\alpha}, q_{\beta}) - 1 & \text{if } \lambda_{\alpha} = \mu_{\beta} \text{ and } p_{\alpha} = q_{\beta}; \\ 2\min(p_{\alpha}, q_{\beta}) & \text{if } \lambda_{\alpha} = \mu_{\beta} \text{ and } p_{\alpha} \neq q_{\beta} \end{cases}$$

and

$$\mathbf{F}_{\alpha\beta}^{(3)} = \begin{cases} 0 & \text{if } \lambda_{\alpha} \neq \mu_{\beta}; \\ 3\min(p_{\alpha}, q_{\beta}) - 2 & \text{if } \lambda_{\alpha} = \mu_{\beta} \text{ and } p_{\alpha} = q_{\beta}; \\ 3\min(p_{\alpha}, q_{\beta}) - 1 & \text{if } \lambda_{\alpha} = \mu_{\beta} \text{ and } |p_{\alpha} - q_{\beta}| = 1; \\ 3\min(p_{\alpha}, q_{\beta}) & \text{if } \lambda_{\alpha} = \mu_{\beta} \text{ and } |p_{\alpha} - q_{\beta}| \geq 2. \end{cases}$$

The main results are the following:

THEOREM 1.1. Let $\alpha : M_{m \times n}(\mathbb{C}) \to M_{m \times n}(\mathbb{C})$ be a linear transformation such that $\alpha(X) = AX - XB$, where A and B are $m \times m$ and $n \times n$ complex matrices,

Generalization of Gracia's Results

respectively. Then the dimension formula for ker α^2 is

$$\dim(\ker\alpha^2) = \sum_{\alpha=1}^u \sum_{\beta=1}^v F_{\alpha\beta}^{(2)}.$$
(1.1)

THEOREM 1.2. Let $\alpha : M_{m \times n}(\mathbb{C}) \to M_{m \times n}(\mathbb{C})$ be a linear transformation such that $\alpha(X) = AX - XB$, where A and B are $m \times m$ and $n \times n$ complex matrices, respectively. Then the dimension formula for ker α^3 is

$$\dim(\ker\alpha^3) = \sum_{\alpha=1}^u \sum_{\beta=1}^v F_{\alpha\beta}^{(3)}.$$
(1.2)

2. The proof of Theorem 1.1. Before proving the theorem, we first give a lemma in the following:

LEMMA 2.1. For a matrix $M \in M_{l \times l}(\mathbb{C})$, let $\Lambda(M)$ be the set of its different eigenvalues. If $\Lambda(A) \cap \Lambda(B) = \emptyset$, then ker $\alpha^k = 0$ for k = 1, 2, 3, ...

Proof. It is well known that $\Lambda(A) \cap \Lambda(B) = \emptyset$ if and only if the unique solution of the matrix equation AX - XB = 0 is X = 0. Thus, when $\Lambda(A) \cap \Lambda(B) = \emptyset$, we can prove by induction on k that if $\Lambda(A) \cap \Lambda(B) = \emptyset$, the equality $\alpha^k(X) = 0$ implies X = 0. In fact, if $\alpha^k(X) = 0$ then $\alpha(\alpha^{k-1}(X)) = 0$ and $A\alpha^{k-1}(X) - \alpha^{k-1}(X)B = 0$. Since $\Lambda(A) \cap \Lambda(B) = \emptyset$, it follows that $\alpha^{k-1}(X) = 0$. By hypothesis of the induction the equality $\alpha^{k-1}(X) = 0$ implies that X = 0. So that, $\Lambda(A) \cap \Lambda(B) = \emptyset$ implies that $\ker \alpha^k = 0$ for $k = 1, 2, 3, \dots$

Proof. It is obvious that there are invertible matrices U and V such that $A = UJ_AU^{-1}$ and $B = VJ_BV^{-1}$. Assume $X \in \ker \alpha^2$, then A(AX - XB) - (AX - XB)B = 0. Hence,

$$UJ_AU^{-1}(UJ_AU^{-1}X - XVJ_BV^{-1}) = (UJ_AU^{-1}X - XVJ_BV^{-1})VJ_BV^{-1}.$$

Thus,

$$J_A(J_A U^{-1} X V - U^{-1} X V J_B) = (J_A U^{-1} X V - U^{-1} X V J_B) J_B.$$

Let $\overline{X} = U^{-1}XV$. Then, the equation is

$$J_A(J_A\overline{X} - \overline{X}J_B) = (J_A\overline{X} - \overline{X}J_B)J_B.$$
(2.1)

Now we partition \overline{X} into blocks $(X_{\alpha\beta})$ where $X_{\alpha\beta} = (\varepsilon_{ik})_{p_{\alpha} \times q_{\beta}}$ is a $p_{\alpha} \times q_{\beta}$ matrix for $1 \leq \alpha \leq u$ and $1 \leq \beta \leq v$. Then we get uv matrix equations from (3):

$$\begin{aligned} & (\lambda_{\alpha}E_{p_{\alpha}}+N_{p_{\alpha}})[(\lambda_{\alpha}E_{p_{\alpha}}+N_{p_{\alpha}})X_{\alpha\beta}-X_{\alpha\beta}(\mu_{\beta}E_{q_{\beta}}+N_{q_{\beta}})]\\ &=[(\lambda_{\alpha}E_{p_{\alpha}}+N_{p_{\alpha}})X_{\alpha\beta}-X_{\alpha\beta}(\mu_{\beta}E_{q_{\beta}}+N_{q_{\beta}})](\mu_{\beta}E_{q_{\beta}}+N_{q_{\beta}}).\end{aligned}$$

Jun Liao, Heguo Liu, Yulei Wang, Zuohui Wu, and Xingzhong Xu

Write $P_{\alpha} := N_{p_{\alpha}}$ and $Q_{\beta} := N_{q_{\beta}}$. An easy calculation gives

$$(\mu_{\beta} - \lambda_{\alpha})^{2} X_{\alpha\beta} = 2(\mu_{\beta} - \lambda_{\alpha})(P_{\alpha} X_{\alpha\beta} - X_{\alpha\beta} Q_{\beta}) + P_{\alpha}(X_{\alpha\beta} Q_{\beta} - P_{\alpha} X_{\alpha\beta}) - (X_{\alpha\beta} Q_{\beta} - P_{\alpha} X_{\alpha\beta}) Q_{\beta}.$$
(2.2)

If $\mu_{\beta} \neq \lambda_{\alpha}$, then $X_{\alpha\beta} = 0$ by Lemma 2.1. Next we assume that $\mu_{\beta} = \lambda_{\alpha}$. In this case, we have

$$P_{\alpha}(P_{\alpha}X_{\alpha\beta} - X_{\alpha\beta}Q_{\beta}) = (P_{\alpha}X_{\alpha\beta} - X_{\alpha\beta}Q_{\beta})Q_{\beta}.$$
(2.3)

Case 1. $p_{\alpha} = q_{\beta}$.

246

If $p_{\alpha} = 1$, then it is obvious that $X_{\alpha\beta} = (\varepsilon_{11})$.

If $p_{\alpha} = 2$, an easy computation gives $X_{\alpha\beta} = \begin{pmatrix} \varepsilon_{11} & \varepsilon_{12} \\ 0 & \varepsilon_{22} \end{pmatrix}$.

If $p_{\alpha} \geq 3$, then

$$= \begin{pmatrix} \varepsilon_{31} & \varepsilon_{32} - \varepsilon_{21} & \varepsilon_{33} - \varepsilon_{22} & \cdots & \varepsilon_{3}, \ q_{\beta} - \varepsilon_{2}, \ q_{\beta} - 1 \\ \varepsilon_{41} & \varepsilon_{42} - \varepsilon_{31} & \varepsilon_{43} - \varepsilon_{32} & \cdots & \varepsilon_{4}, \ q_{\beta} - \varepsilon_{3}, \ q_{\beta} - 1 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \varepsilon_{p_{\alpha} \ 1} \ \varepsilon_{p_{\alpha} \ 2} - \varepsilon_{p_{\alpha} - 1, \ 1} \ \varepsilon_{p_{\alpha} \ 3} - \varepsilon_{p_{\alpha} - 1, \ 2} & \cdots & \varepsilon_{p_{\alpha} \ q_{\beta} - \varepsilon_{p_{\alpha} - 1, \ q_{\beta} - 1} \\ 0 & -\varepsilon_{p_{\alpha} \ 1} & -\varepsilon_{p_{\alpha} \ 2} & \cdots & -\varepsilon_{p_{\alpha} \ q_{\beta} - \varepsilon_{p_{\alpha} - 1, \ q_{\beta} - 1} \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & \varepsilon_{21} & \varepsilon_{22} - \varepsilon_{11} & \cdots & \varepsilon_{2}, \ q_{\beta} - 1 - \varepsilon_{1}, \ q_{\beta} - 2 \\ 0 & \varepsilon_{31} & \varepsilon_{32} - \varepsilon_{21} & \cdots & \varepsilon_{3}, \ q_{\beta} - 1 - \varepsilon_{2}, \ q_{\beta} - 2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 \ \varepsilon_{p_{\alpha} - 1, \ 1} \ \varepsilon_{p_{\alpha} - 1, \ 2} - \varepsilon_{p_{\alpha} - 2, \ 1} & \cdots & \varepsilon_{p_{\alpha} - 1, \ q_{\beta} - 1} - \varepsilon_{p_{\alpha} - 2, \ q_{\beta} - 2 \\ 0 & \varepsilon_{p_{\alpha} \ 1} & \varepsilon_{p_{\alpha} \ 2} - \varepsilon_{p_{\alpha} - 1, \ 1} & \cdots & \varepsilon_{p_{\alpha} \ q_{\beta} - 1 - \varepsilon_{p_{\alpha} - 2, \ q_{\beta} - 2 \\ 0 & \varepsilon_{p_{\alpha} \ 1} & \varepsilon_{p_{\alpha} \ 2} - \varepsilon_{p_{\alpha} - 1, \ 1} & \cdots & \varepsilon_{p_{\alpha} \ q_{\beta} - 1 - \varepsilon_{p_{\alpha} - 2, \ q_{\beta} - 2 \\ 0 & \varepsilon_{p_{\alpha} \ 1} & \varepsilon_{p_{\alpha} \ 2} - \varepsilon_{p_{\alpha} - 1, \ 1} & \cdots & \varepsilon_{p_{\alpha} \ q_{\beta} - 1 - \varepsilon_{p_{\alpha} - 2, \ q_{\beta} - 2 \\ 0 & 0 & -\varepsilon_{p_{\alpha} \ 1} & \cdots & -\varepsilon_{p_{\alpha} \ q_{\beta} - 2 \end{pmatrix} \end{pmatrix}.$$

This leads to the following equations:

$$\begin{split} \varepsilon_{s1} &= \varepsilon_{p_{\alpha} t} = 0, \\ \varepsilon_{p_{\alpha}-1, i} &= 2\varepsilon_{p_{\alpha}, i+1}, \ \varepsilon_{h2} = 2\varepsilon_{h-1, 1}, \\ \varepsilon_{jk} &= 2\varepsilon_{j-1, k-1} - \varepsilon_{j-2, k-2}, \end{split}$$

where $3 \leq s \leq p_{\alpha}$, $1 \leq t \leq q_{\beta} - 2$, $2 \leq i \leq q_{\beta} - 2$, $3 \leq j \leq p_{\alpha}$, $3 \leq k \leq q_{\beta}$, $-1 \leq k - j \leq q_{\beta} - 3$ and $3 \leq h \leq p_{\alpha}$. According to these equations, we have

$$\begin{cases} \varepsilon_{32} = 2\varepsilon_{21} \\ \varepsilon_{43} = 2\varepsilon_{32} - \varepsilon_{21} \\ \vdots & \vdots \\ \varepsilon_{p_{\alpha}, q_{\beta}-1} = 2\varepsilon_{p_{\alpha}-1, q_{\beta}-2} - \varepsilon_{p_{\alpha}-2, q_{\beta}-3} \\ 2\varepsilon_{p_{\alpha}, q_{\beta}-1} = \varepsilon_{p_{\alpha}-1, q_{\beta}-2}. \end{cases}$$

Generalization of Gracia's Results

Then, $\varepsilon_{21} = \varepsilon_{32} = \cdots = \varepsilon_{p_{\alpha}, q_{\beta}-1} = 0$. We also have

$$\begin{cases} \varepsilon_{33} = 2\varepsilon_{22} - \varepsilon_{11} \\ \vdots & \vdots \\ \varepsilon_{p_{\alpha}, q_{\beta}} = 2\varepsilon_{p_{\alpha}-1, q_{\beta}-1} - \varepsilon_{p_{\alpha}-2, q_{\beta}-2}. \end{cases}$$

By induction on the subscript, we obtain $\varepsilon_{ii} = (i-1)\varepsilon_{22} - (i-2)\varepsilon_{11}$, where $3 \le i \le p_{\alpha}$. Note that $\varepsilon_{jk} = 2\varepsilon_{j-1, k-1} - \varepsilon_{j-2, k-2}$, where $3 \le j \le p_{\alpha}$, $3 \le k \le q_{\beta}$ and $1 \le k-j \le q_{\beta} - 3$. By induction, we get $\varepsilon_{rh} = (r-1)\varepsilon_{2, h-r+2} - (r-2)\varepsilon_{1, h-r+1}$ where $3 \le r \le p_{\alpha}$, $0 \le h-r \le q_{\beta} - 3$ and $3 \le h \le q_{\beta}$. Thus, we conclude that

$$X_{\alpha\beta} = \begin{pmatrix} \varepsilon_{11} \ \varepsilon_{12} \ \varepsilon_{13} \ \cdots \ \varepsilon_{1, \ q_{\beta}-1} & \varepsilon_{1 \ q_{\beta}} \\ 0 \ \varepsilon_{22} \ \varepsilon_{23} \ \cdots & \vdots & \varepsilon_{2 \ q_{\beta}} \\ 0 \ 0 \ 2\varepsilon_{22} - \varepsilon_{11} \ \ddots & \vdots & 2\varepsilon_{2, \ q_{\beta}-1} - \varepsilon_{1, \ q_{\beta}-2} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 \ 0 \ 0 \ 0 \ \cdots \ (p_{\alpha}-2)\varepsilon_{22} - (p_{\alpha}-3)\varepsilon_{11} \ (p_{\alpha}-2)\varepsilon_{23} - (p_{\alpha}-3)\varepsilon_{12} \\ 0 \ 0 \ 0 \ \cdots \ 0 & (p_{\alpha}-1)\varepsilon_{22} - (p_{\alpha}-2)\varepsilon_{11} \end{pmatrix}.$$

Let $D_1 = \text{diag}\{1, 0, -1, \dots, -(p_{\alpha} - 2)\}$ and $D_2 = \text{diag}\{0, 1, \dots, p_{\alpha} - 1\}$ be diagonal matrices of size p_{α} . It is obvious that $X_{\alpha\beta} = \sum_{i=1}^{q_{\beta}-2} (\varepsilon_{1i}D_1 + \varepsilon_{2,i+1}D_2)N_{p_{\alpha}}^{i-1}$. Then the number of arbitrary parameters in $X_{\alpha\beta}$ is $2p_{\alpha} - 1$.

Case 2. $p_{\alpha} \neq q_{\beta}$. We can assume that $p_{\alpha} < q_{\beta}$, since the case $p_{\alpha} > q_{\beta}$ is analogous.

If $p_{\alpha} = 1$, then $X_{\alpha\beta} = (0, \ldots, 0, \varepsilon_{1, q_{\beta}-1}, \varepsilon_{1, q_{\beta}})$. In this case, $q_{\beta} - 2$ columns are 0.

If $p_{\alpha} = 2$, then $X_{\alpha\beta}$ has the following form:

$$X_{\alpha\beta} = \begin{pmatrix} 0 & \cdots & 0 & 2\varepsilon_{2, q_{\beta}-1} & \varepsilon_{1, q_{\beta}-1} & \varepsilon_{1, q_{\beta}} \\ 0 & \cdots & 0 & 0 & \varepsilon_{2, q_{\beta}-1} & \varepsilon_{2, q_{\beta}} \end{pmatrix},$$

and $q_{\beta} - 3$ columns are 0.

If $p_{\alpha} \geq 3$, then $X_{\alpha\beta}$ has the following form:

/	0	•••	0ε	$\epsilon_{1, q}$	$l_{\beta} - p_{\alpha}$	$\varepsilon_{1,}$	$q_\beta-p_\alpha+1$	$\varepsilon_{1,}$	$q_\beta-p_\alpha+2$	•••	$\varepsilon_{1,}$	$q_{\beta}-2$	$\varepsilon_{1,}$	$q_{\beta}-1$	$\varepsilon_{1, q}$	β	
	0	•••	0		0	$\varepsilon_{2,}$	$q_{\beta} - p_{\alpha} + 1$	$\varepsilon_{2,}$	$q_{\beta}-p_{\alpha}+2$	•••	$\varepsilon_{2,}$	$q_{\beta}-2$	$\varepsilon_{2,}$	$q_{\beta}-1$	$\varepsilon_{2, q}$	β)
	0	•••	0		0		0	$\varepsilon_{3,}$	$q_\beta-p_\alpha+2$		$\varepsilon_{3,}$	$q_{\beta}-2$	$\varepsilon_{3,}$	$q_{\beta}-1$	$\varepsilon_{3, q}$	β	
	:	:	:		:		·.		·.	۰.		· .		:	:		,
	ò	••••	ò		ò		0.		0.	····	$\varepsilon_{p\alpha}$ -	$\cdot 2, q_{\beta} - 2$	$\varepsilon_{p\alpha}$ -	. -2,q _β -1	$\varepsilon_{p_{\alpha}-2}$	$,q_{\beta}$	
	0	•••	0		0		0		0		$\varepsilon_{p_{\alpha}}$	$-1, q_{\beta} - 2$	$\varepsilon_{p_{\alpha}}$	$-1, q_{\beta} - 1$	$\varepsilon_{p_{\alpha}-1}$	$,q_{\beta}$	
	0	•••	0		0		0		0			0	$\varepsilon_{p\alpha}$	$,q_{\beta}-1$	$\varepsilon_{p_{\alpha}, q}$	$_{1\beta}$	

where $\varepsilon_{i, q_{\beta}-p_{\alpha}-1+i} = (p_{\alpha}+1-i)\varepsilon_{p_{\alpha}, q_{\beta}-1}, \varepsilon_{rh} = (r-1)\varepsilon_{2, h-r+2} - (r-2)\varepsilon_{1, h-r+1}$ and $\varepsilon_{jk} = 0, p_{\alpha} - q_{\beta} + 2 \leq j-k \leq p_{\alpha} - 1$, and $3 \leq r \leq p_{\alpha}, 0 \leq h-r \leq q_{\beta} - 3$, $q_{\beta} - p_{\alpha} + 3 \leq h \leq q_{\beta}, 1 \leq i \leq p_{\alpha}$. In this case, $q_{\beta} - p_{\alpha} - 1$ columns are 0.

248

Jun Liao, Heguo Liu, Yulei Wang, Zuohui Wu, and Xingzhong Xu

Therefore, there are $n_2 = \sum_{\alpha=1}^u \sum_{\beta=1}^v F_{\alpha\beta}^{(2)}$ linearly independent solutions \overline{X}_j of (3). For each \overline{X} , there are $k_1, k_2, \ldots, k_{n_2}$, such that $\overline{X} = \sum_{j=1}^{n_2} k_j \overline{X}_j$. Note that $\overline{X} = U^{-1}XV$. It is straightforward to show that every solution of A(AX - XB) - (AX - XB)B = 0 is a linear combination of n_2 linearly independent solutions. \Box

Let us illustrate Theorem 1.1 with an example.

EXAMPLE 2.2. Suppose that the elementary divisors of A and B are $(\lambda - \lambda_1)^4$, $(\lambda - \lambda_1)^3$, $(\lambda - \lambda_2)^2$, $(\lambda - \lambda_2)$ and $(\lambda - \lambda_1)^5$, $(\lambda - \lambda_1)^3$, $(\lambda - \lambda_2)^3$, $(\lambda - \lambda_2)^2$, $(\lambda - \lambda_3)$, respectively, where $\lambda_1 \neq \lambda_2 \neq \lambda_3$, then

$$\dim(\ker\alpha^2) = \sum_{\alpha=1}^{4} \sum_{\beta=1}^{5} F_{\alpha\beta}^{(2)} = 8 + 6 + 6 + 5 + 4 + 3 + 2 + 2 = 36.$$

Let A be an $n \times n$ complex matrix with distinct eigenvalues a_1, \ldots, a_r the elementary divisors of A are $(\lambda - a_i)^{n_{ik}}$ and Segre characteristic

$$\overline{j_{ik} \text{ times}} \\ \left[(n_{11}^{j_{11}}, n_{12}^{j_{12}}, \dots, n_{1m_1}^{j_{1m_1}}), \dots, (n_{r1}^{j_{r1}}, n_{r2}^{j_{r2}}, \dots, n_{rm_r}^{j_{rm_r}}) \right],$$

where $0 < n_{i1} < n_{i2} < \dots < n_{im_i}$ for $1 \le i \le r$; here we write $n_{ik}^{j_{ik}}$ for $\underbrace{n_{ik}, n_{ik}, \dots, n_{ik}}_{j_{ik}}$ times.

Then we can show the following corollaries.

COROLLARY 2.3 ([1]). Let $\alpha_A : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_A(X) = AX - XA$, where A is an $n \times n$ complex matrix. Then

$$\dim(\ker\alpha_A^2) = \sum_{i=1}^r \left[\sum_{k=1}^{m_i} (2n_{ik} - 1)j_{ik}^2 + 4\sum_{k=1}^{m_i - 1} n_{ik} \cdot j_{ik} \cdot \sum_{\beta = k+1}^{m_i} j_{i\beta} \right].$$

Proof. Let the elementary divisors of A are $\underbrace{(\lambda - a_i)^{n_{ik}}}_{j_{ik} \text{ times}}$, where $1 \leq i \leq r$ and

 $1 \leq k \leq m_i$. Using Theorem 1.1, we have dim $(\ker \alpha_A^2) = \sum_{\alpha=1}^u \sum_{\alpha=1}^u F_{\alpha\alpha}^{(2)}$, where $u = \sum_{i=1}^r \sum_{k=1}^{m_i} j_{ik}$. The result follows from that

$$\sum_{\alpha=1}^{u} \sum_{\alpha=1}^{u} \mathbf{F}_{\alpha\alpha}^{(2)} = \sum_{i=1}^{r} \left[\sum_{k=1}^{m_{i}} (2n_{ik} - 1)j_{ik}^{2} + 4\sum_{k=1}^{m_{i}-1} n_{ik} \cdot j_{ik} \cdot \sum_{\beta=k+1}^{m_{i}} j_{i\beta} \right].$$

This completes the proof. \square

COROLLARY 2.4. Let $\alpha_A : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_A(X) = AX - XA$, where A is an $n \times n$ complex matrix. Then $n \leq$

Generalization of Gracia's Results

 $\dim(\ker \alpha_A^2) \leq n^2$. Moreover, $\dim(\ker \alpha_A^2) = n$ if and only if A is similar to a diagonal matrix $\operatorname{diag}\{a_1, a_2, \ldots, a_n\}$, where $a_i \neq a_j$ if $i \neq j$.

Proof. By Corollary 2.3,

$$\dim(\ker\alpha_A^2) \ge \sum_{i=1}^r [(2n_{i1}-1)j_{i1}^2] \ge \sum_{i=1}^r j_{i1}^2 \ge \frac{(\sum_{i=1}^r j_{i1})^2}{r} = \frac{n^2}{r} \ge n$$

and this equality holds if and only if $m_1 = 1, n_{i1} = 1$ and $j_{i1} = 1, r = n$. Clearly $\ker \alpha_A^2$ is a subspace of the vector space $M_{n \times n}(\mathbb{C})$, thus $\dim(\ker \alpha_A^2) \leq n^2$. \square

3. The proof of Theorem 1.2. This theorem can be proved by the same method as employed in the previous section.

Proof. For convenience, we still use the same notations as in the proof of Theorem 1.1. Assume $X \in \ker \alpha^3$. Then $J_A^2(J_A\overline{X} - 3\overline{X}J_B) = (\overline{X}J_B - 3J_A\overline{X})J_B^2$, where $\overline{X} = U^{-1}XV$. Consequently, we get uv matrix equations:

$$\begin{aligned} &(\lambda_{\alpha}E_{p_{\alpha}}+N_{p_{\alpha}})^{2}[(\lambda_{\alpha}E_{p_{\alpha}}+N_{p_{\alpha}})X_{\alpha\beta}-3X_{\alpha\beta}(\mu_{\beta}E_{q_{\beta}}+N_{q_{\beta}})]\\ &=[(\lambda_{\alpha}E_{p_{\alpha}}+N_{p_{\alpha}})X_{\alpha\beta}-3X_{\alpha\beta}(\mu_{\beta}E_{q_{\beta}}+N_{q_{\beta}})](\mu_{\beta}E_{q_{\beta}}+N_{q_{\beta}})^{2},\end{aligned}$$

for $1 \le \alpha \le u$ and $1 \le \beta \le v$. An easy calculation gives

$$(\mu_{\beta} - \lambda_{\alpha})^{3} X_{\alpha\beta} = 3(\mu_{\beta} - \lambda_{\alpha})^{2} (P_{\alpha} X_{\alpha\beta} - X_{\alpha\beta} Q_{\beta}) -3(\mu_{\beta} - \lambda_{\alpha}) (P_{\alpha}^{2} X_{\alpha\beta} + X_{\alpha\beta} Q_{\beta}^{2} - 2P_{\alpha} X_{\alpha\beta} Q_{\beta}) +P_{\alpha}^{2} (P_{\alpha} X_{\alpha\beta} - 3X_{\alpha\beta} Q_{\beta}) + (3P_{\alpha} X_{\alpha\beta} - X_{\alpha\beta} Q_{\beta}) Q_{\beta}^{2}.$$
(3.1)

If $\mu_{\beta} \neq \lambda_{\alpha}$ then $X_{\alpha\beta} = 0$ by Lemma 2.1. We assume that $\mu_{\beta} = \lambda_{\alpha}$. In this case, we have

$$P_{\alpha}^{2}(P_{\alpha}X_{\alpha\beta} - 3X_{\alpha\beta}Q_{\beta}) = (X_{\alpha\beta}Q_{\beta} - 3P_{\alpha}X_{\alpha\beta})Q_{\beta}^{2}.$$
(3.2)

Case 1. $p_{\alpha} = q_{\beta}$

If $p_{\alpha} < 4$, then the number of arbitrary parameters in $X_{\alpha\beta}$ is $3p_{\alpha} - 2$.

If $p_{\alpha} \geq 4$, then we obtain

$$\begin{split} \varepsilon_{ij} &= 0, \\ \varepsilon_{h2} &= 3\varepsilon_{h-1, \ 1}, \ \varepsilon_{p_{\alpha}-1, \ k} = 3\varepsilon_{p_{\alpha}, \ k+1}, \\ \varepsilon_{h3} &= 3\varepsilon_{h-1, \ 2} - 3\varepsilon_{h-2, \ 1}, \\ \varepsilon_{p_{\alpha}-2, \ k} &= 3\varepsilon_{p_{\alpha}-1, \ k+1} - 3\varepsilon_{p_{\alpha}, \ k+2}, \\ \varepsilon_{fg} &= \varepsilon_{f-3, \ g-3} - 3\varepsilon_{f-2, \ g-2} + 3\varepsilon_{f-1, \ g-1}, \end{split}$$

Jun Liao, Heguo Liu, Yulei Wang, Zuohui Wu, and Xingzhong Xu

where $4 \le i \le p_{\alpha}$, $i-j \ge 3$, $4 \le h \le p_{\alpha}$, $1 \le k \le q_{\beta}-3$, $4 \le f \le p_{\alpha}$ and $4 \le g \le q_{\beta}$. Hence, we have

$$\begin{cases} \varepsilon_{42} = 3\varepsilon_{31} \\ \varepsilon_{53} = 3\varepsilon_{42} - 3\varepsilon_{31} \\ \varepsilon_{64} = 3\varepsilon_{53} - 3\varepsilon_{42} + \varepsilon_{31} \\ \vdots & \vdots \\ \varepsilon_{p_{\alpha}, q_{\beta}-2} = 3\varepsilon_{p_{\alpha}-1, q_{\beta}-3} - 3\varepsilon_{p_{\alpha}-2, q_{\beta}-4} + \varepsilon_{p_{\alpha}-3, q_{\beta}-5} \\ \varepsilon_{p_{\alpha}-2, q_{\beta}-4} = 3\varepsilon_{p_{\alpha}-1, q_{\beta}-3} - 3\varepsilon_{p_{\alpha}, q_{\beta}-2} \\ \varepsilon_{p_{\alpha}-1, q_{\beta}-3} = 3\varepsilon_{p_{\alpha}, q_{\beta}-2}. \end{cases}$$

Thus, $\varepsilon_{31} = \varepsilon_{42} = \cdots = \varepsilon_{p_{\alpha}, q_{\beta}-2} = 0$. We also have

$$\begin{cases} \varepsilon_{43} = 3\varepsilon_{32} - 3\varepsilon_{21} \\ \varepsilon_{54} = 3\varepsilon_{43} - 3\varepsilon_{32} + \varepsilon_{21} \\ \vdots & \vdots \\ \varepsilon_{p_{\alpha}, q_{\beta}-1} = 3\varepsilon_{p_{\alpha}-1, q_{\beta}-2} - 3\varepsilon_{p_{\alpha}-2, q_{\beta}-3} + \varepsilon_{p_{\alpha}-3, q_{\beta}-4} \\ \varepsilon_{p_{\alpha}-2, q_{\beta}-3} = 3\varepsilon_{p_{\alpha}-1, q_{\beta}-2} - 3\varepsilon_{p_{\alpha}, q_{\beta}-1}. \end{cases}$$

By induction on the subscript, we obtain

$$\varepsilon_{s, s-1} = \left[\frac{(s-1)(s-2)(p_{\alpha}-2)}{(p_{\alpha}-1)} - (s-2)^2 + 1\right]\varepsilon_{21},$$

where $2 \leq s \leq p_{\alpha}$. Note that $\varepsilon_{fg} = \varepsilon_{f-3, g-3} - 3\varepsilon_{f-2, g-2} + 3\varepsilon_{f-1, g-1}$, where $4 \leq f \leq p_{\alpha}$ and $4 \leq g \leq q_{\beta}$. Continuing by induction, we finally have

$$\varepsilon_{fg} = \frac{(f-2)(f-3)}{2} \varepsilon_{1, g-f+1} \\ -[f(f-4)+3]\varepsilon_{2, g-f+2} + \frac{(f-1)(f-2)}{2} \varepsilon_{3, g-f+3},$$

where $4 \leq f \leq p_{\alpha}$, $4 \leq g \leq q_{\beta}$ and $0 \leq g - f \leq q_{\beta} - 4$. Then it is evident to see that the number of arbitrary parameters in $X_{\alpha\beta}$ is $3p_{\alpha} - 2$.

Case 2. $p_{\alpha} \neq q_{\beta}$. We can assume that $p_{\alpha} > q_{\beta}$, since the case $p_{\alpha} < q_{\beta}$ is analogous.

Generalization of Gracia's Results

If $p_{\alpha} - q_{\beta} = 1$ and $q_{\beta} \ge 4$, then we have

$$\varepsilon_{ij} = 0,$$

$$\varepsilon_{s, s-1} = \frac{(s-1)(s-2)}{2} \varepsilon_{32} - [(s-2)^2 - 1]\varepsilon_{21},$$

$$\varepsilon_{fg} = \frac{(f-2)(f-3)}{2} \varepsilon_{1, g-f+1} - [f(f-4) + 3]\varepsilon_{2, g-f+2} + \frac{(f-1)(f-2)}{2} \varepsilon_{3, g-f+3},$$

where $i - j \ge 2$, $3 \le i \le p_{\alpha}$, $2 \le s \le p_{\alpha}$, $4 \le f \le p_{\alpha} - 1$, $4 \le g \le q_{\beta}$ and $0 \le g - f \le q_{\beta} - 4$. Thus, the number of arbitrary parameters in $X_{\alpha\beta}$ is $3q_{\beta} - 1$.

If $p_{\alpha} - q_{\beta} = 1$ and $q_{\beta} < 4$, then a routine computation gives rise to the result.

If $p_{\alpha} - q_{\beta} \ge 2$ and $q_{\beta} \ge 4$, then we have

$$\varepsilon_{ij} = 0, \varepsilon_{g, g-2} = \frac{(g-1)(g-2)}{2} \varepsilon_{31},$$

$$\varepsilon_{s,s-1} = \frac{(s-1)(s-2)}{2} \varepsilon_{32} - [(s-2)^2 - 1] \varepsilon_{21},$$

$$\varepsilon_{fg} = \frac{(f-2)(f-3)}{2} \varepsilon_{1,g-f+1} - [f(f-4) + 3] \varepsilon_{2, g-f+2} + \frac{(f-1)(f-2)}{2} \varepsilon_{3, g-f+3},$$

where $i - j \ge 3$, $3 \le g \le p_{\alpha}$ and $2 \le s \le p_{\alpha}$ and $4 \le f \le p_{\alpha} - 1$ and $4 \le g \le q_{\beta}$, $0 \le g - f \le q_{\beta} - 4$. Thus, the number of arbitrary parameters in $X_{\alpha\beta}$ is $3q_{\beta}$.

If $p_{\alpha} - q_{\beta} \ge 2$ and $q_{\beta} < 4$, then an obvious computation gives rise to the same result.

Therefore, there are $n_3 = \sum_{\alpha=1}^{u} \sum_{\beta=1}^{v} \mathbf{F}_{\alpha\beta}^{(3)}$ linearly independent $X_j \in \ker^3$. For each $X \in \ker^3$, there are $k_1, k_2, \ldots, k_{n_3}$, such that $X = \sum_{j=1}^{n_3} k_j X_j$. \square

Let us illustrate Theorem 1.2 with an example.

EXAMPLE 3.1. Suppose that the elementary divisors of A and B are $(\lambda - \lambda_1)^4$, $(\lambda - \lambda_1)^3$, $(\lambda - \lambda_2)^2$, $(\lambda - \lambda_2)$, $(\lambda - \lambda_3)$ and $(\lambda - \lambda_1)^5$, $(\lambda - \lambda_1)^3$, $(\lambda - \lambda_2)^3$, $(\lambda - \lambda_2)^2$, respectively, where $\lambda_1 \neq \lambda_2 \neq \lambda_3$, then

$$\dim(\ker\alpha^3) = \sum_{\alpha=1}^{5} \sum_{\beta=1}^{4} F_{\alpha\beta}^{(3)} = 11 + 8 + 9 + 7 + 5 + 4 + 3 + 2 = 49.$$

Let A be an $n \times n$ complex matrix with distinct eigenvalues a_1, \ldots, a_r and the elementary divisors of A are $\underbrace{(\lambda - a_i)^{n_{ik}}}_{j_{ik} \text{ times}}$ for $1 \leq k \leq m_i$ and $1 \leq i \leq r$. The

252

Jun Liao, Heguo Liu, Yulei Wang, Zuohui Wu, and Xingzhong Xu

difference $n_{i,h+1} - n_{ih}$ is called an h-th jump of i for $1 \le h \le m_i - 1$. We denote by $\mu_{i1}, \mu_{i2}, \ldots, \mu_{i\rho_i}$ the places where the jumps equal to 1 and $\mu_{i1} < \mu_{i2} < \cdots < \mu_{i\rho_i}$. Then we can show the following corollaries.

COROLLARY 3.2 ([1]). Let $\alpha_A : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_A(X) = AX - XA$, where A is an $n \times n$ complex matrix. Then

$$\dim(\ker\alpha_A^3) = \sum_{i=1}^r \left[\sum_{k=1}^{m_i} \left[(3n_{ik} - 2)j_{ik}^2 + 6n_{ik} \cdot j_{ik} \sum_{\beta=k+1}^{m_i} j_{i\beta} \right] - 2\sum_{l=1}^{\rho_i} j_{i,\mu_{il}} \cdot j_{i,\mu_{il}+1} \right]$$

Proof. Let the elementary divisors of A are $\underbrace{(\lambda - a_i)^{n_{ik}}}_{j_{ik} \text{ times}}$, where $1 \leq i \leq r, 1 \leq \underbrace{j_{ik} \text{ times}}_{j_{ik} \text{ times}}$, where $1 \leq i \leq r, 1 \leq \underbrace{j_{ik} \text{ times}}_{j_{ik} \text{ times}}$, where $1 \leq n_{i1} < n_{i2} < \cdots < n_{im_i}$. Using Theorem 1.2, we have $\dim(\ker \alpha_A^3) = \sum_{\alpha=1}^u \sum_{\alpha=1}^u F_{\alpha\alpha}^{(3)}$, where $u = \sum_{i=1}^r \sum_{k=1}^{m_i} j_{ik}$. Since $\sum_{\alpha=1}^u \sum_{\alpha=1}^u F_{\alpha\alpha}^{(3)}$ is equal to

$$\sum_{i=1}^{r} \left[\sum_{k=1}^{m_i} \left[(3n_{ik} - 2)j_{ik}^2 + 6n_{ik} \cdot j_{ik} \sum_{\beta=k+1}^{m_i} j_{i\beta} \right] - 2\sum_{l=1}^{\rho_i} j_{i,\mu_{il}} \cdot j_{i,\mu_{il}+1} \right]$$

we have the dimension formula. \Box

COROLLARY 3.3. Let $\alpha_A : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_A(X) = AX - XA$, where A is an $n \times n$ complex matrix. Then $n \leq n$ $\dim(\ker \alpha_A^3) \leq n^2$. Moreover, $\dim(\ker \alpha_A^3) = n$ if and only if A is similar to a diagonal matrix diag $\{a_1, a_2, \ldots, a_n\}$, where $a_i \neq a_j$ if $i \neq j$.

Proof. Since

$$\dim(\ker\alpha_A^3) = \sum_{i=1}^r \left[\sum_{k=1}^{m_i} \left[(3n_{ik} - 2)j_{ik}^2 + 6n_{ik} \cdot j_{ik} \sum_{\beta=k+1}^{m_i} j_{i\beta} \right] - 2\sum_{l=1}^{\rho_i} j_{i,\mu_{il}} \cdot j_{i,\mu_{il}+1} \right],$$

it follows that $\dim(\ker \alpha_A^3) \ge \sum_{i=1}^r [(3n_{i1}-2)j_{i1}^2] \ge \sum_{i=1}^r j_{i1}^2 \ge \frac{(\sum_{i=1}^r j_{i1})^2}{r} = \frac{n^2}{r} \ge n$ and the equality holds if and only if $m_1 = 1, n_{i1} = 1$ and $j_{i1} = 1, r = n$. Clearly, $\ker \alpha_A^3$ is a subspace of the $n \times n$ -dimensional vector space $M_{n \times n}(\mathbb{C})$, so dim $(\ker \alpha_A^3) \leq n^2$.

REFERENCES

- [1] J.M. Gracia. Dimension of the solution spaces of the matrix equations [A, [A, X]] = 0 and [A [A, [A, X]]] = 0. Linear and Multilinear Algebra, 9:195–200, 1980.
- [2] N. Jacobson. Lectures in Abstract Algebra: II. Linear Algebra. Springer, New York, 1953.
- [3] M. Wedderburn. Lectures on Matrices. American Mathematical Society Colloquium Publications, Vol. 17, New York, 2008.