GENERALIZATION OF GRACIA'S RESULTS*

JUN LIAO ${ }^{\dagger}$, HEGUO LIU ${ }^{\dagger}$, YULEI WANG ${ }^{\ddagger}$, ZUOHUI WU ${ }^{\dagger}$, AND XINGZHONG XU ${ }^{\dagger}$

Abstract

Let α be a linear transformation of the $m \times n$-dimensional vector space $M_{m \times n}(\mathbb{C})$ over the complex field \mathbb{C} such that $\alpha(X)=A X-X B$, where A and B are $m \times m$ and $n \times n$ complex matrices, respectively. In this paper, the dimension formulas for the kernels of the linear transformations α^{2} and α^{3} are given, which generalizes the work of Gracia in [J.M. Gracia. Dimension of the solution spaces of the matrix equations $[A,[A, X]]=0$ and $[A[A,[A, X]]]=0$. Linear and Multilinear Algebra, 9:195-200, 1980.].

Key words. Linear transformation, Dimension formulas, Jordan canonical form.

AMS subject classifications. 15A24, 15A27.

1. Introduction. The notation used in this paper is standard, see [2, 3] for example. Let \mathbb{C} be the complex field. Suppose $A \in M_{m \times m}(\mathbb{C})$ and $B \in M_{n \times n}(\mathbb{C})$. Let $\alpha_{A B}$ be a linear transformation of $M_{m \times n}(\mathbb{C})$ defined by

$$
\alpha_{A B}(X)=A X-X B, \text { for } X \in M_{m \times n}(\mathbb{C})
$$

If $A=B$, then we will write α_{A} instead of $\alpha_{A A}$ for brevity. In the case of no confusion, we write $\alpha=\alpha_{A B}$ for short.

The well known dimension formula of the kernel $\operatorname{ker} \alpha_{A}$ is due to Frobenius 3, Theorem VII.1]. Then Gracia has obtained the dimension formulas of $\operatorname{ker} \alpha_{A}^{2}$ and $\operatorname{ker} \alpha_{A}^{3}$ in [1].

It is obvious that the kernels of the liner transformations α^{2} and α^{3} are the solutions of the matrix equations $A(A X-X B)-(A X-X B) B=0$ and $A[A(A X-$ $X B)-(A X-X B) B]-[A(A X-X B)-(A X-X B) B] B=0$, respectively. In this paper, we obtain the dimensions of $\operatorname{ker} \alpha^{2}$ and $\operatorname{ker} \alpha^{3}$, which generalizes Gracia's results.

[^0]For convenience, we introduce the following notations. Suppose that the elementary divisors of A and B are $\left(\lambda-\lambda_{1}\right)^{p_{1}},\left(\lambda-\lambda_{2}\right)^{p_{2}}, \ldots,\left(\lambda-\lambda_{u}\right)^{p_{u}}$ and $\left(\lambda-\mu_{1}\right)^{q_{1}},(\lambda-$ $\left.\mu_{2}\right)^{q_{2}}, \ldots,\left(\lambda-\mu_{v}\right)^{q_{v}}$, respectively. Let E_{n} be the unit matrix of size n and let

$$
N_{n}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

be the square matrix of size n in which all the elements of the first superdiagonal are 1 and all the other elements are 0 . Let

$$
J_{A}=\left(\begin{array}{cccc}
\lambda_{1} E_{p_{1}}+N_{p_{1}} & & & \\
& \lambda_{2} E_{p_{2}}+N_{p_{2}} & & 0 \\
0 & & \ddots & \\
& & & \lambda_{u} E_{p_{u}}+N_{p_{u}}
\end{array}\right)
$$

and

$$
J_{B}=\left(\begin{array}{cccc}
\mu_{1} E_{q_{1}}+N_{q_{1}} & & & \\
& \mu_{2} E_{q_{2}}+N_{q_{2}} & & 0 \\
0 & & \ddots & \\
& & & \mu_{v} E_{q_{v}}+N_{q_{v}}
\end{array}\right)
$$

be respectively the Jordan normal forms of A and B. For $1 \leq \alpha \leq u$ and $1 \leq \beta \leq v$. Let $\mathrm{F}_{\alpha \beta}^{(2)}$ and $\mathrm{F}_{\alpha \beta}^{(3)}$ be defined by the following:

$$
\mathrm{F}_{\alpha \beta}^{(2)}= \begin{cases}0 & \text { if } \lambda_{\alpha} \neq \mu_{\beta} ; \\ 2 \min \left(p_{\alpha}, q_{\beta}\right)-1 & \text { if } \lambda_{\alpha}=\mu_{\beta} \text { and } p_{\alpha}=q_{\beta} ; \\ 2 \min \left(p_{\alpha}, q_{\beta}\right) & \text { if } \lambda_{\alpha}=\mu_{\beta} \text { and } p_{\alpha} \neq q_{\beta}\end{cases}
$$

and

$$
\mathrm{F}_{\alpha \beta}^{(3)}= \begin{cases}0 & \text { if } \lambda_{\alpha} \neq \mu_{\beta} ; \\ 3 \min \left(p_{\alpha}, q_{\beta}\right)-2 & \text { if } \lambda_{\alpha}=\mu_{\beta} \text { and } p_{\alpha}=q_{\beta} ; \\ 3 \min \left(p_{\alpha}, q_{\beta}\right)-1 & \text { if } \lambda_{\alpha}=\mu_{\beta} \text { and }\left|p_{\alpha}-q_{\beta}\right|=1 \\ 3 \min \left(p_{\alpha}, q_{\beta}\right) & \text { if } \lambda_{\alpha}=\mu_{\beta} \text { and }\left|p_{\alpha}-q_{\beta}\right| \geq 2\end{cases}
$$

The main results are the following:
Theorem 1.1. Let $\alpha: M_{m \times n}(\mathbb{C}) \rightarrow M_{m \times n}(\mathbb{C})$ be a linear transformation such that $\alpha(X)=A X-X B$, where A and B are $m \times m$ and $n \times n$ complex matrices,
respectively. Then the dimension formula for $\operatorname{ker} \alpha^{2}$ is

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker} \alpha^{2}\right)=\sum_{\alpha=1}^{u} \sum_{\beta=1}^{v} \mathrm{~F}_{\alpha \beta}^{(2)} \tag{1.1}
\end{equation*}
$$

THEOREM 1.2. Let $\alpha: M_{m \times n}(\mathbb{C}) \rightarrow M_{m \times n}(\mathbb{C})$ be a linear transformation such that $\alpha(X)=A X-X B$, where A and B are $m \times m$ and $n \times n$ complex matrices, respectively. Then the dimension formula for $\operatorname{ker} \alpha^{3}$ is

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker} \alpha^{3}\right)=\sum_{\alpha=1}^{u} \sum_{\beta=1}^{v} \mathrm{~F}_{\alpha \beta}^{(3)} . \tag{1.2}
\end{equation*}
$$

2. The proof of Theorem 1.1. Before proving the theorem, we first give a lemma in the following:

Lemma 2.1. For a matrix $M \in M_{l \times l}(\mathbb{C})$, let $\Lambda(M)$ be the set of its different eigenvalues. If $\Lambda(A) \cap \Lambda(B)=\emptyset$, then $\operatorname{ker} \alpha^{k}=0$ for $k=1,2,3, \ldots$

Proof. It is well known that $\Lambda(A) \cap \Lambda(B)=\emptyset$ if and only if the unique solution of the matrix equation $A X-X B=0$ is $X=0$. Thus, when $\Lambda(A) \cap \Lambda(B)=\emptyset$, we can prove by induction on k that if $\Lambda(A) \cap \Lambda(B)=\emptyset$, the equality $\alpha^{k}(X)=0$ implies $X=0$. In fact, if $\alpha^{k}(X)=0$ then $\alpha\left(\alpha^{k-1}(X)\right)=0$ and $A \alpha^{k-1}(X)-\alpha^{k-1}(X) B=0$. Since $\Lambda(A) \cap \Lambda(B)=\emptyset$, it follows that $\alpha^{k-1}(X)=0$. By hypothesis of the induction the equality $\alpha^{k-1}(X)=0$ implies that $X=0$. So that, $\Lambda(A) \cap \Lambda(B)=\emptyset$ implies that $\operatorname{ker} \alpha^{k}=0$ for $k=1,2,3, \ldots$ 口

Proof. It is obvious that there are invertible matrices U and V such that $A=$ $U J_{A} U^{-1}$ and $B=V J_{B} V^{-1}$. Assume $X \in \operatorname{ker} \alpha^{2}$, then $A(A X-X B)-(A X-X B) B=$ 0. Hence,

$$
U J_{A} U^{-1}\left(U J_{A} U^{-1} X-X V J_{B} V^{-1}\right)=\left(U J_{A} U^{-1} X-X V J_{B} V^{-1}\right) V J_{B} V^{-1}
$$

Thus,

$$
J_{A}\left(J_{A} U^{-1} X V-U^{-1} X V J_{B}\right)=\left(J_{A} U^{-1} X V-U^{-1} X V J_{B}\right) J_{B}
$$

Let $\bar{X}=U^{-1} X V$. Then, the equation is

$$
\begin{equation*}
J_{A}\left(J_{A} \bar{X}-\bar{X} J_{B}\right)=\left(J_{A} \bar{X}-\bar{X} J_{B}\right) J_{B} \tag{2.1}
\end{equation*}
$$

Now we partition \bar{X} into blocks $\left(X_{\alpha \beta}\right)$ where $X_{\alpha \beta}=\left(\varepsilon_{i k}\right)_{p_{\alpha} \times q_{\beta}}$ is a $p_{\alpha} \times q_{\beta}$ matrix for $1 \leq \alpha \leq u$ and $1 \leq \beta \leq v$. Then we get $u v$ matrix equations from (3):

$$
\begin{aligned}
& \left(\lambda_{\alpha} E_{p_{\alpha}}+N_{p_{\alpha}}\right)\left[\left(\lambda_{\alpha} E_{p_{\alpha}}+N_{p_{\alpha}}\right) X_{\alpha \beta}-X_{\alpha \beta}\left(\mu_{\beta} E_{q_{\beta}}+N_{q_{\beta}}\right)\right] \\
& =\left[\left(\lambda_{\alpha} E_{p_{\alpha}}+N_{p_{\alpha}}\right) X_{\alpha \beta}-X_{\alpha \beta}\left(\mu_{\beta} E_{q_{\beta}}+N_{q_{\beta}}\right)\right]\left(\mu_{\beta} E_{q_{\beta}}+N_{q_{\beta}}\right) .
\end{aligned}
$$

Write $P_{\alpha}:=N_{p_{\alpha}}$ and $Q_{\beta}:=N_{q_{\beta}}$. An easy calculation gives

$$
\begin{align*}
\left(\mu_{\beta}-\lambda_{\alpha}\right)^{2} X_{\alpha \beta}= & 2\left(\mu_{\beta}-\lambda_{\alpha}\right)\left(P_{\alpha} X_{\alpha \beta}-X_{\alpha \beta} Q_{\beta}\right) \\
& +P_{\alpha}\left(X_{\alpha \beta} Q_{\beta}-P_{\alpha} X_{\alpha \beta}\right)-\left(X_{\alpha \beta} Q_{\beta}-P_{\alpha} X_{\alpha \beta}\right) Q_{\beta} \tag{2.2}
\end{align*}
$$

If $\mu_{\beta} \neq \lambda_{\alpha}$, then $X_{\alpha \beta}=0$ by Lemma 2.1. Next we assume that $\mu_{\beta}=\lambda_{\alpha}$. In this case, we have

$$
\begin{equation*}
P_{\alpha}\left(P_{\alpha} X_{\alpha \beta}-X_{\alpha \beta} Q_{\beta}\right)=\left(P_{\alpha} X_{\alpha \beta}-X_{\alpha \beta} Q_{\beta}\right) Q_{\beta} \tag{2.3}
\end{equation*}
$$

Case 1. $p_{\alpha}=q_{\beta}$.
If $p_{\alpha}=1$, then it is obvious that $X_{\alpha \beta}=\left(\varepsilon_{11}\right)$.
If $p_{\alpha}=2$, an easy computation gives $X_{\alpha \beta}=\left(\begin{array}{cc}\varepsilon_{11} & \varepsilon_{12} \\ 0 & \varepsilon_{22}\end{array}\right)$.
If $p_{\alpha} \geq 3$, then

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
\varepsilon_{31} & \varepsilon_{32}-\varepsilon_{21} & \varepsilon_{33}-\varepsilon_{22} & \cdots & \varepsilon_{3, q_{\beta}}-\varepsilon_{2, q_{\beta}-1} \\
\varepsilon_{41} & \varepsilon_{42}-\varepsilon_{31} & \varepsilon_{43}-\varepsilon_{32} & \cdots & \varepsilon_{4, q_{\beta}}-\varepsilon_{3, q_{\beta}-1} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\varepsilon_{p_{\alpha} 11} \varepsilon_{p_{\alpha}} & 2-\varepsilon_{p_{\alpha}-1,1} & \varepsilon_{p_{\alpha}} 3-\varepsilon_{p_{\alpha}-1,} & \cdots & \varepsilon_{p_{\alpha}} q_{\beta}-\varepsilon_{p_{\alpha}-1, q_{\beta}-1} \\
0 & -\varepsilon_{p_{\alpha} 1} & -\varepsilon_{p_{\alpha} 2} & \cdots & -\varepsilon_{p_{\alpha}, q_{\beta}-1} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
0 & \varepsilon_{21} & \varepsilon_{22}-\varepsilon_{11} & \cdots & \varepsilon_{2, q_{\beta}-1}-\varepsilon_{1, q_{\beta}-2} \\
0 & \varepsilon_{31} & \varepsilon_{32}-\varepsilon_{21} & \cdots & \varepsilon_{3, q_{\beta}-1}-\varepsilon_{2, q_{\beta}-2} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \varepsilon_{p_{\alpha}-1,1} & \varepsilon_{p_{\alpha}-1,2-\varepsilon_{p_{\alpha}-2,1}} & \cdots & \varepsilon_{p_{\alpha}-1, q_{\beta}-1}-\varepsilon_{p_{\alpha}-2, q_{\beta}-2} \\
0 & \varepsilon_{p_{\alpha} 1} & \varepsilon_{p_{\alpha} 2}-\varepsilon_{p_{\alpha}-1,1} & \cdots & \varepsilon_{p_{\alpha},}, q_{\beta}-1-\varepsilon_{p_{\alpha}-1, q_{\beta}-2} \\
0 & 0 & -\varepsilon_{p_{\alpha} 1} & \cdots & -\varepsilon_{p_{\alpha}, q_{\beta}-2}
\end{array}\right) .
\end{aligned}
$$

This leads to the following equations:

$$
\begin{aligned}
& \varepsilon_{s 1}=\varepsilon_{p_{\alpha} t}=0 \\
& \varepsilon_{p_{\alpha}-1, i}=2 \varepsilon_{p_{\alpha}, i+1}, \quad \varepsilon_{h 2}=2 \varepsilon_{h-1,1}, \\
& \varepsilon_{j k}=2 \varepsilon_{j-1, k-1}-\varepsilon_{j-2, k-2}
\end{aligned}
$$

where $3 \leq s \leq p_{\alpha}, 1 \leq t \leq q_{\beta}-2,2 \leq i \leq q_{\beta}-2,3 \leq j \leq p_{\alpha}, 3 \leq k \leq q_{\beta}$, $-1 \leq k-j \leq q_{\beta}-3$ and $3 \leq h \leq p_{\alpha}$. According to these equations, we have

$$
\left\{\begin{array}{l}
\varepsilon_{32}=2 \varepsilon_{21} \\
\varepsilon_{43}=2 \varepsilon_{32}-\varepsilon_{21} \\
\quad \vdots \\
\quad \vdots \\
\varepsilon_{p_{\alpha}, q_{\beta}-1}=2 \varepsilon_{p_{\alpha}-1, q_{\beta}-2}-\varepsilon_{p_{\alpha}-2, q_{\beta}-3} \\
2 \varepsilon_{p_{\alpha}, q_{\beta}-1}=\varepsilon_{p_{\alpha}-1, q_{\beta}-2}
\end{array}\right.
$$

Then, $\varepsilon_{21}=\varepsilon_{32}=\cdots=\varepsilon_{p_{\alpha}, q_{\beta}-1}=0$. We also have

$$
\left\{\begin{array}{l}
\varepsilon_{33}=2 \varepsilon_{22}-\varepsilon_{11} \\
\vdots \\
\varepsilon_{p_{\alpha}, q_{\beta}}=2 \varepsilon_{p_{\alpha}-1, q_{\beta}-1}-\varepsilon_{p_{\alpha}-2, q_{\beta}-2}
\end{array}\right.
$$

By induction on the subscript, we obtain $\varepsilon_{i i}=(i-1) \varepsilon_{22}-(i-2) \varepsilon_{11}$, where $3 \leq i \leq$ p_{α}. Note that $\varepsilon_{j k}=2 \varepsilon_{j-1, k-1}-\varepsilon_{j-2, k-2}$, where $3 \leq j \leq p_{\alpha}, \quad 3 \leq k \leq q_{\beta}$ and $1 \leq k-j \leq q_{\beta}-3$. By induction, we get $\varepsilon_{r h}=(r-1) \varepsilon_{2, h-r+2}-(r-2) \varepsilon_{1, h-r+1}$ where $3 \leq r \leq p_{\alpha}, 0 \leq h-r \leq q_{\beta}-3$ and $3 \leq h \leq q_{\beta}$. Thus, we conclude that

$$
X_{\alpha \beta}=\left(\begin{array}{cccccc}
\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} & \cdots & \varepsilon_{1,} q_{\beta}-1 & \varepsilon_{1} q_{\beta} \\
0 & \varepsilon_{22} & \varepsilon_{23} & \cdots & \vdots & \varepsilon_{2} q_{\beta} \\
0 & 0 & 2 \varepsilon_{22}-\varepsilon_{11} & \ddots & \vdots & 2 \varepsilon_{2, q_{\beta}-1}-\varepsilon_{1, q_{\beta}-2} \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \left(p_{\alpha}-2\right) \varepsilon_{22}-\left(p_{\alpha}-3\right) \varepsilon_{11} & \left(p_{\alpha}-2\right) \varepsilon_{23}-\left(p_{\alpha}-3\right) \varepsilon_{12} \\
0 & 0 & 0 & \cdots & 0 & \left(p_{\alpha}-1\right) \varepsilon_{22}-\left(p_{\alpha}-2\right) \varepsilon_{11}
\end{array}\right)
$$

Let $D_{1}=\operatorname{diag}\left\{1,0,-1, \ldots,-\left(p_{\alpha}-2\right)\right\}$ and $D_{2}=\operatorname{diag}\left\{0,1, \ldots, p_{\alpha}-1\right\}$ be diagonal matrices of size p_{α}. It is obvious that $X_{\alpha \beta}=\sum_{i=1}^{q_{\beta}-2}\left(\varepsilon_{1 i} D_{1}+\varepsilon_{2, i+1} D_{2}\right) N_{p_{\alpha}}^{i-1}$. Then the number of arbitrary parameters in $X_{\alpha \beta}$ is $2 p_{\alpha}-1$.

Case 2. $p_{\alpha} \neq q_{\beta}$. We can assume that $p_{\alpha}<q_{\beta}$, since the case $p_{\alpha}>q_{\beta}$ is analogous.

If $p_{\alpha}=1$, then $X_{\alpha \beta}=\left(0, \ldots, 0, \varepsilon_{1, q_{\beta}-1}, \varepsilon_{1}, q_{\beta}\right)$. In this case, $q_{\beta}-2$ columns are 0.

If $p_{\alpha}=2$, then $X_{\alpha \beta}$ has the following form:

$$
X_{\alpha \beta}=\left(\begin{array}{cccccc}
0 & \cdots & 0 & 2 \varepsilon_{2, q_{\beta}-1} & \varepsilon_{1, q_{\beta}-1} & \varepsilon_{1, q_{\beta}} \\
0 & \cdots & 0 & 0 & \varepsilon_{2, q_{\beta}-1} & \varepsilon_{2, q_{\beta}}
\end{array}\right)
$$

and $q_{\beta}-3$ columns are 0 .
If $p_{\alpha} \geq 3$, then $X_{\alpha \beta}$ has the following form:

$$
\left(\begin{array}{cccccccccccc}
0 & \cdots & 0 & \varepsilon_{1}, q_{\beta}-p_{\alpha} & \varepsilon_{1}, q_{\beta}-p_{\alpha}+1 & \varepsilon_{1}, q_{\beta}-p_{\alpha}+2 & \cdots & \varepsilon_{1, q_{\beta}-2} & \varepsilon_{1, q_{\beta}-1} & \varepsilon_{1, q_{\beta}} \\
0 & \cdots & 0 & 0 & \varepsilon_{2}, q_{\beta}-p_{\alpha}+1 & \varepsilon_{2}, q_{\beta}-p_{\alpha}+2 & \cdots & \varepsilon_{2}, q_{\beta}-2 & \varepsilon_{2,}, q_{\beta}-1 & \varepsilon_{2, q_{\beta}} \\
0 & \cdots & 0 & 0 & 0 & \varepsilon_{3,}, q_{\beta}-p_{\alpha}+2 & \cdots & \varepsilon_{3, q_{\beta}-2} & \varepsilon_{3, q_{\beta}-1} & \varepsilon_{3, q_{\beta}} \\
\vdots & \vdots & \vdots & \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & 0 & 0 & \cdots & \varepsilon_{p_{\alpha}-2, q_{\beta}-2} & \varepsilon_{p_{\alpha}-2, q_{\beta}-1} & \varepsilon_{p_{\alpha}-2, q_{\beta}} \\
0 & \cdots & 0 & 0 & 0 & 0 & \cdots & \varepsilon_{p_{\alpha}-1, q_{\beta}-2} & \varepsilon_{p_{\alpha}-1, q_{\beta}-1} & \varepsilon_{p_{\alpha}-1, q_{\beta}} \\
0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & \varepsilon_{p_{\alpha}, q_{\beta}-1} & \varepsilon_{p_{\alpha}, q_{\beta}}
\end{array}\right)
$$

where $\varepsilon_{i, q_{\beta}-p_{\alpha}-1+i}=\left(p_{\alpha}+1-i\right) \varepsilon_{p_{\alpha}, q_{\beta}-1}, \varepsilon_{r h}=(r-1) \varepsilon_{2, h-r+2}-(r-2) \varepsilon_{1, h-r+1}$ and $\varepsilon_{j k}=0, p_{\alpha}-q_{\beta}+2 \leq j-k \leq p_{\alpha}-1$, and $3 \leq r \leq p_{\alpha}, 0 \leq h-r \leq q_{\beta}-3$, $q_{\beta}-p_{\alpha}+3 \leq h \leq q_{\beta}, 1 \leq i \leq p_{\alpha}$. In this case, $q_{\beta}-p_{\alpha}-1$ columns are 0.

Therefore, there are $n_{2}=\sum_{\alpha=1}^{u} \sum_{\beta=1}^{v} \mathrm{~F}_{\alpha \beta}^{(2)}$ linearly independent solutions \bar{X}_{j} of (3). For each \bar{X}, there are $k_{1}, k_{2}, \ldots, k_{n_{2}}$, such that $\bar{X}=\sum_{j=1}^{n_{2}} k_{j} \bar{X}_{j}$. Note that $\bar{X}=U^{-1} X V$. It is straightforward to show that every solution of $A(A X-X B)-$ $(A X-X B) B=0$ is a linear combination of n_{2} linearly independent solutions.

Let us illustrate Theorem 1.1 with an example.
Example 2.2. Suppose that the elementary divisors of A and B are $(\lambda-$ $\left.\lambda_{1}\right)^{4},\left(\lambda-\lambda_{1}\right)^{3},\left(\lambda-\lambda_{2}\right)^{2},\left(\lambda-\lambda_{2}\right)$ and $\left(\lambda-\lambda_{1}\right)^{5},\left(\lambda-\lambda_{1}\right)^{3},\left(\lambda-\lambda_{2}\right)^{3},\left(\lambda-\lambda_{2}\right)^{2},\left(\lambda-\lambda_{3}\right)$, respectively, where $\lambda_{1} \neq \lambda_{2} \neq \lambda_{3}$, then

$$
\operatorname{dim}\left(\operatorname{ker} \alpha^{2}\right)=\sum_{\alpha=1}^{4} \sum_{\beta=1}^{5} \mathrm{~F}_{\alpha \beta}^{(2)}=8+6+6+5+4+3+2+2=36
$$

Let A be an $n \times n$ complex matrix with distinct eigenvalues a_{1}, \ldots, a_{r} the elementary divisors of A are $\underbrace{\left(\lambda-a_{i}\right)^{n_{i k}}}_{j_{i k} \text { times }}$ and Segre characteristic

$$
\left[\left(n_{11}^{j_{11}}, n_{12}^{j_{12}}, \ldots, n_{1 m_{1}}^{j_{1 m_{1}}}\right), \ldots,\left(n_{r 1}^{j_{r 1}}, n_{r 2}^{j_{r 2}}, \ldots, n_{r m_{r}}^{j_{r m_{r}}}\right)\right]
$$

where $0<n_{i 1}<n_{i 2}<\cdots<n_{i m_{i}}$ for $1 \leq i \leq r$; here we write $n_{i k}^{j_{i k}}$ for $\underbrace{n_{i k}, n_{i k}, \ldots, n_{i k}}$. $j_{i k}$ times Then we can show the following corollaries.

Corollary $2.3([1])$. Let $\alpha_{A}: M_{n \times n}(\mathbb{C}) \rightarrow M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_{A}(X)=A X-X A$, where A is an $n \times n$ complex matrix. Then

$$
\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{2}\right)=\sum_{i=1}^{r}\left[\sum_{k=1}^{m_{i}}\left(2 n_{i k}-1\right) j_{i k}^{2}+4 \sum_{k=1}^{m_{i}-1} n_{i k} \cdot j_{i k} \cdot \sum_{\beta=k+1}^{m_{i}} j_{i \beta}\right] .
$$

Proof. Let the elementary divisors of A are $\underbrace{\left(\lambda-a_{i}\right)^{n_{i k}}}_{j_{i k} \text { times }}$, where $1 \leq i \leq r$ and
$1 \leq k \leq m_{i}$. Using Theorem 1.1 we have $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{2}\right)=\sum_{\alpha=1}^{u} \sum_{\alpha=1}^{u} \mathrm{~F}_{\alpha \alpha}^{(2)}$, where $u=\sum_{i=1}^{r} \sum_{k=1}^{m_{i}} j_{i k}$. The result follows from that

$$
\sum_{\alpha=1}^{u} \sum_{\alpha=1}^{u} \mathrm{~F}_{\alpha \alpha}^{(2)}=\sum_{i=1}^{r}\left[\sum_{k=1}^{m_{i}}\left(2 n_{i k}-1\right) j_{i k}^{2}+4 \sum_{k=1}^{m_{i}-1} n_{i k} \cdot j_{i k} \cdot \sum_{\beta=k+1}^{m_{i}} j_{i \beta}\right] .
$$

This completes the proof.
Corollary 2.4. Let $\alpha_{A}: M_{n \times n}(\mathbb{C}) \rightarrow M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_{A}(X)=A X-X A$, where A is an $n \times n$ complex matrix. Then $n \leq$
$\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{2}\right) \leq n^{2}$. Moreover, $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{2}\right)=n$ if and only if A is similar to a diagonal matrix $\operatorname{diag}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where $a_{i} \neq a_{j}$ if $i \neq j$.

Proof. By Corollary 2.3,

$$
\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{2}\right) \geq \sum_{i=1}^{r}\left[\left(2 n_{i 1}-1\right) j_{i 1}^{2}\right] \geq \sum_{i=1}^{r} j_{i 1}^{2} \geq \frac{\left(\sum_{i=1}^{r} j_{i 1}\right)^{2}}{r}=\frac{n^{2}}{r} \geq n
$$

and this equality holds if and only if $m_{1}=1, n_{i 1}=1$ and $j_{i 1}=1, r=n$. Clearly $\operatorname{ker} \alpha_{A}^{2}$ is a subspace of the vector space $M_{n \times n}(\mathbb{C})$, thus $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{2}\right) \leq n^{2}$.
3. The proof of Theorem 1.2, This theorem can be proved by the same method as employed in the previous section.

Proof. For convenience, we still use the same notations as in the proof of Theorem 1.1. Assume $X \in \operatorname{ker} \alpha^{3}$. Then $J_{A}^{2}\left(J_{A} \bar{X}-3 \bar{X} J_{B}\right)=\left(\bar{X} J_{B}-3 J_{A} \bar{X}\right) J_{B}^{2}$, where $\bar{X}=U^{-1} X V$. Consequently, we get $u v$ matrix equations:

$$
\begin{aligned}
& \left(\lambda_{\alpha} E_{p_{\alpha}}+N_{p_{\alpha}}\right)^{2}\left[\left(\lambda_{\alpha} E_{p_{\alpha}}+N_{p_{\alpha}}\right) X_{\alpha \beta}-3 X_{\alpha \beta}\left(\mu_{\beta} E_{q_{\beta}}+N_{q_{\beta}}\right)\right] \\
& =\left[\left(\lambda_{\alpha} E_{p_{\alpha}}+N_{p_{\alpha}}\right) X_{\alpha \beta}-3 X_{\alpha \beta}\left(\mu_{\beta} E_{q_{\beta}}+N_{q_{\beta}}\right)\right]\left(\mu_{\beta} E_{q_{\beta}}+N_{q_{\beta}}\right)^{2}
\end{aligned}
$$

for $1 \leq \alpha \leq u$ and $1 \leq \beta \leq v$. An easy calculation gives

$$
\begin{align*}
\left(\mu_{\beta}-\lambda_{\alpha}\right)^{3} X_{\alpha \beta}= & 3\left(\mu_{\beta}-\lambda_{\alpha}\right)^{2}\left(P_{\alpha} X_{\alpha \beta}-X_{\alpha \beta} Q_{\beta}\right) \\
& -3\left(\mu_{\beta}-\lambda_{\alpha}\right)\left(P_{\alpha}^{2} X_{\alpha \beta}+X_{\alpha \beta} Q_{\beta}^{2}-2 P_{\alpha} X_{\alpha \beta} Q_{\beta}\right) \\
& +P_{\alpha}^{2}\left(P_{\alpha} X_{\alpha \beta}-3 X_{\alpha \beta} Q_{\beta}\right)+\left(3 P_{\alpha} X_{\alpha \beta}-X_{\alpha \beta} Q_{\beta}\right) Q_{\beta}^{2} . \tag{3.1}
\end{align*}
$$

If $\mu_{\beta} \neq \lambda_{\alpha}$ then $X_{\alpha \beta}=0$ by Lemma 2.1. We assume that $\mu_{\beta}=\lambda_{\alpha}$. In this case, we have

$$
\begin{equation*}
P_{\alpha}^{2}\left(P_{\alpha} X_{\alpha \beta}-3 X_{\alpha \beta} Q_{\beta}\right)=\left(X_{\alpha \beta} Q_{\beta}-3 P_{\alpha} X_{\alpha \beta}\right) Q_{\beta}^{2} \tag{3.2}
\end{equation*}
$$

Case 1. $p_{\alpha}=q_{\beta}$
If $p_{\alpha}<4$, then the number of arbitrary parameters in $X_{\alpha \beta}$ is $3 p_{\alpha}-2$.
If $p_{\alpha} \geq 4$, then we obtain

$$
\begin{aligned}
& \varepsilon_{i j}=0 \\
& \varepsilon_{h 2}=3 \varepsilon_{h-1,1}, \varepsilon_{p_{\alpha}-1, k}=3 \varepsilon_{p_{\alpha}, k+1} \\
& \varepsilon_{h 3}=3 \varepsilon_{h-1,2}-3 \varepsilon_{h-2,1} \\
& \varepsilon_{p_{\alpha}-2, k}=3 \varepsilon_{p_{\alpha}-1, k+1}-3 \varepsilon_{p_{\alpha}, k+2} \\
& \varepsilon_{f g}=\varepsilon_{f-3, g-3}-3 \varepsilon_{f-2, g-2}+3 \varepsilon_{f-1, g-1}
\end{aligned}
$$

where $4 \leq i \leq p_{\alpha}, i-j \geq 3,4 \leq h \leq p_{\alpha}, 1 \leq k \leq q_{\beta}-3,4 \leq f \leq p_{\alpha}$ and $4 \leq g \leq q_{\beta}$. Hence, we have

$$
\left\{\begin{array}{l}
\varepsilon_{42}=3 \varepsilon_{31} \\
\varepsilon_{53}=3 \varepsilon_{42}-3 \varepsilon_{31} \\
\varepsilon_{64}=3 \varepsilon_{53}-3 \varepsilon_{42}+\varepsilon_{31} \\
\quad \vdots \\
\quad \vdots \\
\varepsilon_{p_{\alpha}, q_{\beta}-2}=3 \varepsilon_{p_{\alpha}-1, q_{\beta}-3}-3 \varepsilon_{p_{\alpha}-2, q_{\beta}-4}+\varepsilon_{p_{\alpha}-3, q_{\beta}-5} \\
\varepsilon_{p_{\alpha}-2, q_{\beta}-4}=3 \varepsilon_{p_{\alpha}-1, q_{\beta}-3}-3 \varepsilon_{p_{\alpha}, q_{\beta}-2} \\
\varepsilon_{p_{\alpha}-1, q_{\beta}-3}=3 \varepsilon_{p_{\alpha}, q_{\beta}-2}
\end{array}\right.
$$

Thus, $\varepsilon_{31}=\varepsilon_{42}=\cdots=\varepsilon_{p_{\alpha}, q_{\beta}-2}=0$. We also have

$$
\left\{\begin{array}{l}
\varepsilon_{43}=3 \varepsilon_{32}-3 \varepsilon_{21} \\
\varepsilon_{54}=3 \varepsilon_{43}-3 \varepsilon_{32}+\varepsilon_{21} \\
\quad \vdots \\
\quad \vdots \\
\varepsilon_{p_{\alpha}, q_{\beta}-1}=3 \varepsilon_{p_{\alpha}-1, q_{\beta}-2}-3 \varepsilon_{p_{\alpha}-2, q_{\beta}-3}+\varepsilon_{p_{\alpha}-3, q_{\beta}-4} \\
\varepsilon_{p_{\alpha}-2, q_{\beta}-3}=3 \varepsilon_{p_{\alpha}-1, q_{\beta}-2}-3 \varepsilon_{p_{\alpha}, q_{\beta}-1}
\end{array}\right.
$$

By induction on the subscript, we obtain

$$
\varepsilon_{s, s-1}=\left[\frac{(s-1)(s-2)\left(p_{\alpha}-2\right)}{\left(p_{\alpha}-1\right)}-(s-2)^{2}+1\right] \varepsilon_{21}
$$

where $2 \leq s \leq p_{\alpha}$. Note that $\varepsilon_{f g}=\varepsilon_{f-3, g-3}-3 \varepsilon_{f-2, g-2}+3 \varepsilon_{f-1, g-1}$, where $4 \leq f \leq p_{\alpha}$ and $4 \leq g \leq q_{\beta}$. Continuing by induction, we finally have

$$
\begin{aligned}
\varepsilon_{f g}= & \frac{(f-2)(f-3)}{2} \varepsilon_{1, g-f+1} \\
& -[f(f-4)+3] \varepsilon_{2, g-f+2}+\frac{(f-1)(f-2)}{2} \varepsilon_{3, g-f+3}
\end{aligned}
$$

where $4 \leq f \leq p_{\alpha}, 4 \leq g \leq q_{\beta}$ and $0 \leq g-f \leq q_{\beta}-4$. Then it is evident to see that the number of arbitrary parameters in $X_{\alpha \beta}$ is $3 p_{\alpha}-2$.

Case 2. $p_{\alpha} \neq q_{\beta}$. We can assume that $p_{\alpha}>q_{\beta}$, since the case $p_{\alpha}<q_{\beta}$ is analogous.

If $p_{\alpha}-q_{\beta}=1$ and $q_{\beta} \geq 4$, then we have

$$
\begin{aligned}
\varepsilon_{i j}= & 0 \\
\varepsilon_{s, s-1}= & \frac{(s-1)(s-2)}{2} \varepsilon_{32}-\left[(s-2)^{2}-1\right] \varepsilon_{21}, \\
\varepsilon_{f g}= & \frac{(f-2)(f-3)}{2} \varepsilon_{1, g-f+1} \\
& -[f(f-4)+3] \varepsilon_{2, g-f+2}+\frac{(f-1)(f-2)}{2} \varepsilon_{3, g-f+3},
\end{aligned}
$$

where $i-j \geq 2,3 \leq i \leq p_{\alpha}, 2 \leq s \leq p_{\alpha}, 4 \leq f \leq p_{\alpha}-1,4 \leq g \leq q_{\beta}$ and $0 \leq g-f \leq q_{\beta}-4$. Thus, the number of arbitrary parameters in $X_{\alpha \beta}$ is $3 q_{\beta}-1$.

If $p_{\alpha}-q_{\beta}=1$ and $q_{\beta}<4$, then a routine computation gives rise to the result.
If $p_{\alpha}-q_{\beta} \geq 2$ and $q_{\beta} \geq 4$, then we have

$$
\begin{aligned}
\varepsilon_{i j}= & 0, \varepsilon_{g, g-2}=\frac{(g-1)(g-2)}{2} \varepsilon_{31}, \\
\varepsilon_{s, s-1}= & \frac{(s-1)(s-2)}{2} \varepsilon_{32}-\left[(s-2)^{2}-1\right] \varepsilon_{21}, \\
\varepsilon_{f g}= & \frac{(f-2)(f-3)}{2} \varepsilon_{1, g-f+1}-[f(f-4)+3] \varepsilon_{2, g-f+2} \\
& +\frac{(f-1)(f-2)}{2} \varepsilon_{3, g-f+3},
\end{aligned}
$$

where $i-j \geq 3,3 \leq g \leq p_{\alpha}$ and $2 \leq s \leq p_{\alpha}$ and $4 \leq f \leq p_{\alpha}-1$ and $4 \leq g \leq q_{\beta}, 0 \leq$ $g-f \leq q_{\beta}-4$. Thus, the number of arbitrary parameters in $X_{\alpha \beta}$ is $3 q_{\beta}$.

If $p_{\alpha}-q_{\beta} \geq 2$ and $q_{\beta}<4$, then an obvious computation gives rise to the same result.

Therefore, there are $n_{3}=\sum_{\alpha=1}^{u} \sum_{\beta=1}^{v} \mathrm{~F}_{\alpha \beta}^{(3)}$ linearly independent $X_{j} \in \operatorname{ker} \alpha^{3}$. For each $X \in \operatorname{ker} \alpha^{3}$, there are $k_{1}, k_{2}, \ldots, k_{n_{3}}$, such that $X=\sum_{j=1}^{n_{3}} k_{j} X_{j}$. \square

Let us illustrate Theorem 1.2 with an example.
Example 3.1. Suppose that the elementary divisors of A and B are $(\lambda-$ $\left.\lambda_{1}\right)^{4},\left(\lambda-\lambda_{1}\right)^{3},\left(\lambda-\lambda_{2}\right)^{2},\left(\lambda-\lambda_{2}\right),\left(\lambda-\lambda_{3}\right)$ and $\left(\lambda-\lambda_{1}\right)^{5},\left(\lambda-\lambda_{1}\right)^{3},\left(\lambda-\lambda_{2}\right)^{3},\left(\lambda-\lambda_{2}\right)^{2}$, respectively, where $\lambda_{1} \neq \lambda_{2} \neq \lambda_{3}$, then

$$
\operatorname{dim}\left(\operatorname{ker} \alpha^{3}\right)=\sum_{\alpha=1}^{5} \sum_{\beta=1}^{4} \mathrm{~F}_{\alpha \beta}^{(3)}=11+8+9+7+5+4+3+2=49
$$

Let A be an $n \times n$ complex matrix with distinct eigenvalues a_{1}, \ldots, a_{r} and the elementary divisors of A are $\underbrace{\left(\lambda-a_{i}\right)^{n_{i k}}}_{j_{i k} \text { times }}$ for $1 \leq k \leq m_{i}$ and $1 \leq i \leq r$. The
difference $n_{i, h+1}-n_{i h}$ is called an h-th jump of i for $1 \leq h \leq m_{i}-1$. We denote by $\mu_{i 1}, \mu_{i 2}, \ldots, \mu_{i \rho_{i}}$ the places where the jumps equal to 1 and $\mu_{i 1}<\mu_{i 2}<\cdots<\mu_{i \rho_{i}}$. Then we can show the following corollaries.

Corollary $3.2(\mathbb{1})$. Let $\alpha_{A}: M_{n \times n}(\mathbb{C}) \rightarrow M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_{A}(X)=A X-X A$, where A is an $n \times n$ complex matrix. Then
$\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right)=\sum_{i=1}^{r}\left[\sum_{k=1}^{m_{i}}\left[\left(3 n_{i k}-2\right) j_{i k}^{2}+6 n_{i k} \cdot j_{i k} \sum_{\beta=k+1}^{m_{i}} j_{i \beta}\right]-2 \sum_{l=1}^{\rho_{i}} j_{i, \mu_{i l}} \cdot j_{i, \mu_{i l}+1}\right]$.

Proof. Let the elementary divisors of A are $\underbrace{\left(\lambda-a_{i}\right)^{n_{i k}}}_{j_{i k} \text { times }}$, where $1 \leq i \leq r, 1 \leq$ $k \leq m_{i}$ and $0<n_{i 1}<n_{i 2}<\cdots<n_{i m_{i}}$. Using Theorem 1.2 we have $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right)=$ $\sum_{\alpha=1}^{\bar{u}} \sum_{\alpha=1}^{u} \mathrm{~F}_{\alpha \alpha}^{(3)}$, where $u=\sum_{i=1}^{r} \sum_{k=1}^{m_{i}} j_{i k}$. Since $\sum_{\alpha=1}^{u} \sum_{\alpha=1}^{u} \mathrm{~F}_{\alpha \alpha}^{(3)}$ is equal to

$$
\sum_{i=1}^{r}\left[\sum_{k=1}^{m_{i}}\left[\left(3 n_{i k}-2\right) j_{i k}^{2}+6 n_{i k} \cdot j_{i k} \sum_{\beta=k+1}^{m_{i}} j_{i \beta}\right]-2 \sum_{l=1}^{\rho_{i}} j_{i, \mu_{i l}} \cdot j_{i, \mu_{i l}+1}\right],
$$

we have the dimension formula.
Corollary 3.3. Let $\alpha_{A}: M_{n \times n}(\mathbb{C}) \rightarrow M_{n \times n}(\mathbb{C})$ be a linear transformation such that $\alpha_{A}(X)=A X-X A$, where A is an $n \times n$ complex matrix. Then $n \leq$ $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right) \leq n^{2}$. Moreover, $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right)=n$ if and only if A is similar to a diagonal matrix $\operatorname{diag}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, where $a_{i} \neq a_{j}$ if $i \neq j$.

Proof. Since
$\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right)=\sum_{i=1}^{r}\left[\sum_{k=1}^{m_{i}}\left[\left(3 n_{i k}-2\right) j_{i k}^{2}+6 n_{i k} \cdot j_{i k} \sum_{\beta=k+1}^{m_{i}} j_{i \beta}\right]-2 \sum_{l=1}^{\rho_{i}} j_{i, \mu_{i l}} \cdot j_{i, \mu_{i l}+1}\right]$,
it follows that $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right) \geq \sum_{i=1}^{r}\left[\left(3 n_{i 1}-2\right) j_{i 1}^{2}\right] \geq \sum_{i=1}^{r} j_{i 1}^{2} \geq \frac{\left(\sum_{i=1}^{r} j_{i 1}\right)^{2}}{r}=\frac{n^{2}}{r} \geq n$ and the equality holds if and only if $m_{1}=1, n_{i 1}=1$ and $j_{i 1}=1, r=n$. Clearly, $\operatorname{ker} \alpha_{A}^{3}$ is a subspace of the $n \times n$-dimensional vector space $M_{n \times n}(\mathbb{C})$, so $\operatorname{dim}\left(\operatorname{ker} \alpha_{A}^{3}\right) \leq n^{2}$. \square

REFERENCES

[1] J.M. Gracia. Dimension of the solution spaces of the matrix equations $[A,[A, X]]=0$ and $[A[A,[A, X]]]=0$. Linear and Multilinear Algebra, 9:195-200, 1980.
[2] N. Jacobson. Lectures in Abstract Algebra: II. Linear Algebra. Springer, New York, 1953.
[3] M. Wedderburn. Lectures on Matrices. American Mathematical Society Colloquium Publications, Vol. 17, New York, 2008.

[^0]: ${ }^{*}$ Received by the editors on September 18, 2014. Accepted for publication on May 1, 2015. Handling Editor: Joao Filipe Queiro.
 ${ }^{\dagger}$ School of Mathematics and Statistics, Hubei University, Wuhan, 430062, P.R. China (jliao@hubu.edu.cn, ghliu@hubu.edu.cn, zuohuiwoo@163.com, xuxingzhong407@126.com). Supported by the National Natural Science Foundation of China (grant no. 11371124 and 11401186).
 ${ }^{\ddagger}$ School of Mathematics, Henan University of Technology, Zhengzhou, 450001, P.R. China (yulwang@163.com). Supported by the National Natural Science Foundation of China (grant no. 11301150).

