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GENERALIZATION OF GRACIA’S RESULTS∗
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Abstract. Let α be a linear transformation of the m × n-dimensional vector space Mm×n(C)

over the complex field C such that α(X) = AX − XB, where A and B are m × m and n × n

complex matrices, respectively. In this paper, the dimension formulas for the kernels of the linear

transformations α2 and α3 are given, which generalizes the work of Gracia in [J.M. Gracia. Dimension

of the solution spaces of the matrix equations [A, [A, X]] = 0 and [A [A, [A, X]]] = 0. Linear and

Multilinear Algebra, 9:195–200, 1980.].
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1. Introduction. The notation used in this paper is standard, see [2, 3] for

example. Let C be the complex field. Suppose A ∈ Mm×m(C) and B ∈ Mn×n(C).

Let αAB be a linear transformation of Mm×n(C) defined by

αAB(X) = AX −XB, for X ∈ Mm×n(C).

If A = B, then we will write αA instead of αAA for brevity. In the case of no confusion,

we write α = αAB for short.

The well known dimension formula of the kernel kerαA is due to Frobenius [3,

Theorem VII.1]. Then Gracia has obtained the dimension formulas of kerα2
A and

kerα3
A in [1].

It is obvious that the kernels of the liner transformations α2 and α3 are the

solutions of the matrix equations A(AX −XB)− (AX −XB)B = 0 and A[A(AX −

XB) − (AX − XB)B] − [A(AX − XB) − (AX − XB)B]B = 0, respectively. In

this paper, we obtain the dimensions of kerα2 and kerα3, which generalizes Gracia’s

results.
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For convenience, we introduce the following notations. Suppose that the elemen-

tary divisors of A and B are (λ−λ1)
p1 , (λ−λ2)

p2 , . . . , (λ−λu)
pu and (λ−µ1)

q1 , (λ−

µ2)
q2 , . . . , (λ− µv)

qv , respectively. Let En be the unit matrix of size n and let

Nn =











0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

0 0 0 · · · 0











be the square matrix of size n in which all the elements of the first superdiagonal are

1 and all the other elements are 0. Let

JA =








λ1Ep1
+Np1

λ2Ep2
+Np2

0

0
. . .

λuEpu
+Npu








and

JB =








µ1Eq1 +Nq1

µ2Eq2 +Nq2 0

0
. . .

µvEqv +Nqv








be respectively the Jordan normal forms of A and B. For 1 ≤ α ≤ u and 1 ≤ β ≤ v.

Let F
(2)
αβ and F

(3)
αβ be defined by the following:

F
(2)
αβ =







0 if λα 6= µβ ;

2min(pα, qβ)− 1 if λα = µβ and pα = qβ ;

2min(pα, qβ) if λα = µβ and pα 6= qβ

and

F
(3)
αβ =







0 if λα 6= µβ;

3min(pα, qβ)− 2 if λα = µβ and pα = qβ ;

3min(pα, qβ)− 1 if λα = µβ and |pα − qβ | = 1;

3min(pα, qβ) if λα = µβ and |pα − qβ | ≥ 2.

The main results are the following:

Theorem 1.1. Let α : Mm×n(C) → Mm×n(C) be a linear transformation such

that α(X) = AX − XB, where A and B are m × m and n × n complex matrices,
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respectively. Then the dimension formula for kerα2 is

dim(kerα2) =

u∑

α=1

v∑

β=1

F
(2)
αβ . (1.1)

Theorem 1.2. Let α : Mm×n(C) → Mm×n(C) be a linear transformation such

that α(X) = AX − XB, where A and B are m × m and n × n complex matrices,

respectively. Then the dimension formula for kerα3 is

dim(kerα3) =

u∑

α=1

v∑

β=1

F
(3)
αβ . (1.2)

2. The proof of Theorem 1.1. Before proving the theorem, we first give a

lemma in the following:

Lemma 2.1. For a matrix M ∈ Ml×l(C), let Λ(M) be the set of its different

eigenvalues. If Λ(A) ∩ Λ(B) = ∅, then kerαk = 0 for k = 1, 2, 3, . . .

Proof. It is well known that Λ(A) ∩ Λ(B) = ∅ if and only if the unique solution

of the matrix equation AX −XB = 0 is X = 0. Thus, when Λ(A) ∩ Λ(B) = ∅, we

can prove by induction on k that if Λ(A)∩Λ(B) = ∅, the equality αk(X) = 0 implies

X = 0. In fact, if αk(X) = 0 then α(αk−1(X)) = 0 and Aαk−1(X)− αk−1(X)B = 0.

Since Λ(A) ∩ Λ(B) = ∅, it follows that αk−1(X) = 0. By hypothesis of the induction

the equality αk−1(X) = 0 implies that X = 0. So that, Λ(A)∩Λ(B) = ∅ implies that

kerαk = 0 for k = 1, 2, 3, . . .

Proof. It is obvious that there are invertible matrices U and V such that A =

UJAU
−1 and B = V JBV

−1. AssumeX ∈ kerα2, then A(AX−XB)−(AX−XB)B =

0. Hence,

UJAU
−1(UJAU

−1X −XV JBV
−1) = (UJAU

−1X −XV JBV
−1)V JBV

−1.

Thus,

JA(JAU
−1XV − U−1XV JB) = (JAU

−1XV − U−1XV JB)JB.

Let X = U−1XV . Then, the equation is

JA(JAX −XJB) = (JAX −XJB)JB . (2.1)

Now we partition X into blocks (Xαβ) where Xαβ = (εik)pα×qβ is a pα × qβ matrix

for 1 ≤ α ≤ u and 1 ≤ β ≤ v. Then we get uv matrix equations from (3):

(λαEpα
+Npα

)[(λαEpα
+Npα

)Xαβ −Xαβ(µβEqβ +Nqβ )]

= [(λαEpα
+Npα

)Xαβ −Xαβ(µβEqβ +Nqβ )](µβEqβ +Nqβ ).
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Write Pα := Npα
and Qβ := Nqβ . An easy calculation gives

(µβ − λα)
2Xαβ = 2(µβ − λα)(PαXαβ −XαβQβ)

+Pα(XαβQβ − PαXαβ)− (XαβQβ − PαXαβ)Qβ . (2.2)

If µβ 6= λα, then Xαβ = 0 by Lemma 2.1. Next we assume that µβ = λα. In this

case, we have

Pα(PαXαβ −XαβQβ) = (PαXαβ −XαβQβ)Qβ. (2.3)

Case 1. pα = qβ .

If pα = 1, then it is obvious that Xαβ = (ε11) .

If pα = 2, an easy computation gives Xαβ =

(
ε11 ε12

0 ε22

)

.

If pα ≥ 3, then








ε31 ε32−ε21 ε33−ε22 ··· ε3, qβ
−ε2, qβ−1

ε41 ε42−ε31 ε43−ε32 ··· ε4, qβ
−ε3, qβ−1

...
...

. . .
. . .

...
εpα 1 εpα 2−εpα−1, 1 εpα 3−εpα−1, 2 ··· εpα qβ

−εpα−1, qβ−1

0 −εpα 1 −εpα 2 ··· −εpα, qβ−1

0 0 0 ··· 0









=









0 ε21 ε22−ε11 ··· ε2, qβ−1−ε1, qβ−2

0 ε31 ε32−ε21 ··· ε3, qβ−1−ε2, qβ−2

...
...

. . .
. . .

...
0 εpα−1, 1 εpα−1, 2−εpα−2, 1 ··· εpα−1, qβ−1−εpα−2, qβ−2

0 εpα 1 εpα 2−εpα−1, 1 ··· εpα, qβ−1−εpα−1, qβ−2

0 0 −εpα 1 ··· −εpα, qβ−2









.

This leads to the following equations:

εs1 = εpα t = 0,

εpα−1, i = 2εpα, i+1, εh2 = 2εh−1, 1,

εjk = 2εj−1, k−1 − εj−2, k−2,

where 3 ≤ s ≤ pα, 1 ≤ t ≤ qβ − 2, 2 ≤ i ≤ qβ − 2, 3 ≤ j ≤ pα, 3 ≤ k ≤ qβ ,

−1 ≤ k − j ≤ qβ − 3 and 3 ≤ h ≤ pα. According to these equations, we have






ε32 = 2ε21

ε43 = 2ε32 − ε21

...
...

εpα, qβ−1 = 2εpα−1, qβ−2 − εpα−2, qβ−3

2εpα, qβ−1 = εpα−1, qβ−2.
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Then, ε21 = ε32 = · · · = εpα, qβ−1 = 0. We also have







ε33 = 2ε22 − ε11

...
...

εpα, qβ = 2εpα−1, qβ−1 − εpα−2, qβ−2.

By induction on the subscript, we obtain εii = (i− 1)ε22 − (i− 2)ε11, where 3 ≤ i ≤

pα. Note that εjk = 2εj−1, k−1 − εj−2, k−2, where 3 ≤ j ≤ pα, 3 ≤ k ≤ qβ and

1 ≤ k − j ≤ qβ − 3. By induction, we get εrh = (r − 1)ε2, h−r+2 − (r − 2)ε1, h−r+1

where 3 ≤ r ≤ pα, 0 ≤ h− r ≤ qβ − 3 and 3 ≤ h ≤ qβ . Thus, we conclude that

Xαβ =












ε11 ε12 ε13 ··· ε1, qβ−1 ε1 qβ

0 ε22 ε23 ···

... ε2 qβ

0 0 2ε22−ε11
. . .

... 2ε2, qβ−1−ε1, qβ−2

...
...

. . .
. . .

...
...

0 0 0 ··· (pα−2)ε22−(pα−3)ε11 (pα−2)ε23−(pα−3)ε12
0 0 0 ··· 0 (pα−1)ε22−(pα−2)ε11












.

Let D1 = diag{1, 0,−1, . . . ,−(pα − 2)} and D2 = diag{0, 1, . . . , pα − 1} be diagonal

matrices of size pα. It is obvious that Xαβ =
∑qβ−2

i=1 (ε1iD1 + ε2,i+1D2)N
i−1
pα

. Then

the number of arbitrary parameters in Xαβ is 2pα − 1.

Case 2. pα 6= qβ . We can assume that pα < qβ , since the case pα > qβ is

analogous.

If pα = 1, then Xαβ = (0, . . . , 0, ε1, qβ−1, ε1, qβ ). In this case, qβ − 2 columns are

0.

If pα = 2, then Xαβ has the following form:

Xαβ =

(
0 · · · 0 2ε2, qβ−1 ε1, qβ−1 ε1, qβ

0 · · · 0 0 ε2, qβ−1 ε2, qβ

)

,

and qβ − 3 columns are 0.

If pα ≥ 3, then Xαβ has the following form:










0 ··· 0 ε1, qβ−pα ε1, qβ−pα+1 ε1, qβ−pα+2 ··· ε1, qβ−2 ε1, qβ−1 ε1, qβ

0 ··· 0 0 ε2, qβ−pα+1 ε2, qβ−pα+2 ··· ε2, qβ−2 ε2, qβ−1 ε2, qβ

0 ··· 0 0 0 ε3, qβ−pα+2 ··· ε3, qβ−2 ε3, qβ−1 ε3, qβ

...
...
...

...
. . .

. . .
. . .

. . .
...

...
0 ··· 0 0 0 0 ··· εpα−2,qβ−2 εpα−2,qβ−1 εpα−2,qβ

0 ··· 0 0 0 0 ··· εpα−1,qβ−2 εpα−1,qβ−1 εpα−1,qβ

0 ··· 0 0 0 0 ··· 0 εpα,qβ−1 εpα,qβ











,

where εi, qβ−pα−1+i = (pα + 1− i)εpα, qβ−1, εrh = (r− 1)ε2, h−r+2 − (r − 2)ε1, h−r+1

and εjk = 0, pα − qβ + 2 ≤ j − k ≤ pα − 1, and 3 ≤ r ≤ pα, 0 ≤ h − r ≤ qβ − 3,

qβ − pα + 3 ≤ h ≤ qβ, 1 ≤ i ≤ pα. In this case, qβ − pα − 1 columns are 0.
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Therefore, there are n2 =
∑u

α=1

∑v
β=1 F

(2)
αβ linearly independent solutions Xj of

(3). For each X, there are k1, k2, . . . , kn2
, such that X =

∑n2

j=1 kjXj . Note that

X = U−1XV . It is straightforward to show that every solution of A(AX − XB) −

(AX −XB)B = 0 is a linear combination of n2 linearly independent solutions.

Let us illustrate Theorem 1.1 with an example.

Example 2.2. Suppose that the elementary divisors of A and B are (λ −

λ1)
4, (λ−λ1)

3, (λ−λ2)
2, (λ−λ2) and (λ−λ1)

5, (λ−λ1)
3, (λ−λ2)

3, (λ−λ2)
2, (λ−λ3),

respectively, where λ1 6= λ2 6= λ3, then

dim(kerα2) =
4∑

α=1

5∑

β=1

F
(2)
αβ = 8 + 6 + 6 + 5 + 4 + 3 + 2 + 2 = 36.

Let A be an n × n complex matrix with distinct eigenvalues a1, . . . , ar the ele-

mentary divisors of A are (λ− ai)
nik

︸ ︷︷ ︸

jik times

and Segre characteristic

[

(nj11
11 , n

j12
12 , . . . , n

j1m1

1m1
), . . . , (njr1

r1 , n
jr2
r2 , . . . , n

jrmr
rmr )

]

,

where 0 < ni1 < ni2 < · · · < nimi
for 1 ≤ i ≤ r; here we write njik

ik for nik, nik, . . . , nik
︸ ︷︷ ︸

jik times

.

Then we can show the following corollaries.

Corollary 2.3 ([1]). Let αA : Mn×n(C) → Mn×n(C) be a linear transformation

such that αA(X) = AX −XA, where A is an n× n complex matrix. Then

dim(kerα2
A) =

r∑

i=1





mi∑

k=1

(2nik − 1)j2ik + 4

mi−1∑

k=1

nik · jik ·
mi∑

β=k+1

jiβ



 .

Proof. Let the elementary divisors of A are (λ− ai)
nik

︸ ︷︷ ︸

jik times

, where 1 ≤ i ≤ r and

1 ≤ k ≤ mi. Using Theorem 1.1, we have dim(kerα2
A) =

∑u
α=1

∑u
α=1 F

(2)
αα, where

u =
∑r

i=1

∑mi

k=1 jik. The result follows from that

u∑

α=1

u∑

α=1

F(2)
αα =

r∑

i=1





mi∑

k=1

(2nik − 1)j2ik + 4

mi−1∑

k=1

nik · jik ·
mi∑

β=k+1

jiβ



 .

This completes the proof.

Corollary 2.4. Let αA : Mn×n(C) → Mn×n(C) be a linear transformation

such that αA(X) = AX − XA, where A is an n × n complex matrix. Then n ≤
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dim(kerα2
A) ≤ n2. Moreover, dim(kerα2

A) = n if and only if A is similar to a diagonal

matrix diag{a1, a2, . . . , an}, where ai 6= aj if i 6= j.

Proof. By Corollary 2.3,

dim(kerα2
A) ≥

r∑

i=1

[(2ni1 − 1)j2i1] ≥
r∑

i=1

j2i1 ≥
(
∑r

i=1 ji1)
2

r
=

n2

r
≥ n

and this equality holds if and only if m1 = 1, ni1 = 1 and ji1 = 1, r = n. Clearly

kerα2
A is a subspace of the vector space Mn×n(C), thus dim(kerα2

A) ≤ n2.

3. The proof of Theorem 1.2. This theorem can be proved by the same

method as employed in the previous section.

Proof. For convenience, we still use the same notations as in the proof of Theorem

1.1. Assume X ∈ kerα3. Then J2
A(JAX − 3XJB) = (XJB − 3JAX)J2

B, where

X = U−1XV . Consequently, we get uv matrix equations:

(λαEpα
+Npα

)2[(λαEpα
+Npα

)Xαβ − 3Xαβ(µβEqβ +Nqβ )]

= [(λαEpα
+Npα

)Xαβ − 3Xαβ(µβEqβ +Nqβ )](µβEqβ +Nqβ )
2,

for 1 ≤ α ≤ u and 1 ≤ β ≤ v. An easy calculation gives

(µβ − λα)
3Xαβ = 3(µβ − λα)

2(PαXαβ −XαβQβ)

−3(µβ − λα)(P
2
αXαβ +XαβQ

2
β − 2PαXαβQβ)

+P 2
α(PαXαβ − 3XαβQβ) + (3PαXαβ −XαβQβ)Q

2
β . (3.1)

If µβ 6= λα then Xαβ = 0 by Lemma 2.1. We assume that µβ = λα. In this case,

we have

P 2
α(PαXαβ − 3XαβQβ) = (XαβQβ − 3PαXαβ)Q

2
β . (3.2)

Case 1. pα = qβ

If pα < 4, then the number of arbitrary parameters in Xαβ is 3pα − 2.

If pα ≥ 4, then we obtain

εij = 0,

εh2 = 3εh−1, 1, εpα−1, k = 3εpα, k+1,

εh3 = 3εh−1, 2 − 3εh−2, 1,

εpα−2, k = 3εpα−1, k+1 − 3εpα, k+2,

εfg = εf−3, g−3 − 3εf−2, g−2 + 3εf−1, g−1,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 243-252, June 2015



ELA

250 Jun Liao, Heguo Liu, Yulei Wang, Zuohui Wu, and Xingzhong Xu

where 4 ≤ i ≤ pα, i− j ≥ 3, 4 ≤ h ≤ pα, 1 ≤ k ≤ qβ−3, 4 ≤ f ≤ pα and 4 ≤ g ≤ qβ .

Hence, we have







ε42 = 3ε31

ε53 = 3ε42 − 3ε31

ε64 = 3ε53 − 3ε42 + ε31

...
...

εpα, qβ−2 = 3εpα−1, qβ−3 − 3εpα−2, qβ−4 + εpα−3, qβ−5

εpα−2, qβ−4 = 3εpα−1, qβ−3 − 3εpα, qβ−2

εpα−1, qβ−3 = 3εpα, qβ−2.

Thus, ε31 = ε42 = · · · = εpα, qβ−2 = 0. We also have







ε43 = 3ε32 − 3ε21

ε54 = 3ε43 − 3ε32 + ε21

...
...

εpα, qβ−1 = 3εpα−1, qβ−2 − 3εpα−2, qβ−3 + εpα−3, qβ−4

εpα−2, qβ−3 = 3εpα−1, qβ−2 − 3εpα, qβ−1.

By induction on the subscript, we obtain

εs, s−1 =

[
(s− 1)(s− 2)(pα − 2)

(pα − 1)
− (s− 2)2 + 1

]

ε21,

where 2 ≤ s ≤ pα. Note that εfg = εf−3, g−3 − 3εf−2, g−2 + 3εf−1, g−1, where

4 ≤ f ≤ pα and 4 ≤ g ≤ qβ . Continuing by induction, we finally have

εfg =
(f − 2)(f − 3)

2
ε1, g−f+1

−[f(f − 4) + 3]ε2, g−f+2 +
(f − 1)(f − 2)

2
ε3, g−f+3,

where 4 ≤ f ≤ pα, 4 ≤ g ≤ qβ and 0 ≤ g − f ≤ qβ − 4. Then it is evident to see that

the number of arbitrary parameters in Xαβ is 3pα − 2.

Case 2. pα 6= qβ . We can assume that pα > qβ , since the case pα < qβ is

analogous.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 243-252, June 2015



ELA

Generalization of Gracia’s Results 251

If pα − qβ = 1 and qβ ≥ 4, then we have

εij = 0,

εs, s−1 =
(s− 1)(s− 2)

2
ε32 − [(s− 2)2 − 1]ε21,

εfg =
(f − 2)(f − 3)

2
ε1, g−f+1

−[f(f − 4) + 3]ε2, g−f+2 +
(f − 1)(f − 2)

2
ε3, g−f+3,

where i − j ≥ 2, 3 ≤ i ≤ pα, 2 ≤ s ≤ pα, 4 ≤ f ≤ pα − 1, 4 ≤ g ≤ qβ and

0 ≤ g − f ≤ qβ − 4. Thus, the number of arbitrary parameters in Xαβ is 3qβ − 1.

If pα − qβ = 1 and qβ < 4, then a routine computation gives rise to the result.

If pα − qβ ≥ 2 and qβ ≥ 4, then we have

εij = 0, εg, g−2 =
(g − 1)(g − 2)

2
ε31,

εs,s−1 =
(s− 1)(s− 2)

2
ε32 − [(s− 2)2 − 1]ε21,

εfg =
(f − 2)(f − 3)

2
ε1,g−f+1 − [f(f − 4) + 3]ε2, g−f+2

+
(f − 1)(f − 2)

2
ε3, g−f+3,

where i− j ≥ 3, 3 ≤ g ≤ pα and 2 ≤ s ≤ pα and 4 ≤ f ≤ pα − 1 and 4 ≤ g ≤ qβ , 0 ≤

g − f ≤ qβ − 4. Thus, the number of arbitrary parameters in Xαβ is 3qβ.

If pα − qβ ≥ 2 and qβ < 4, then an obvious computation gives rise to the same

result.

Therefore, there are n3 =
∑u

α=1

∑v
β=1 F

(3)
αβ linearly independent Xj ∈ kerα3. For

each X ∈ kerα3, there are k1, k2, . . . , kn3
, such that X =

∑n3

j=1 kjXj.

Let us illustrate Theorem 1.2 with an example.

Example 3.1. Suppose that the elementary divisors of A and B are (λ −

λ1)
4, (λ−λ1)

3, (λ−λ2)
2, (λ−λ2), (λ−λ3) and (λ−λ1)

5, (λ−λ1)
3, (λ−λ2)

3, (λ−λ2)
2,

respectively, where λ1 6= λ2 6= λ3, then

dim(kerα3) =

5∑

α=1

4∑

β=1

F
(3)
αβ = 11 + 8 + 9 + 7 + 5 + 4 + 3 + 2 = 49.

Let A be an n × n complex matrix with distinct eigenvalues a1, . . . , ar and the

elementary divisors of A are (λ− ai)
nik

︸ ︷︷ ︸

jik times

for 1 ≤ k ≤ mi and 1 ≤ i ≤ r. The
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difference ni,h+1 − nih is called an h-th jump of i for 1 ≤ h ≤ mi − 1. We denote by

µi1, µi2, . . . , µiρi
the places where the jumps equal to 1 and µi1 < µi2 < · · · < µiρi

.

Then we can show the following corollaries.

Corollary 3.2 ([1]). Let αA : Mn×n(C) → Mn×n(C) be a linear transformation

such that αA(X) = AX −XA, where A is an n× n complex matrix. Then

dim(kerα3
A) =

r∑

i=1





mi∑

k=1



(3nik − 2)j2ik + 6nik · jik

mi∑

β=k+1

jiβ



− 2

ρi∑

l=1

ji,µil
· ji,µil+1



 .

Proof. Let the elementary divisors of A are (λ− ai)
nik

︸ ︷︷ ︸

jik times

, where 1 ≤ i ≤ r, 1 ≤

k ≤ mi and 0 < ni1 < ni2 < · · · < nimi
. Using Theorem 1.2, we have dim(kerα3

A) =∑u
α=1

∑u
α=1 F

(3)
αα, where u =

∑r
i=1

∑mi

k=1 jik. Since
∑u

α=1

∑u
α=1 F

(3)
αα is equal to

r∑

i=1





mi∑

k=1



(3nik − 2)j2ik + 6nik · jik

mi∑

β=k+1

jiβ



− 2

ρi∑

l=1

ji,µil
· ji,µil+1



 ,

we have the dimension formula.

Corollary 3.3. Let αA : Mn×n(C) → Mn×n(C) be a linear transformation

such that αA(X) = AX − XA, where A is an n × n complex matrix. Then n ≤

dim(kerα3
A) ≤ n2. Moreover, dim(kerα3

A) = n if and only if A is similar to a diagonal

matrix diag{a1, a2, . . . , an}, where ai 6= aj if i 6= j.

Proof. Since

dim(kerα3
A) =

r∑

i=1





mi∑

k=1



(3nik − 2)j2ik + 6nik · jik

mi∑

β=k+1

jiβ



− 2

ρi∑

l=1

ji,µil
· ji,µil+1



 ,

it follows that dim(kerα3
A) ≥

∑r
i=1[(3ni1 − 2)j2i1] ≥

∑r
i=1 j

2
i1 ≥

(
∑

r
i=1

ji1)
2

r
= n2

r
≥ n

and the equality holds if and only ifm1 = 1, ni1 = 1 and ji1 = 1, r = n. Clearly, kerα3
A

is a subspace of the n×n-dimensional vector space Mn×n(C), so dim(kerα3
A) ≤ n2.
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