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Abstract. The class of nonsingular connected weighted directed graphs with an unweighted

undirected branch is considered in this article. This paper investigates the monotonicity properties

of the first eigenvectors of such graphs along certain paths. The paper describes how the first

eigenvalue of such graphs changes under some perturbation. It is shown that replacing a branch

which is a tree by a path on the same number of vertices will not increase the first eigenvalue, while

replacing the tree by a star on the same number of vertices will not decrease the first eigenvalue. As

an application the paper characterizes the graphs minimizing the first eigenvalue over certain classes

of such graphs.
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1. Introduction. In [2, 6], the authors introduced the concept of a weighted

directed graph: it is a directed graph with a simple underlying undirected graph

and edges having complex weights of unit modulus. Thus, there are no digons in a

weighted directed graph; that is, in a weighted directed graph both the edges (i, j)

and (j, i) cannot be present simultaneously. Furthermore, the presence of an edge

(i, j) of weight w is as good as the presence of the edge (j, i) of weight w, the complex

conjugate of w. Weighted directed graphs with edge weights of unit modulus are also

known as T-gain graphs (see [7]), where T stands for the complex numbers of unit

modulus. The adjacency matrix, the vertex edge incidence matrix, and the Laplacian

matrix of the weighted directed graphs were introduced in [2, 6]. In this article, we

use wij to denote the weight of an edge (i, j).

Let G be a weighted directed graph on vertices 1, 2, . . . , n. At times, we use

V (G) and E(G) to denote the set of vertices and the set of edges of a graph G,

respectively. Sometimes it is convenient to denote ‘(i, j) ∈ E(G) or (j, i) ∈ E(G)’by

‘i ∼ j’. The adjacency matrix (see [2]), A(G) = [aij ] of G is an n × n matrix with

entries aij = wij or wji or 0, depending on whether (i, j) ∈ E(G) or (j, i) ∈ E(G) or
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otherwise, respectively. The degree d(i) of a vertex i in a weighted directed graph G

is the number of edges incident with i. It may be viewed as the sum of the absolute

values of the weights of the edges incident with the vertex i. The Laplacian matrix

L(G) of G is defined as L(G) = D(G) − A(G), where D(G) is the diagonal matrix

with d(i) as the i-th diagonal entry. If weights of all the edges in G are 1, then L(G)

coincides with the usual Laplacian matrix of a graph. In view of this fact, henceforth, a

weighted directed graph with all the edges having weight 1 is said to be an unweighted

undirected graph. If the weights of all edges in G are ±1, then (viewing the edges with

weight 1 as directed and the edges with weight −1 as undirected) L(G) coincides with

the Laplacian matrix of a mixed graph (see [1]). If the weights of all edges in G are

−1, then L(G) coincides with the well studied signless Laplacian (see [4]) of a graph.

Thus, the study of the adjacency and the Laplacian matrices of weighted directed

graphs includes the study of those matrices for unweighted undirected graphs, mixed

graphs and the study of the signless Laplacian matrix as special cases. It was observed

and proved in [2] that L(G) is a positive semidefinite matrix. So its eigenvalues are

nonnegative.

Let G be a weighted directed graph on vertices 1, . . . , n. Note that for any vector

x ∈ C
n we have

x∗L(G)x =
∑

(i,j)∈E(G)

|xi − wijxj |2. (1.1)

Furthermore, unlike the Laplacian matrix of an unweighted undirected graph,

the Laplacian matrix of a weighted directed graph is sometimes nonsingular (see

[2]). We call a connected weighted directed graph singular (resp. nonsingular) if its

corresponding Laplacian matrix is singular (resp., nonsingular).

In defining subgraph, walk, path, component, connectedness, and degree of a

vertex in G we focus only on the underlying unweighted undirected graph of G.

Definition 1.1. (See [2]) An i1-ik-walk W in a weighted directed graph G is a

finite sequence i1, i2, . . . , ik of vertices such that ip ∼ ip+1 for every 1 ≤ p ≤ k−1. We

call wW = ai1i2ai2i3 · · ·aik−1ik , the weight of the walk W , where aij are the entries of

A(G).

Definition 1.2. (See [2]) Let G be a weighted directed graph on vertices 1, . . . , n

and D be a diagonal matrix with |dii| = 1, for each i. Then D∗L(G)D is the Laplacian

matrix of another weighted directed graph which we denote by DG. If (i, j) ∈ E(G)

has a weight wij , then it has the weight diiwijdjj in
DG. Let H and G be two weighted

directed graphs on vertices 1, . . . , n. We say H is D-similar to G, if there exists a

diagonal matrix D (with |dii| = 1, for each i) such that H = DG.

Below we state few results due to Bapat et al. (see [2]) which shall be used for
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further development.

Lemma 1.3. [2, Lemma 2] Let G be a connected weighted directed graph. Then

G is singular if and only if it is D-similar to an unweighted undirected graph.

Lemma 1.4. [2, Corollary 9] Let G be a connected weighted directed graph. Then

G is nonsingular if and only if it contains a cycle of weight different from 1. In par-

ticular, a weighted directed graph whose underlying graph is a tree is always singular.

A cycle C in a weighted directed graph is said to be nonsingular if its weight

wC 6= 1 (see [2]). Otherwise we call it a singular cycle.

Let G be a weighted directed graph. Henceforth, by an eigenvalue (resp., eigen-

vector) of G we mean an eigenvalue (resp., eigenvector) of the Laplacian matrix L(G)

of G. By λi(G) we denote the i-th smallest eigenvalue of G. The smallest eigenvalue

λ1(G) of G is said to be the first eigenvalue of G and an eigenvector corresponding

to λ1(G) is said to be a first eigenvector of G. By Rayleigh’s theorem (see [9]),

λ1(G) = min
x∈C

n

x 6=0

x∗L(G)x

x∗x
. (1.2)

Thus, for an arbitrary unit vector x ∈ Cn we have λ1(G) ≤ x∗L(G)x and equality

holds if and only if x is a first eigenvector of G.

If λ is an eigenvalue of G with an eigenvector x, then by an eigenvector equation

of x at a vertex v we mean the following equation

[d(v) − λ]x(v) =
∑

v∼j

avjx(j), where avj is the vj-th entry of A(G). (1.3)

Let G1, G2 be two vertex disjoint weighted directed graphs, and let v1 and v2

be two distinct vertices of G1 and G2, respectively. By G1(v1) ⋄ G2(v2) we denote

the weighted directed graph obtained from G1 and G2 by identifying v1 with v2 and

forming the new vertex u. Sometimes the graph G1(v1) ⋄ G2(v2) is also denoted by

G1(u) ⋄ G2(u). This graph operation is popularly known as a coalescence of G1 and

G2. If a connected weighted directed graph G can be expressed as G = G1(u)⋄G2(u)

for some weighted directed graphs G1 and G2, then G1 is called a branch of G with

root u. Note that G2 is also a branch of G according to the above definition. A branch

H of a weighted directed graph G is said to be unweighted undirected if all its edges

have weight 1.

The article is organized as follows. In Section 2, we discuss monotonicity prop-

erties of the first eigenvectors along paths in the unweighted undirected branches of

a nonsingular weighted directed graph. In Section 3, we investigate how the first

eigenvalue of a nonsingular weighted directed graph changes under perturbation of
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an unweighted undirected branch. Furthermore, we show that replacing a branch

which is a tree by a path on the same number of vertices will not increase the first

eigenvalue, while replacing the tree by a star on the same number of vertices will

not decrease the first eigenvalue. In Section 4, as an application we characterize the

nonsingular weighted directed graph minimizing the first eigenvalue over the class

of connected weighted directed graphs with fixed order which contains a given non-

singular weighted directed graph as an induced subgraph. Moreover, we obtain the

nonsingular weighted directed graph minimizing the first eigenvalue over the class of

connected weighted directed graphs with exactly one nonsingular cycle.

2. Properties of a first eigenvector. In this section, we consider the class

of nonsingular weighted directed graphs having unweighted undirected branch and

describe various properties of the first eigenvectors of such graphs. Analogous results

for the Fiedler vector (see [8]) of unweighted undirected graphs can be found in [8, 3].

The following lemma is crucial for further developments.

Lemma 2.1. Let G = G1(u)⋄H(u) be a weighted directed graph and let LH be the

principal submatrix of L(G) corresponding to H. If H is a connected unweighted and

undirected graph, then the smallest eigenvalue of LH is simple and the corresponding

eigenvector is positive, unique up to a scalar multiple.

Proof. Since H is connected unweighted and undirected, we see that LH is a

real irreducible matrix and has non-positive off diagonal entries. Consider the matrix

M = kI − LH , where k > 0, large enough such that each entry of M is nonnegative.

Thus, M is a nonnegative, symmetric irreducible matrix. By the Perron-Frobenius

Theorem (see [10]), the largest eigenvalue of M has multiplicity 1 and the correspond-

ing eigenvector is positive and unique up to a scalar multiple. The rest of the proof

is trivial.

By NG(u) we mean the set of neighbors of the vertex u in a weighted directed

graph G. Note that d(v) = |NG(v)|. For x ∈ Cn, by Rex and Imx we mean the real

part and imaginary part of x, respectively.

Let x be an eigenvector of G corresponding to an eigenvalue λ. A branchH of G is

said to be real, purely imaginary, nonnegative, positive or a zero branch with respect

to x if the valuations of every vertex in H are real, purely imaginary, nonnegative,

positive, or zero with respect to x, respectively.

The next result says that an unweighted undirected branch H of a nonsingular

weighted directed graph G with root u is real (resp., purely imaginary, zero, nonneg-

ative) with respect to a first eigenvector of G if the valuation of the first eigenvector
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at the root is real (resp., purely imaginary, zero, nonnegative).

Lemma 2.2. Let G be a nonsingular connected weighted directed graph which

contains an unweighted undirected branch H with root u. Let x be a first eigenvector

of G.

(i) If x(u) is real, then H is real with respect to x.

(ii) If x(u) is purely imaginary, then H is purely imaginary with respect to x.

(iii) If x(u) = 0, then H is a zero branch with respect to x.

(iv) If x(u) is real and x(u) > 0, then H is nonnegative with respect to x.

(v) If x(u) 6= 0, then x(v) 6= 0 for all v ∈ V (H).

Proof. (i) Assume that x∗x = 1. Suppose that Imx(u) = 0, but Imx(w) 6= 0 for

some w ∈ V (H) − {u}. Let x be partitioned conformally as x =

[

x′

xH

]

, where xH

is the sub-vector of x corresponding to the vertices of H . Let y =

[

x′

xH

]

. We see

that x∗x = 1 = y∗y and x∗L(G)x = y∗L(G)y. Thus, y is also a first eigenvector of G.

Hence ŷ = 1
2i (x− y) =

[

0

ImxH

]

is a first eigenvector of G. Let LH be the principal

sub-matrix of L(G) corresponding to H . Since x(u) is real, we see that ŷ(u) = 0.

Thus, λ1(G) is an eigenvalue of LH with ImxH as a corresponding eigenvector. So

λ1(LH) ≤ λ1(G). By the interlacing theorem, we have λ1(G) ≤ λ1(LH), which

implies λ1(LH) = λ1(G). By Lemma 2.1, ImxH > 0. Thus, ŷ is nonnegative. By the

eigenvector equation of ŷ at the vertex u, we have
∑

v∈NG(u) ŷ(v) = 0, which implies

ŷ(v) = 0 for all v ∈ NG(u). Again by considering the eigenvector equation of ŷ at

an arbitrary vertex v ∈ NG(u), we see that ŷ(v′) = 0 for all v′ ∈ NH(v). Repeating

the same argument we see that ŷ(v) = 0 for all v ∈ V (H) − {u}. Thus, ŷ = 0, a

contradiction to Imx(w) 6= 0.

(ii) Assume that x(u) is purely imaginary. Let z = ix, where i =
√
−1. Then z is

a first eigenvector G such that z(u) is real. Thus, by part(i), H is a real branch of G

with respect to z. Hence, H is a purely imaginary branch with respect to x.

(iii) Assume that x(u) = 0. By part(i), H is a real branch with respect to x.

Suppose that x(w) 6= 0 for some vertex w ∈ V (H) − {u}. Let x be partitioned

conformally as x =

[

x′

xH

]

, where xH is the sub-vector of x corresponding to the

vertices of H . Consider y =

[

x′

−xH

]

. Observe that x∗L(G)x = y∗L(G)y and

y∗y = 1. Thus, y is a first eigenvector of G. Hence ŷ = 1
2 (x − y) =

[

0

xH

]

is a

first eigenvector of G. Arguing similarly as in the proof of part(i), we arrive at a

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 227-242, June 2015



ELA

232 Debajit Kalita

contradiction to x(w) 6= 0. Hence, part(iii) of the result holds.

(iv) Assume that x(u) is real and x(u) > 0. By part(i), x(v) is real for each vertex

v ∈ V (H). We claim that x(w1)x(w2) ≥ 0 whenever w1, w2 ∈ V (H) and w1 ∼ w2.

Suppose that there exists w1, w2 ∈ V (H), w1 ∼ w2 such that x(w1)x(w2) < 0. Let

y be the vector defined as y(w) = |x(w)| if w ∈ V (H) and y(v) = x(v) otherwise.

Observe that y∗y = x∗x,

|y(w1)− y(w2)|2 < |x(w1)− x(w2)|2

and for all other edges (i, j) ∈ E(G) we have

|y(i)− wijy(j)|2 ≤ |x(i) − wijx(j)|2.

Thus, λ1(G) ≤ y∗L(G)y

y∗y
<

x∗L(G)x

x∗x
= λ1(G), a contradiction. So the claim holds.

As H is connected and x(u) > 0, it follows that x(v) ≥ 0 for every vertex v of H .

Hence, H is a nonnegative branch with respect to x.

(v) Assume that x(u) 6= 0. Without loss of generality, we assume that x(u) > 0.

By part(iv), x(v) ≥ 0 for each vertex v ∈ V (H). Suppose that x(w) = 0 for some

vertex w of H . Then by the eigenvector equation of x at w, we see that
∑

v∼w

x(v) = 0,

which implies x(v) = 0 for all v ∈ NH(w). By repeated application of the eigenvector

equation of x, we see that x(v) = 0 for every v ∈ NH(u). Again, by the eigenvector

equation of x at the vertex v we have x(u) = 0, which is a contradiction. Hence,

x(v) 6= 0 for all v ∈ V (H).

Definition 2.3. Let G be a weighted directed graph and let x be a first eigen-

vector of G. A path P := v1, v2, . . . , vk in G is said to be strictly increasing, strictly

decreasing or identically zero with respect to x if the sequence x(v1), x(v2), . . . , x(vk)

is strictly increasing, strictly decreasing, or a zero sequence, respectively. The path

P is said to be positive with respect to x, if x(vi) > 0 for i = 1, . . . , k.

The next lemma shows the existence of a strictly decreasing positive path in an

unweighted undirected branch of a nonsingular weighted directed graph with respect

its first eigenvector. This result is analogous to the result due to Bapat et al. [3] for

the Fiedler vector of unweighted undirected graphs.

Lemma 2.4. Let G be a connected nonsingular weighted directed graph which

contains an unweighted undirected branch H with root u. Let y be a first eigenvector

of G such that y(u) > 0. Then there exists a strictly decreasing positive path P from

v to u in H with respect to y, for each vertex v ∈ V (H)− {u}.

Proof. Assume that y(u) > 0. By Lemma 2.2 (iv) and Lemma 2.2 (v), H is
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positive with respect to y. From the eigenvector equation of y at the vertex v we have

λ1(G)y(v) = d(v)y(v) −
∑

i∼v

y(i) =
∑

i∼v

[y(v)− y(i)].

Since λ1(G)y(v) > 0, it follows that there exists a vertex i1 in H such that i1 ∼ v

and y(i1) < y(v). If i1 = u then we are done. Assume that i1 6= u. As i1 ∈ V (H),

we have y(i1) > 0. Similarly by the eigenvector equation of y at the vertex i1, there

exists a vertex i2 such that i2 ∼ i1 and y(i2) < y(i1). Since the number of vertices is

finite, with similar argument we see that ik = u for some k. Hence, the result holds.

The following theorem shows the monotonicity along every path in a spanning

tree of an unweighted undirected branch of a weighted directed graph with respect to

its first eigenvector. The result is analogous to [3, Theorem 2.4].

Theorem 2.5. Let G be a connected nonsingular weighted directed graph which

contains an unweighted undirected branch H with root u. Then there exists a first

eigenvector y of G such that y(u) is real and there exists a spanning tree TH of H

such that every path P in TH which starts from the vertex u has one of the following

property.

(a) If y(u) > 0, then P is strictly increasing with respect to y.

(b) If y(u) < 0, then P is strictly decreasing with respect to y.

(c) If y(u) = 0, then P is identically zero with respect to y.

Proof. Let X be a first eigenvector of G and let y = αX , where α ∈ C such that

y(u) is real.

(b) Assume that y(u) > 0. If every path starting from u inH is strictly increasing,

then any spanning tree TH of H satisfies the required property. In this case, we are

done. Suppose that there is a path Q := u, i1, . . . , ik, v from the vertex u to a vertex

v in H such that y(u) < y(i1) < · · · < y(ik), but y(v) ≤ y(ik). Let w 6= u be an

arbitrary vertex in H . By Lemma 2.4, there exists a strictly decreasing positive path

(with respect to y) from w to u in H , say P1 := w,w1, . . . , wr , u. Let e be the edge

in Q with end vertices ik and v. Consider the subgraph H1 = H − e of H . If P1 does

not pass through e, then u,wr, . . . , w1, w is a strictly increasing positive path (with

respect to y) starting from u to w. If P1 passes through the edge e, then ik = wl−1 and

v = wl for some l, 1 ≤ l ≤ r, as P1 is strictly decreasing and y(v) ≤ y(ik). Consider

the path P ′ := u, i1, . . . , ik−1, ik, wl−2, . . . , w1, w. Note that P ′ does not contain e

and P ′ is a strictly increasing positive path (with respect to y) starting from u to w.

Thus, there exists a strictly increasing positive path (with respect to y) starting from

u to w in H1 for each vertex w ∈ V (H) − {u}. If every path starting from u in H1

is strictly increasing (with respect to y), then the proof follows by taking a spanning

tree of H1 as TH . Otherwise, by repeated application of the above arguments we

obtain a spanning tree TH of H with the required property.
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(b) If y(u) < 0, then the proof follows similarly as above, by considering −y as a

first eigenvector of G.

(c) If y(u) = 0, then the proof follows from Lemma 2.2 (iii).

The next theorem says that along every path (starting from the root) in a span-

ning tree of an unweighted undirected branch of a nonsingular weighted directed graph

the absolute values of the valuations of a first eigenvector is strictly increasing.

Theorem 2.6. Let G be a connected nonsingular weighted directed graph which

contains an unweighted undirected branch H with root u. Let x be a first eigenvector of

G such that x(u) 6= 0. Then there exists a spanning tree TH of H such that along every

path P in TH starting from the vertex u in TH the absolute values of the valuations

of x are strictly increasing.

Proof. Let y = αx, where α = x(u). Then y(u) > 0. By Theorem 2.5, there

exists a spanning tree TH of H such that every path P in TH starting from the vertex

u is strictly increasing with respect to y. Hence, the result follows.

3. First eigenvalue under perturbation. In this section, we investigate how

the first eigenvalue of a nonsingular weighted directed graph changes under perturba-

tion of an unweighted undirected branch. Some of our results generalize the results

for the least eigenvalue of the signless Laplacian matrix of a graph in [11].

Let G and H be two weighted directed graphs such that i, j ∈ V (G), u ∈ V (H).

Consider the weighted directed graphs G1 = G(i)⋄H(u) and G2 = G(j)⋄H(u). Then

G2 is said to be obtained from G1 by relocating the branch H with root u from the

vertex i to j.

The next lemma explains how the first eigenvalue of a nonsingular weighted di-

rected graph changes by relocating an unweighted undirected branch.

Lemma 3.1. Let G = G1(j) ⋄ H(u) and G∗ = G1(i) ⋄ H(u), where G1 is a

nonsingular connected weighted directed graph, i, j are distinct vertices of G1, H is a

connected unweighted undirected graph, and u is a vertex of H. If there exists a first

eigenvector x of G such that |x(i)| ≥ |x(j)|, then λ1(G
∗) ≤ λ1(G). In particular, if

|x(i)| > |x(j)|, then the inequality is strict.

Proof. Let x be a first eigenvector of G such that |x(i)| ≥ |x(j)|. Without

loss of generality, we assume that x(i) is real. Let x̂ be the vector defined on the

vertices of G∗ such that x̂(v) = x(v) if v ∈ V (G1) and x̂(v) = |x(v)|+ x(i)− |x(j)| if
v ∈ V (H)− {u}. We observe that for v ∈ NH(u);

|x̂(v)− x̂(i)|2 = ||x(v)| − |x(j)||2 ≤ |x(v) − x(j)|2,
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for each other edge (v1, v2) of H ;

|x̂(v1)− x̂(v2)|2 = ||x(v1)| − |x(v2)||2 ≤ |x(v1)− x(v2)|2,

and for each edge (r, s) in G1;

|x̂(r)− wrsx̂(s)|2 = |x(r) − wrsx(s)|2.

Note that

x̂∗x̂ =
∑

v∈V (G1)

|x(v)|2 +
∑

v∈V (H)−{u}

||x(v)| + x(i)− |x(j)||2 ≥
∑

v∈V (G)

|x(v)|2 = x∗x.

Thus

λ1(G
∗) ≤ x̂∗L(G∗)x̂

x̂∗x̂
≤ x∗L(G)x

x∗x
= λ1(G). (3.1)

In particular, if |x(i)| > |x(j)|, then x̂∗x̂ > x∗x. In this case, we have a strict

inequality in equation (3.1), which implies λ1(G
∗) < λ1(G).

The next corollary explains how the first eigenvalue changes while relocating a

path.

Corollary 3.2. Let G = G1(j) ⋄ P (u) and G∗ = G1(i) ⋄ P (u), where G1

is a nonsingular connected weighted directed graph, i, j are distinct vertices of G1,

and P := u, u1, u2, . . . , uk is an unweighted undirected path. If there exists a first

eigenvector x of G such that 0 < |x(j)| ≤ |x(i)| then λ1(G
∗) < λ1(G).

Proof. Let x be a first eigenvector of G such that 0 < |x(j)| ≤ |x(i)|. Assume

that x∗x = 1. If |x(j)| < |x(i)|, then by Lemma 3.1, we have λ1(G
∗) < λ1(G). Next,

let 0 < |x(j)| = |x(i)|. Suppose that λ1(G
∗) = λ1(G). Define a vector y ∈ Cn as

y(v) = x(v) if v ∈ V (G1) and y(ul) = |x(ul)| for l = 1, . . . , k. Observe that y∗y = x∗x,

|y(i)− y(u1)|2 = ||x(i)| − |x(u1)||2 = ||x(j)| − |x(u1)||2 ≤ |x(j)− x(u1)|2,

|y(ul)− y(ul+1)|2 = ||x(ul)| − |x(ul+1)||2 ≤ |x(ul)− x(ul+1)|2, for l = 1, . . . , k − 1,

and for each edge (r, s) in G1;

|y(r)− wrsy(s)|2 = |x(r) − wrsx(s)|2.

Thus, λ1(G
∗) ≤ y∗L(G∗)y ≤ x∗L(G)x = λ1(G), which implies y is a first eigenvector

of G∗. By the eigenvector equation of y at the vertex j of G∗, we have

λ1(G
∗)y(j) = |NG1

(j)|y(j)−
∑

k∼j

akjy(k) = |NG1
(j)|x(j) −

∑

k∼j

akjx(k). (3.2)
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Again, by the eigenvector equation of x at the vertex j of G, we have

λ1(G)x(j) = (|NG1
(j)|+ 1)x(j) − x(u1)−

∑

k∼j

akjx(k)

= λ1(G
∗)y(j) + x(j)− x(u1), (using equation (3.2))

= λ1(G)x(j) + x(j) − x(u1).

Thus, x(j) = x(u1). By Theorem 2.6, |x(j)| < |x(u1)|, which is a contradiction.

Hence, the corollary holds.

The next theorem is one of our main results of this section. The result says that

replacing a branch which is a tree by a path on the same number of vertices will not

increase the first eigenvalue, while replacing the tree by a star on the same number

of vertices will not decrease the first eigenvalue.

Theorem 3.3. Let GT = G(u) ⋄T (v), GS = G(u) ⋄S(v) and GP = G(u) ⋄P (v),

where G is a nonsingular connected weighted directed graph with a vertex u, T is an

unweighted undirected tree on k vertices with a vertex v, k ≥ 2, S is an unweighted

undirected star on k vertices with the center v, and P is an unweighted undirected

path on k vertices with a pendent vertex v. Then λ1(GP ) ≤ λ1(GT ) ≤ λ1(GS).

Proof. Let v = v1, v2, . . . , vk be the vertices of T . Let x be a first eigenvector

of GT . Without loss of generality, we assume that x(u) is real and x(u) ≥ 0. By

Lemma 2.2 (i) and Theorem 2.5, the valuations of x on the vertices of T are all real

and nonnegative. We arrange the vertices of T in such a way that x(u) = x(vi1 ) ≤
x(vi2 ) ≤ · · · ≤ x(vik). Then

λ1(GT ) =
x∗L(GT )x

x∗x

=
1

x∗x

∑

(i,j)∈E(G)

|x(i)− wijx(j)|2 +
∑

{vi,vj}∈E(T )

[x(vi)− x(vj)]
2

≥ 1

x∗x

∑

(i,j)∈E(G)

|x(i)− wijx(j)|2 +
k−1
∑

j=1

[x(vij )− x(vij+1
)]2

=
x∗L(GP )x

x∗x
≥ λ1(GP ).

If T = S, then there is nothing to prove. Otherwise, there exists a pendent vertex

w of T adjacent to the vertex vi of T , where vi 6= v. Let GT ′ = G(u) ⋄ T ′(v),

where T ′ is the tree obtained from T by removing the edge between vi and w and

adding a new edge between v and w. Observe that GT ′ can be obtained from GT by

relocating a branch from vi to u. By Theorem 2.5, x(vi) ≥ x(u). Thus, by Lemma

3.1, λ1(GT ) ≤ λ1(GT ′). If GT ′ = GS , then we stop. Otherwise, we repeat the above

discussion and after a finite number of steps we have λ1(GT ) ≤ λ1(GS).
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The following example shows that the inequality in Theorem 3.3 need not be

strict if GT has a first eigenvector x with x(u) = 0.

Example 3.4. Consider the weighted directed graphs G′, H and H ′ as shown

below. Here the blue colored edges have weight −1 and the red colored edges have

weight 1. One can see that the Laplacian matrices of G′, H and H ′ are independent of

the orientations of their edges. Hence, orientations of the edges are not indicated in the

figures. Observe that the unweighted undirected branch T of G′ with root u is neither

a path nor a star, while the unweighted undirected branch of H and H ′ with root u is

a path and a star, respectively. Using the mathematical package MATLAB, we obtain

that G′ has a first eigenvector x with x(u) = 0 and λ1(H) = λ1(G
′) = λ1(H

′) ≈ 0.081.

b b b b

b b b b

b

b

b

b

b

b b

T

u

b b b b

b b b b

b

b

b

bbb bu

b b b b

b b b b

b

b

b

b

b

b

b

u

G′ H

H ′

Fig. 3.1. G′ = GT , H = GP and H′ = GS , for some G.

In view of Example 3.4, it is natural to ask: Whether the inequality in Theorem

3.3 is strict for GT , where T is neither a path nor a star, if GT has a first eigenvector

x with x(u) 6= 0? The following result answers this question in the affirmative.

Theorem 3.5. Let GT , GS and GP be the nonsingular weighted directed graphs

as described in the statement of Theorem 3.3. If GT has a first eigenvector x with

x(u) 6= 0, then λ1(GT ) = λ1(GP ) if and only if T = P , and λ1(GT ) = λ1(GS) if and

only T = S.

Proof. Assume that λ1(GT ) = λ1(GP ). If T 6= P , then T contains two vertices

i, j of degree 1, except v. Let Pvi and Pvj be the paths in T starting from v to i

and from v to j, respectively. While traversing from v along Pvi and Pvj , let i0 be

the last vertex common to both these paths, and let i1, j1 be the vertices next to

i0 in Pvi and Pvj , respectively. Consider the weighted directed graph H obtained

from GT by relocating the branch T0 + e from i0 to j1, where T0 is the component of

T − i0 containing i1 and e is the edge between i0 and i1. Since x(u) 6= 0, we see that

|x(i0)| < |x(j1)|, by Theorem 2.6. Thus, by Lemma 3.1, λ1(H) < λ1(GT ). Observe
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that H = G(u) ⋄ T ′(v), where T ′ is the tree obtained from T by removing the edge

e and adding a new edge between i1 and j1. So by Theorem 3.3, λ1(GP ) ≤ λ1(H),

which implies λ1(GP ) < λ1(GT ), a contradiction. Hence, T = P .

Assume that λ1(GT ) = λ1(GS). If T 6= S, then there exists a pendent vertex w of

T adjacent to a vertex vi other than v in T . Consider the graph GT ′ = G(u) ⋄ T ′(v),

where T ′ is the tree obtained from T by removing the edge between vi and w, and

adding a new edge between v and w. Since x(u) 6= 0, we have |x(u)| < |x(vi)|, by
Theorem 2.6. Observe that GT ′ can be obtained from GT by relocating an unweighted

undirected branch with root vi from vi to u. Thus, by Lemma 3.1, λ1(GT ) < λ1(GT ′ ).

By Theorem 3.3, λ1(GT ′ ) ≤ λ1(GS), which implies λ1(GT ) < λ1(GS), a contradiction.

Hence, T = S.

4. Applications. In this section, we discuss some applications of our results

obtained in Section 2 and Section 3. We apply these results to characterize the

nonsingular weighted directed graph minimizing the first eigenvalue in certain classes

of such graphs. We also prove that the first eigenvalue of the minimizing graph is

simple.

The next lemma is an immediate application of interlacing theorem (see [9]).

Lemma 4.1. Let G be a weighted directed graph on n vertices with an edge e.

Then λ1(G− e) ≤ λ1(G) ≤ λ2(G− e) ≤ λ2(G) ≤ · · · ≤ λn(G− e) ≤ λn(G).

Let G be a nonsingular connected weighted directed graph. By G(G,n) we denote

the class of all connected weighted directed graph on n vertices which contain G as

an induced subgraph. A weighted directed graph is said to be minimizing graph in a

certain class of nonsingular weighted directed graphs if its first eigenvalue attains the

minimum among all graphs in that class.

The following lemma is crucial for proving our main results of this section.

Lemma 4.2. Let G be a nonsingular connected weighted directed graph on vertices

1, . . . , k. Suppose that H is obtained from G by attaching a singular connected weighted

directed graph Gi at the vertex i of G by identifying a vertex ui of Gi with i, for each

i = 1, . . . , k. Then H is D-similar to DH such that all the edges of G1, . . . , Gk have

weight 1 in DH.

Proof. Let F be the set of edges in G such that G − F does not contain a

nonsingular cycle. Thus, the graph H ′ = H − F is singular. By Lemma 1.3, H ′ is

D-similar to the unweighted undirected graph DH ′ = DH − DF , where DF is the set

of edges in DH corresponding to F . Thus, the weights of all edges in Gi are 1 in DH ,

for each i = 1, . . . , k.
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The next theorem is one of our main results of this section, which characterizes

the weighted directed graph minimizing the first eigenvalue in G(G,n). The proof of

the following theorem is inspired by the proof of [11, Theorem 3.2].

Theorem 4.3. Let G be a nonsingular connected weighted directed graph on k

vertices. If G0 is a minimizing graph in G(G,n), then G0 = G(u) ⋄Pn−k+1(v), where

v is a pendent vertex of the path Pn−k+1 on n− k + 1 vertices.

Proof. Assume that G has the vertices 1, 2, . . . , k. Let H be a spanning subgraph

of G0 such that H is obtained from G by attaching a weighted directed tree Ti at

the vertex i of G by identifying the vertex ui of Ti with i, for each i = 1, . . . , k. By

Lemma 4.1, λ1(H) ≤ λ1(G0). So we have λ1(G0) = λ1(H), as G0 is a minimizing

graph in G(G,n). By Lemma 1.4, each Ti is singular for i = 1, . . . , k. Thus, H is

D-similar to DH such that all the edges of Ti have weight 1 in DH , by Lemma 4.2.

Note that λ1(
DH) = λ1(H) = λ1(G0).

We use T̂i to denote the unweighted undirected tree in DH corresponding to Ti

for each i = 1, . . . , k. Let x be a first eigenvector of DH . If x(i) = 0 for all i, 1 ≤ i ≤ k,

then by Lemma 2.2 (iii), each T̂i is a zero branch of DH for i = 1, . . . , k, which implies

x = 0, a contradiction. Thus, x(i0) 6= 0 for some i0, 1 ≤ i0 ≤ k. Now we claim that T̂j

is a trivial tree for each j with x(j) = 0, where 1 ≤ j ≤ k. Suppose that x(j) = 0 and

T̂j is a nontrivial tree. Let DH ′ be the weighted directed graph obtained from DH by

relocating T̂j from j to i0. Since |x(i0)| > 0 = |x(j)|, we see that λ1(
DH ′) < λ1(

DH),

by Lemma 3.1. Then λ1(H
′) < λ1(H) = λ1(G0), which contradicts that G0 is a

minimizing graph in G(G,n), as H ′ ∈ G(G,n). Hence, the claim holds.

We assert that T̂i must be a path with ui as one of its end vertices, for each i

with x(i) 6= 0. Otherwise, replacing such a tree T̂i on ni vertices by a path P̂ni
on ni

vertices, we obtain a graph DH ′′ with λ1(
DH ′′) < λ1(

DH), using Theorem 3.5. Thus,

λ1(H
′′) < λ1(G0), a contradiction, as H ′′ ∈ G(G,n).

Next, assume that there are two distinct paths P̂ni
and P̂nj

attached at i and

j with x(i) 6= 0, x(j) 6= 0, respectively. Without loss of generality, suppose that

|x(i)| ≥ |x(j)| > 0. Let DH0 be the graph obtained from DH by relocating the path P̂nj

from j to i. By Corollary 3.2, λ1(
DH0) < λ1(

DH) = λ1(G0). So, λ1(H0) < λ1(G0), a

contradiction, as H0 ∈ G(G,n). Thus, DH = Ĝ(u) ⋄ P̂n−k+1, where Ĝ is the induced

subgraph of DH corresponding to G and P̂n−k+1 = v, v1, . . . , vn−k is an unweighted

undirected path. Hence, H = G(u)⋄Pn−k+1(v), where Pn−k+1 is the weighted directed

path in H corresponding to the unweighted undirected path P̂n−k+1 in DH .

Finally, we prove that G0 = H . Consider the graphs DG0 and DH . Note that DH

is a spanning subgraph of DG0. Suppose that DH is a proper subgraph of DG0. Let
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y be a first eigenvector of DG0 with y∗y = 1. Then we have

λ1(
DG0) = y∗L(DG0)y = y∗L(DH)y +

∑

(i,j)∈E(DG0)rE(DH)

|y(i)− wijy(j)|2

≥ y∗L(DH)y ≥ λ1(
DH).

Since λ1(
DH) = λ1(

DG0), it follows that y is also a first eigenvector of DH and y(i) =

wijy(j), for each edge (i, j) ∈ E(DG0) r E(DH). Thus, |y(i)| = |y(j)|, for each edge

(i, j) ∈ E(DG0)rE(DH). Note that y(w) 6= 0 for some vertex w of Ĝ, as otherwise, by

Theorem 2.5, it is easy to see that y = 0, which is not possible. If y(u) = 0, then the

first eigenvalue of the graph DH1 obtained from DH by relocating P̂n−k+1 from u to

some other vertex w of Ĝ with y(w) 6= 0 is smaller than λ1(
DH), by Corollary 3.2. So,

λ1(H1) = λ1(
DH1) < λ1(

DH) = λ1(H) = λ1(G0), a contradiction, as H1 ∈ G(G,n).

Thus, y(u) 6= 0. So, by Theorem 2.6, |y(u)| < |y(v1)| < · · · < |y(vn−k)|. Since

any edge e ∈ E(DG0) r E(DH) has its end vertices in {u, v1, . . . , vn−k}, it follows

that |y(i)| 6= |y(j)| for any edge (i, j) ∈ E(DG0) r E(DH), a contradiction. Hence,
DG0 = DH , which implies that H = G0.

The next result says that the multiplicity of the first eigenvalue of the minimizing

graph in G(G,n) is one.

Theorem 4.4. Let G be a nonsingular connected weighted directed graph and let

G0 be the minimizing graph in G(G,n). Then the first eigenvalue of G0 is simple.

Proof. By Theorem 4.3, G0 is the weighted directed graph obtained from G by

attaching a weighted directed path P at a vertex u ofG by identifying u with a pendent

vertex v of P . Assume that there are two linearly independent first eigenvectors x

and y of G0. In view of the proof of Theorem 4.3, we see that the valuation of a first

eigenvector of G0 at the vertex u is nonzero. Thus, x(u) 6= 0, y(u) 6= 0. Consider the

vector z = αx + βy, where α = y(u), β = −x(u). Then z is a first eigenvector of G0

with z(u) = 0, which is a contradiction. Hence. the result holds.

Next we consider the class of nonsingular weighted directed graph with exactly

one nonsingular cycle and obtain the minimizing graph in that class.

The following lemmas are crucial in describing the structure of the weighted di-

rected graphs containing exactly one nonsingular cycle. The proofs of these lemmas

are essentially similar to those contained in [5], which describes the structure of the

3-colored digraphs (weighted directed graphs with edges having weights ±1, i) con-

taining exactly one nonsingular cycle, however, we supply them here for completeness.

Lemma 4.5. Let G be a connected weighted directed graph with exactly one non-

singular cycle C. Then G is D-similar to DG with all edges of weight 1 except one

edge on the cycle C.
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Proof. Let e be an edge on the cycle C in G. Take G′ = G − e. Since C is the

only nonsingular cycle in G, we see that G′ does not contain a cycle of weight other

than 1. Thus, G′ is singular, by Lemma 1.4. By Lemma 1.3, each edge in DG′ has

weight 1, for some D. Consider DG for this D. Note that all the edges in DG except

the edge corresponding to e have weight 1. Hence, the result holds.

Lemma 4.6. Let G be a weighted directed graph containing exactly one nonsin-

gular cycle C = [1, . . . ,m, 1]. Then the subgraph induced by C is C itself.

Proof. Suppose that C has a chord joining the vertices i and j with 1 ≤ i < j ≤ m.

Take the cycles C1 = [1, . . . , i, j, . . . ,m, 1] and C2 = [i, i + 1, . . . , j, i]. Note that

wC1
wC2

= wC 6= 1, which implies one of C1 and C2 has weight other than 1. Hence,

G contains at least two nonsingular cycles, which is a contradiction.

Lemma 4.7. Let G be a connected weighted directed graph with exactly one non-

singular cycle C. Let u be a vertex of G not on C. Then there is a vertex v on the

cycle C such that G− v is disconnected with at least two components, one containing

u and another containing the remaining vertices of C.

Proof. In view of Lemma 4.5, we assume that all the edges of G have weight

1 except an edge e on the cycle C. Since G is connected, let v be a vertex in the

cycle for which the distance d(v, u) is minimum. Let Puv be a shortest u-v-path in

G. Then the vertex v is on every u-w-path, for each vertex w in C. If not, suppose

G contains a u-w-path, say Puw which does not contain v, for some vertex w in C.

Let Pvw(e) be the v-w-path on the cycle C containing the edge e. Take the cycle

C′ = Puv + Pvw(e) + Puw. Note that wC′ 6= 1. So the cycle C′ is nonsingular, which

is a contradiction. Hence, G − v is disconnected with at least two components, one

containing u and another containing the remaining vertices of C.

The next lemma characterizes the structure of connected weighted directed graphs

containing exactly one nonsingular cycle.

Lemma 4.8. Let G be a connected weighted directed graph. Then the following

statements are equivalent.

(a) G has exactly one nonsingular cycle C = [1, . . . ,m, 1].

(b) G is obtained from a nonsingular cycle C = [1, . . . ,m, 1] by appending a

connected unweighted undirected graph Gi to the vertex i of C while identifying

a vertex of Gi with i, for each i = 1, . . . ,m.

Proof. First we assume that G has exactly one nonsingular cycle C = [1, . . . ,m, 1].

By Lemma 4.6, the subgraph induced by C is C itself. In view of Lemma 4.7, for

each i = 1, . . . ,m, let Gi = G − V (Hi), where Hi is the component of G − i, which

contains the remaining vertices of C. As Gi does not contain a nonsingular cycle, Gi
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is singular, for each i = 1, . . . ,m. Hence, (a)⇒(b) holds. (b)⇒(a) is trivial.

As an application, we obtain the following result, which characterizes the weighted

directed graph minimizing the first eigenvalue among all nonsingular weighted directed

graphs with exactly one nonsingular cycle C of fixed length.

Theorem 4.9. Among all nonsingular weighted directed graph on n vertices

with exactly one nonsingular cycle C of length k, the first eigenvalue is minimized by

the nonsingular unicyclic weighted directed graph obtained from the path Pn−k+1 by

attaching the cycle C to one of the pendent vertex of Pn−k+1.

Proof. By Lemma 4.8, we see that the class of all nonsingular weighted directed

graphs on n vertices with exactly one nonsingular cycle C of length k is a subclass of

G(C, n). Hence, proof of the theorem follows immediately from Theorem 4.3.
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