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Abstract. In this note, the existence of orthogonal ∗-basis of the symmetry classes of poly-

nomials is discussed. Analogously to the orthogonal ∗-basis of symmetry classes of tensor, some

criteria for the existence of the basis for finite groups are provided. A condition for the existence of

such basis of symmetry classes of polynomials associated to symmetric groups and some irreducible

characters is also investigated.
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1. Introduction. One of the classical areas of algebra, the theory of symmetric

polynomials is well-known because of its role in branches of algebra, such as Galois

Theory, representation theory and algebraic combinatorics. For a review of the theory

of symmetric polynomials, one can see the book of Macdonald, [6]. The relative

symmetric polynomials as a generalization of symmetric polynomials are introduced

by M. Shahryari in [11]. In fact, he used the idea of symmetry classes of tensors to

introduce such notions.

One of the most interesting topics about symmetry classes of tensors is the issues

of finding a necessary condition for the existence of an orthogonal ∗-basis for the

symmetry classes of tensors associated with a finite group and an irreducible char-

acter. Many researchers pay a lot of attention to investigate condition stated above.

For example, M.R. Pournaki, [8], gave such a necessary condition for the irreducible

constituents of the permutation character of the finite groups in which he extended

a result of R.R. Holmes, [2]. Also, M. Shahryari provided an excellent condition for

the existence of such basis in [10]. Furthermore, the existence of the special basis for

particular groups have been discussed by many authors, see, for example, [3, 4, 13].

Similar questions concerning about the existence of an orthogonal ∗-basis arise in the

context of relative symmetric polynomials as well, see, for example [9, 14, 15]. The

general criterion is still an open problem, [11].
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In this article, we provide some criteria for the existence of the special basis of

symmetry classes of polynomials for finite groups and some corresponding permuta-

tion characters which are parallel to those of M.R. Pournaki in [8], R.R. Holmes in

[2] and M. Shahryari in [10]. We also investigate some condition for the existence of

such basis of symmetry classes of polynomials associated to symmetric groups and

some irreducible characters, which are similar to the results of Y. Zamani in [12].

2. Notations and background. Let G be a subgroup of the full symmetric

group Sm and χ be an irreducible character of G. Let Hd[x1, . . . , xm] be the com-

plex space of homogenous polynomials of degree d with the independent commuting

variables x1, . . . , xm. Let Γ+
m,d be the set of all m-tuples of non-negative integers

α = (α1, . . . , αm), such that
∑m

i=1 αi = d. For any α ∈ Γ+
m,d, let X

α be the monomial

xα1

1 xα2

2 · · ·xαm
m . Then the set {Xα|α ∈ Γ+

m,d} is a basis of Hd[x1, . . . , xm]. An inner

product on Hd[x1, . . . , xm] is defined by

〈Xα, Xβ〉 = δα,β . (2.1)

The group G, as a subgroup of the full symmetric group Sm, acts on Hd[x1, . . . , xm]

by (for σ ∈ G),

qσ(x1, . . . , xm) = q(xσ−1(1), . . . , xσ−1(m)).

It also acts on Γ+
m,d by

σα = (ασ(1), . . . , ασ(m)).

Let ∆ be a set of representatives of orbits of Γ+
m,d under the action of G. Now consider

the symmetrizer associated with G and χ

T (G,χ) =
χ(1)

|G|
∑

σ∈G

χ(σ)σ. (2.2)

It is well known that T (G,χ)2 = T (G,χ) and T (G,χ)∗ = T (G,χ). The image of

Hd[x1, . . . , xm] under the map T (G,χ) is called the symmetry class of polynomials of

degree d with respect to G and χ and it is denoted by Hd(G;χ).

For any q ∈ Hd[x1, . . . , xm],

q∗χ = T (G,χ)(q)

is called a symmetrized polynomial with respect to G and χ. Note that

Hd(G;χ) = 〈Xα,∗
χ ;α ∈ Γ+

m,d〉.
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We write Xα,∗ instead of Xα,∗
χ unless it is necessary to avoid confusion.

Definition 2.1. An orthogonal ∗-basis (o-basis, for short) of a subspace U of

Hd(G;χ) is an orthogonal basis of U of the form {Xα1,∗, Xα2,∗, . . . , Xαt,∗} for some

αi ∈ Γ+
m,d.

Since the set {T (G,χ) : χ ∈ Irr(G)} is a complete set of orthogonal idempotents,

where Irr(G) is the set of irreducible complex characters of G, we have the following

orthogonal direct sum decomposition (cf. Remark 2.3 in [11])

Hd[x1, . . . , xm] =
⊕

χ∈Irr(G)

Hd(G;χ). (2.3)

Note that Xα,∗ is a generator of Hd(G;χ) if X
α,∗ 6= 0, which can be checked from

(χ, 1)Gα
, where (χ, φ)K is the inner product of characters χ and φ of an arbitrary

group K, i.e. (χ, φ)K = 1
|K|

∑

σ∈K χ(σ)ψ(σ−1). Namely, (see, [9, 11]),

Xα,∗ 6= 0 if and only if (χ, 1)Gα
6= 0. (2.4)

Also, for the induced inner product on Hd(G;χ), we have (see, [9, 11]).

〈Xσ1α,∗, Xσ2β,∗〉 =
{

0, if α /∈ Orb(β) ;
χ(1)
|G|

∑

σ∈σ2Gασ
−1

1

χ(σ), if α = β,
(2.5)

where Orb(β) is the orbit of β in Γ+
m,d under the action of G. Then the norm of Xα,∗,

with respect to the induced inner product, is given by

‖ Xα,∗ ‖2= χ(1)
(χ, 1)Gα

[G : Gα]
. (2.6)

According to (2.4), let Ω = {α ∈ Γ+m,d : (χ, 1)Gα
6= 0}. Since

Hd[x1, . . . , xm] =
⊕

α∈∆

〈Xσα : σ ∈ G〉,

we have the orthogonal direct sum

Hd(G;χ) =
⊕

α∈∆

Hα,∗
d (χ), (2.7)

where ∆ = ∆ ∩ Ω and Hα,∗
d (χ) = 〈Xσα,∗|σ ∈ G〉. The dimension of Hα,∗

d (χ) can be

calculated by using Freese’s Theorem (see, e.g. [1], [9])

dimHα,∗
d (χ) = χ(1)(χ, 1)Gα

=
χ(1)

|Gα|
∑

σ∈Gα

χ(σ). (2.8)
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As an immediate consequence of (2.7) and (2.8),

dimHd(G;χ) = χ(1)
∑

α∈∆

(χ, 1)Gα
. (2.9)

In particular, if χ is linear, then the set {Xα,∗ : α ∈ ∆} is an orthogonal basis of

Hd(G;χ) and dimHd(G;χ) = |∆|. Thus, the orthogonal ∗-basis for Hd(G;χ) exists

for any abelian group G.

3. Main criteria. According to the notations in the previous section, Hd(G;χ)

denotes the relative symmetry classes of polynomials of degree d with respect to G

and χ. This class is equipped with the induced inner product as in (2.5). Let Λ be

a set of m elements. Suppose G acts faithfully on Λ. So, we consider {fσ | σ ∈ G}
as the group G, where fσ : Λ → Λ defined by fσ(λ) = σ · λ, for all λ ∈ Λ. Namely,

G can be viewed as a subgroup of Sm in this way. We also denote the permutation

character of G by θ. It is well known that θ(σ) = |{λ ∈ Λ | σ · λ = λ}|, for each

σ ∈ G. The similar criterion as in the main theorem of [8] is shown below.

Theorem 3.1. Let G be a finite group and let Λ be a set of m elements, m > 1.

Assume that G acts transitively and faithfully on Λ. Let χ be an irreducible constituent

of permutation character θ of G. If χ(1)(χ, θ)G > m
2 , then Hd(G;χ) does not have

an orthogonal ∗-basis.

Proof. Suppose Hd(G;χ) has an orthogonal ∗-basis. Then, by (2.7), Hα,∗
d (χ) has

an o-basis for each α ∈ ∆. We now consider α = (d, 0, 0, . . . , 0) ∈ Γ+
m,d and choose

∆ to be the set of representatives of orbits of Γ+
m,d under the action of G in which

α ∈ ∆. We can assume without loss of generality that Λ = {1, 2, . . . ,m} and thus

Gα = G1, where Gα refers to the stabilizer subgroup of α (when G acts on Γ+
m,d) and

G1 refers to the stabilizer subgroup of 1 (when G acts on Λ). Since G acts transitively

on Λ, (1Gα
)G = (1G1

)G = θ, by Lemma 5.14 of [5]. Hence, by (2.8) and Frobenius

reciprocity, we have that

∑

σ∈Gα

χ(σ) = |Gα|(χ, 1Gα
)Gα

= |Gα|(χ, (1Gα
)G)G

= |Gα|(χ, θ)G.

Since χ is an irreducible constituent of permutation character θ of G, (χ, θ)G 6= 0 and
∑

σ∈Gα
χ(σ) 6= 0. Thus α ∈ ∆. So, Hα,∗

d (χ) has an o-basis.

By orbit-stabilizer theorem and transitive action of G on Λ, we have that m =

|Λ| = Orb(1) = [G : G1] = [G : Gα]. So, G =
⋃m

i=1 σiGα, where {σ1, σ2, . . . , σm} is a
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system of distinct representatives of left cosets of Gα in G. Let

dimHα,∗
d (χ) =

χ(1)

|Gα|
∑

σ∈Gα

χ(σ) = χ(1)(χ, θ)G := t.

We can assume that {Xσ1α,∗, Xσ2α,∗, . . . , Xσtα,∗} is an o-basis for Hα,∗
d (χ). Define

the m × m complex matrix D = [Dij ] by Dij := 〈Xσiα,∗, Xσjα,∗〉. Note that D is

idempotent. In fact,

(D)2ij =
m∑

k=1

DikDkj

=

m∑

k=1

〈Xσiα,∗, Xσkα,∗〉〈Xσkα,∗, Xσjα,∗〉

=
m∑

k=1




χ(1)

|G|
∑

σ∈σkGασ
−1

i

χ(σ)








χ(1)

|G|
∑

τ∈σjGασ
−1

k

χ(τ)





=
χ(1)2

|G|2
m∑

k=1

∑

σ∈Gα

∑

τ∈Gα

χ(σkσσ
−1
i )χ(σjτσ

−1
k )

=
χ(1)2

|G|2
m∑

k=1

∑

λ∈σkGα

∑

µ∈Gασ−1

k

χ(λσ−1
i )χ(σjµ).

Now, let µλ = δ ∈ Gα. Then µ = δλ−1 and we have

(D)2ij =
χ(1)2

|G|2
m∑

k=1

∑

λ∈σkGα

∑

δ∈Gα

χ(λσ−1
i )χ(σjδλ

−1)

=
χ(1)

|G|
∑

δ∈Gα

(

χ(1)

|G|
∑

λ∈G

χ(λσ−1
i )χ(σjδλ

−1)

)

=
χ(1)

|G|
∑

δ∈Gα

(

χ(1)

|G|
∑

σ∈G

χ(σ)χ(σjδσ
−1
i σ−1)

)

.

By orthogonal relations of irreducible character, we have

(D)2ij =
χ(1)

|G|
∑

δ∈Gα

χ(σjδσ
−1
i ),

which shows that D2 = D.

We note that m = θ(1) =
∑

χ∈Θ χ(1)(χ, θ), where Θ is the set of all irreducible

constituents of the permutation character θ. Since m > 1, |Θ| > 1 and hence m > t.

We can now write D in the form
[
D1 D2

D3 D4

]

,
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where D1, D2, D3 and D4 are matrices of sizes t × t, t × (m − t), (m − t) × t and

(m − t) × (m − t) respectively. On the matrix D1, we have, by (2.5), that, for

1 ≤ i, j ≤ t,

(D1)ij = 〈Xσiα,∗, Xσjα,∗〉 =
{

0, if i 6= j;
χ(1)
|G|

∑

σ∈Gα
χ(σ), if i = j

=

{
0, if i 6= j;
t
m
, if i = j

=

(
t

m
It

)

ij

,

where It is the t× t identity matrix. So, D =

[ (
t
m

)
It D2

D3 D4

]

. Now, using D2 = D,

we get

D2D3 =

(
t

m
− t2

m2

)

It.

Since t < m,
(

t
m

− t2

m2

)

6= 0 and hence D2D3 is invertible. This means that if

Hα,∗
d (χ) has an o-basis, then

t = rankD2D3 ≤ min{rankD2, rankD3} ≤ min{t,m− t} ≤ m− t.

Therefore, if χ(1)(χ, θ)G = t > m
2 , then Hd(G;χ) does not have an orthogonal ∗-basis,

by (2.7).

We also obtain a similar results of Holmes in [2].

Corollary 3.2. (cf. [2, 8]) Let G be a 2-transitive subgroup of Sm, m > 2. Let

χ = θ− 1G, where θ is the permutation character of G. Then Hd(G;χ) does not have

an orthogonal ∗-basis.

Proof. Note that G has a canonical transitive an faithful action on the set Λ =

{1, 2, . . . ,m}, given by σ · i := σ(i) for each σ ∈ G ≤ Sm and i ∈ Λ. Since G acts

2-transitively on Λ with permutation character θ, by Corollary 5.17 in [5], χ = θ− 1G
is an irreducible constituent of θ. We compute that

χ(1)(χ, θ)G = χ(1)(θ − 1G, θ)G = χ(1)[(θ, θ)G − (θ, 1G)G] = χ(1)[2− 1] = m− 1.

Since m > 2, m − 1 > m
2 and hence χ(1)(χ, θ)G > m

2 . Thus, by Theorem 3.1, the

result follows.

Example 3.1. (cf. [8]) Let G = Λ = A4 be the alternating group of degree 4. We

know that G acts transitively and faithfully on Λ by left multiplication. Then we can

view G as a subgroup of S12. Note that G has an irreducible character, χ, of degree 3

and the permutation character θ of G is regular. Thus χ is an irreducible constituent

of θ of multiplicity 3. Hence, χ(1)(χ, θ)G = 9 > 12
2 = |Λ|

2 and then Hd(A4;χ) does
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not have an orthogonal ∗-basis, by Theorem 3.1. In this example, however, the action

G on Λ is not 2-transitive.

By using the same technique as in the proof of Theorem 3.1, we also obtain an

analogous criterion of Shahryari in [10].

Theorem 3.3. Let G be a permutation group of degree m and χ be a non-linear

irreducible character of G. If there is α ∈ Γ+
m,d such that

√
2

2
<‖ Xα,∗

χ ‖< 1,

then Hd(G;χ) does not have an orthogonal ∗-basis.

Proof. Let α ∈ Γ+
m,d. Suppose the orbit of α under the action of G is Orb(α) =

{σ1α, σ2α, . . . , σrα}. Then, by orbit-stabilizer theorem, r = [G : Gα] and G =
⋃r

i=1 σiGα is a partition. Now, we construct r × r matrix D = [Dij ] by Dij :=

〈Xσiα,∗, Xσjα,∗〉 which is idempotent as before. Next, suppose χ is a non-linear irre-

ducible character of G and α ∈ ∆ and assume also that {Xσ1α,∗, Xσ2α,∗, . . . , Xσtα,∗}
is an o-basis for Hα,∗

d (χ) in which t < r, where t = dimHα,∗
d (χ). So, the matrix D

has the block partition form

D =

[ (
t
r

)
It D2

D3 D4

]

,

where D2, D3 and D4 are matrices of sizes t× (r− t), (r − t)× t and (r − t)× (r − t)

respectively. By the same arguments as in the proof of Theorem 3.1, we reach to the

conclusion that t ≤ r − t or t ≤ r
2 . Thus if t < r and t > r

2 , then H
α,∗
d (χ) does not

have o-basis. Substituting r = [G : Gα], t = χ(1)(χ, 1)Gα
in the inequality r

2 < t < r

and using (2.6) and (2.7), the result follows.

4. Symmetric groups. It is well known that there is a standard one-to-one

correspondence between the complex irreducible characters of the symmetric group

Sm and the partitions of m. Here, a partition π of m of length t, denoted by π ⊢ m,

means an unordered collection of t positive integers that sum to m. In this article,

we use the same symbol to denote an irreducible character of Sm and the partition

of m corresponding to it. Typically, we represent the partition by a sequence π =

[π1, π2, . . . , πt] in which π1 ≥ π2 ≥ · · · ≥ πt > 0. A partition π = [π1, π2, . . . , πt] is

usually represented by a collection ofm boxes arranged in t rows such that the number

of boxes of row i is equal to πi, for i = 1, 2, . . . , t. This collection is called the Young

diagram associated with π and denoted by [π]. The Young subgroup corresponding

to π ⊢ m is the internal direct product

Sπ = Sπ1
× Sπ2

× · · · × Sπt
.
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We write 1Sπ
= 1π for the principle character of Sπ. Note that 1

Sm
π is a character

of Sm, so there must exist integers Kµ,π such that

1Sm
π =

∑

µ⊢m

Kµ,πµ.

The numbers Kµ,π =
(
1Sm
π , µ

)

Sm
are called Kostka coefficients. By Corollary 4.54 in

[7], the Kostka coefficient Kπ,π = 1 for all π ⊢ m.

For each ordered pair (i, j), 1 ≤ i ≤ t, 1 ≤ j ≤ πi, there is corresponding a box,

Bij , in Young diagram [π]. Each Bij determines a unique hook in [π] consisting of

Bij itself, all the boxes in row i of [π] to the right of Bij and all boxes in column j of

[π] below Bij . The hook length,

hij := (πi − i) + (π′
j − j) + 1,

where π′
j := |{k ∈ {1, 2, . . . , t}|πk ≥ j}| (a j part of conjugate partition of π), is

the number of boxes in the hook determined by Bij . By the Frame-Robinson-Thrall

Hook Length Formula (see, e.g., Theorem 4.60 in [7]), if π is a partition of m, then

the degree of the irreducible character of Sm corresponding to π = [π1, π2, . . . , πt] is

π(1) =
m!

∏t
i=1

∏πi

j=1 hij
. (4.1)

As a consequence of Theorem 3.3, we have an analogous result of Y. Zamani in

[12].

Theorem 4.1. Let π be an irreducible character of Sm of the cycle type;

I. π = [m− l, l], d ≡ 0 mod l, d 6= 0 such m ≥ 3l, or

II. π = [m− l, l− 1, 1], d ≡ r mod l, 0 < r < l, l > 2, d 6= r such m > 3l+ 4
l−2 .

Then Hd(Sm;π) does not have an orthogonal ∗-basis.

Proof. For the form I, we set α = (0, 0, . . . , 0
︸ ︷︷ ︸

m−l

, k, k, . . . , k
︸ ︷︷ ︸

l

), where k = d
l
. Then

α ∈ Γ+
m,d. Under the action of Sm on Γ+

m,d, we choose a system ∆ of representatives

such that α ∈ ∆. Since d 6= 0, k 6= 0 and

(Sm)α ∼= Sm−l × Sl = Sπ,

where (Sm)α is the stabilizer subgroup of α and Sπ is the Young subgroup corre-
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sponding to π ⊢ m. Hence, by Frobenius Reciprocity Theorem,

1

|(Sm)α|
∑

σ∈(Sm)α

π(σ) =
(
π, 1(Sm)α

)

(Sm)α

= (π, 1π)Sπ

=
(
π, 1Sm

π

)

Sm

=



π,
∑

µ⊢m

Kµ,πµ





Sm

=
∑

µ⊢m

Kµ,π (π, µ)Sm

= Kµ,µ = 1 6= 0.

This yields α ∈ ∆ and, moreover, by (2.8), that

dimHα,∗
d (π) =

π(1)

|(Sm)α|
∑

σ∈(Sm)α

χ(σ) = π(1).

Now, we compute the product of the hook lengths of [π] which we get

2∏

i=1

πi∏

j=1

hij = (m− l + 1)(m− l) · · · (m− 2l+ 2)(m− 2l) · · · (2)(1)l(l − 1) · · · (2)(1)

=
(m− l + 1)!l!

(m− 2l+ 1)
.

Hence, by (4.1),

dimHα,∗
d (π) = π(1) =

(m− 2l + 1)m!

(m− l + 1)!l!
.

Now, using (2.6), we have

‖ Xα,∗ ‖2= dimHα,∗
d (π)

[Sm : (Sm)α]
=
m− 2l+ 1

m− l + 1
.

Hence, 1
2 <‖ Xα,∗ ‖2< 1 if and only if m ≥ 3l. Thus, the result for the first form

follows from Theorem 3.3.

For the form II, π = [m − l, l − 1, 1], we set α = (0, 0, . . . , 0
︸ ︷︷ ︸

m−l

, k, k, . . . , k
︸ ︷︷ ︸

l−1

, k + r),

where k = d−r
l
. Then α ∈ Γ+

m,d. Under the action of Sm on Γ+
m,d, we choose a system

∆ of representatives such that α ∈ ∆. Since d 6= r 6= 0, k 6= 0 and k + r 6= k and

hence

(Sm)α ∼= Sm−l × Sl−1 × S1 = Sπ.
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By the same arguments as the first form, we conclude that dimHα,∗
d (π) = π(1). For

the products of the hook lengths, we compute that

3∏

i=1

πi∏

j=1

hij = (m− l + 2)(m− l) · · · (m− 2l+ 3)(m− 2l+ 1) · · · (1)l(l− 2)(l − 3) · · · (1)

=
(m− l + 2)!l!

(m− l + 1)(m− 2l+ 2)(l − 1)
.

Then

dimHα,∗
d (π) = π(1) =

(m− l + 1)(m− 2l+ 2)(l − 1)m!

(m− l + 2)!l!
.

Now, using (2.6) again, we have

‖ Xα,∗ ‖2= dimHα,∗
d (π)

[Sm : (Sm)α]
=

(m− 2l+ 2)(l − 1)

(m− l + 2)(l)
.

It is now easy to show that 1
2 <‖ Xα,∗ ‖2< 1 if and only if m > 3l + 4

l−2 , because

l > 2. The result for the second form follows from Theorem 3.3.

Acknowledgment. The author is grateful to the anonymous referees and Pro-

fessor Tin-Yau Tam for their recommendations, and would like to thank Naresuan

University for financial support on the project R2558C030.

REFERENCES

[1] R. Freese. Inequalities for generalized matrix functions based on arbitrary characters. Linear

Algebra and its Applications, 7:337–345, 1973.

[2] R.R. Holmes Orthogonal bases of symmetrized tensor spaces. Linear and Multilinear Algebra,

39:241–243, 1995.

[3] R.R. Holmes and T.Y. Tam. Symmetry classes of tensors associated with certain groups. Linear

and Multilinear Algebra, 32:21–31, 1992.

[4] M. Hormozi and K.Rodtes. Symmetry classes of tensors associated with the Semi-Dihedral

groups SD8n. Colloquium Mathematicum, 131:59–67, 2013.

[5] I.M. Isaacs. Character Theory of Finite Groups. Academic Press, New York, 1976.

[6] I.G. Macdonald. Symmetric Functions and Orthogonal Polynomials. American Mathematical

Society, 1998.

[7] R. Merris. Multilinear Algebra. Gordon and Breach Science Publishers, Amsterdam, 1997.

[8] M.R. Pournaki. On the orthogonal basis of the symmetry classes of tensors associated with

certain characers. Linear Algebra and its Applications, 336:255–260, 2001.

[9] K. Rodtes. Symmetry classes of polynomials associated to the Semidihedral group and o-bases.

Journal of Algebra and its Applications, 13(8):1450059, 2014.

[10] M. Shahryari. On the orthogonal basis of symmetry classes. Journal of Algebra, 220:327–332,

1999.

[11] M. Shahryari. Relative symmetric polynomials. Linear Algebra and its Applications, 433:1410–

1421, 2010.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 160-170, May 2015



ELA

170 Kijti Rodtes

[12] Y. Zamani. On the special basis of certain full symmetry class of tensors. Pure Mathematics

and Applications, 18(3/4):357–363, 2007.

[13] Y. Zamani and E. Babaei. The dimensions of cyclic symmetry classes of polynomials. Journal

of Algebra and its Applications, 132:1350085, 2014.

[14] Y. Zamani and E. Babaei. Symmetry classes of polynomials associated with the dicyclic group.

Asian-European Journal of Mathematics, 63:1350033, 2013.

[15] Y. Zamani and E. Babaei. Symmetry classes of polynomials associated with the dihedral group.

Bulletin of the Iranian Mathematical Society, to appear.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 160-170, May 2015


