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THE DIRICHLET SPECTRAL RADIUS OF TREES∗

GUANG-JUN ZHANG† AND WEI-XIA LI‡

Abstract. In this paper, the trees with the largest Dirichlet spectral radius among all trees

with a given degree sequence are characterized. Moreover, the extremal graphs having the largest

Dirichlet spectral radius are obtained in the set of all trees of order n with a given number of pendant

vertices.
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1. Introduction. In this paper, we only consider simple connected graphs. Let

G = (V (G), E(G)) be a graph of order n with vertex set V (G) = {v0, v1, . . . , vn−1}

and edge set E(G). Let d(v) denote the degree of a vertex v. Then π(G) =

(d(v0), d(v1), . . . , d(vn−1)) is called the degree sequence of G. A sequence of posi-

tive integers π = (d0, d1, . . . , dn−1) is said to be a tree degree sequence if there exists

at least one tree whose degree sequence is π. The Laplacian matrix of G is de-

fined as L(G) = D(G) − A(G), where D(G) and A(G) denote the diagonal matrix

of vertex degrees and the adjacency matrix of G, respectively. Let Tπ be the set

of all the trees with a given degree sequence π, where π = (d0, d1, . . . , dn−1) satis-

fies d0 ≥ d1 ≥ · · · ≥ dn−1. The adjacency eigenvalues and Laplacian eigenvalues of

graphs have been intensively investigated during the last decades. Bıyıkoğlu et al. [1]

and Zhang [12] determined all graphs with the maximal spectral radius and Laplacian

spectral radius among all trees with a given degree sequence, respectively. Tan [10] de-

termined the trees with the largest Laplacian spectral radius among all weighted trees

with a given degree sequence and positive weight set. A graph G = (V0∪∂V,E0∪∂E)

with boundary consists of a set of interior vertices V0, boundary vertices ∂V , interior

edges E0 that connect interior vertices, and boundary edges ∂E that join interior ver-

tices with boundary vertices (see [7]). A real number λ is called a Dirichlet eigenvalue

of G if there exists a function f 6= 0 such that they satisfy the Dirichlet eigenvalue
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problem:

{

L(G)f(u) = λf(u), u ∈ V0,

f(u) = 0, u ∈ ∂V.

The function f is called a Dirichlet eigenfunction corresponding to λ (see [7]). The

largest Dirichlet eigenvalue of G is called Dirichlet spectral radius, denoted by λ(G).

Recently, there is an increasing interest in the Dirichlet eigenvalues of graphs (see

[2], [3] and [7]), since it can be regarded to be analogous to the Dirichlet eigenvalues

of Laplacian operator on a manifold. The related eigenvalue problems have been

occasionally occurred in fields like game theory [4], network analysis [5], and Pattern

Recognition [8]. In this paper, we regard pendant vertices as boundary vertices and

assume that both the set V0 and the set ∂V are not empty. Motivated by the above

results, we will study the Dirichlet spectral radius of graphs in Tπ . The main result

of this paper is as follows:

Theorem 1.1. For a given tree degree sequence π, T ∗
π (see in Section 3) is the

unique tree with the largest Dirichlet spectral radius in Tπ.

The rest of the paper is organized as follows. In Section 2, some notations and

results are presented. In Section 3, we present the proof of Theorem 1.1 and some

corollaries.

2. Preliminaries. Let RG(f) be the Rayleigh quotient of Laplace operator L

on real-valued function f on V (G), where

RG(f) =
< Lf, f >

< f, f >
=

∑

uv∈E

(f(u)− f(v))2

∑

v∈V

f2(v)
.

Let F denote the set of all real-valued functions f on V (G) with f(u) = 0 for

any boundary vertex u. The following proposition states a well-known fact about the

Rayleigh quotients.

Proposition 2.1. For a graph G = (V0 ∪ ∂V,E0 ∪ ∂E) with boundary, we have

λ(G) = max
f∈F

RG(f) = max
f∈F

< Lf, f >

< f, f >
.

Moreover, if RG(f) = λ(G) for a function f ∈ F , then f is a Dirichlet eigenfunction

of λ(G).

Let Q(G) = D(G)+A(G) be the signless Laplacian matrix of G and its Rayleigh
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quotient is denoted by

∆G(f) =
< Qf, f >

< f, f >
=

∑

uv∈E

(f(u) + f(v))2

∑

v∈V

f2(v)
.

A real number µ is called a signless Dirichlet eigenvalue of G if there exists a

function f 6= 0 on V (G) such that for u ∈ V (G),
{

Q(G)f(u) = µf(u), u ∈ V0,

f(u) = 0, u ∈ ∂V.

The largest signless Dirichlet eigenvalue of Q(G), denoted by µ(G), is called the sign-

less Dirichlet spectral radius. The function f is called a signless Dirichlet eigenfunction

of µ(G). Then we have the following

Proposition 2.2. For a graph G = (V0 ∪ ∂V,E0 ∪ ∂E) with boundary we have

µ(G) = max
f∈F

∆G(f) = max
f∈F

< Qf, f >

< f, f >
.

Moreover, if ∆G(f) = µ(G) for a function f ∈ F , then f is a signless Dirichlet

eigenfunction of µ(G).

A discrete signless Dirichlet operator Q0(G) of a graph G is the signless Laplacian

matrix Q(G) restricted to interior vertices, i.e., L0(G) = D0(G)+A0(G), where A0(G)

is the adjacency matrix of the graph G(V0, E0) induced by the interior vertices and

D0(G) is the degree diagonal matrix D(G) restricted to the interior vertices V0(G).

Note that Q0(G) is a irreducible nonnegative symmetric matrix. By the Perron-

Frobenius Theorem, we have the following lemma.

Lemma 2.3. Let G be a tree. Then the signless Dirichlet spectral radius µ(G)

of G is positive. Moreover, if f is a signless Dirichlet eigenfunction of µ(G), then

f(v) > 0 for all v ∈ V0(G) or f(v) < 0 for all v ∈ V0(G).

Let f be a unit eigenvector of µ(G). We call f a Dirichlet Perron vector of G if

f(v) > 0 for any v ∈ V0(G).

Lemma 2.4. Let G be a tree. Then λ(G) = µ(G).

Proof. Without loss of generality, assume that G = (V1, V2, E(G)) is a tree

with bipartition V1 and V2. Let f be Dirichlet Perron vector of G. Define f1(x) =

sign(x)f(x), where sign(x) = 1 if x ∈ V1 and sign(x) = −1 if x ∈ V2. Then we have

µ(G) = ∆G(f) =
∑

uv∈E

(f(u) + f(v))2 =
∑

uv∈E

(f1(u)− f1(v))
2 = RG(f1) ≤ λ(G).

The condition λ(G) ≤ µ(G) follows analogously.
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3. The trees with the largest Dirichlet spectral radius in Tπ. In this

section, we will characterize the trees with the largest Dirichlet spectral radius in

Tπ. Let G + uv (resp. G − uv) denote the graph obtained from G by adding (resp.

deleting) an edge uv in G. The following lemmas will be used in our proof.

Lemma 3.1. (See also [12]) Let T ∈ Tπ and uv, xy ∈ E(T ) such that v and

y are not in the path from u to x. Let f be the Dirichlet Perron vector of T and

T ′ = T − uv − xy + uy + xv. Then T ′ ∈ Tπ and λ(T ′) ≥ λ(T ) if f(u) ≥ f(x) and

f(y) ≥ f(v). Moreover, λ(T ′) > λ(T ) if one of the two inequalities is strict.

Proof. Let f be the Dirichlet Perron vector of T . Clearly, T ′ ∈ Tπ. Then we have

λ(T ′)− λ(T ) ≥ ∆T ′(f)−∆T (f)

= (f(u) + f(y))2 + (f(x) + f(v))2 − (f(u) + f(v))2 − (f(x) + f(y))2

= 2(f(u)− f(x))(f(y)− f(v))

≥ 0.

If λ(T ′) = λ(T ), then f also must be a signless Dirichlet eigenfunction of λ(T ′). By

λ(T )f(u) =
∑

z,zu∈E(T )\{uv}
(f(u) + f(z)) + (f(u) + f(v))

= λ(T ′)f(u)

=
∑

z,zu∈E(T )\{uv}
(f(u) + f(z)) + (f(u) + f(y)),

we have f(y) = f(v). Similarly, we have f(u) = f(x). So, the assertion holds.

Let dist(v) denote the distance between v and v0, where v0 is the root of G. We

call y a child of x and x the parent of y, if xy ∈ E(G) with dist(y) = dist(x) + 1.

Lemma 3.2. Let T = (V0 ∪ ∂V,E0 ∪ ∂E) be a tree with the largest Dirichlet

spectral radius in Tπ and f be the Dirichlet Perron vector of T . Then the vertices of

T can be relabelled {v0, v1, . . . , vn−1} such that the following hold:

(1) f(v0) ≥ f(v1) ≥ · · · ≥ f(vn−1);

(2) Let v0 be the root of T , then dist(v0) ≤ dist(v1) ≤ · · · ≤ dist(vn−1);

(3) If vi, vs ∈ V (T ) with i < s, then for any child vj of vi and any child vt of vs,

there must be j < t.

Proof. Let V (T ) = {v0, v1, . . . , vn−1} such that f(v0) ≥ f(v1) ≥ · · · ≥ f(vn−1).

We start with the vertex v0. If v0v1 ∈ V (T ), there is nothing to do. Otherwise, there

exists a child x0 of v0 with f(v1) ≥ f(x0). If f(v1) = f(x0), we exchange the labelling

of v1 and x0. In the following, we assume f(v1) > f(x0). Then v1 is not a pendant
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vertex. Since T is connected, there exist a path P0,1 from v0 to v1 and a parent u1 of

v1 which is in P0,1 and can not be v0. Since v1 is an interior vertex, there is also some

child w1 of v1 which is not in P0,1. If x0 ∈ P0,1, let T1 = T−v0x0−v1w1+v0v1+x0w1.

Otherwise, let T1 = T−v0x0−v1u1+v0v1+x0u1. Since f(v0) ≥ f(w1), f(v1) > f(x0)

and f(v0) ≥ f(u1), we have λ(T1) > λ(T ) by Lemma 3.1. It is a contradiction to our

assumption that T has the largest Dirichlet spectral radius in Tπ . Let s0 = d(v0). By

the same way, we can prove that v0 is also adjacent to v2, v3, . . . , vs0 .

Next we proceed in an analogous way with all children of v1 and prove that the

vertices vd(v0)+1, vd(v0)+2, . . . , vs1 are adjacent to v1, where s1 = d(v0) + d(v1) − 1.

Let sr−1 = d(v0) + d(v1) + · · ·+ d(vr−1)− r + 1. Now assume that vr−1 has already

been adjacent to the respective vertices vsr−2+1, vsr−2+2, . . . , vsr−2+d(vr−1)−1. In the

following, we observe the vertex vr. If vr is adjacent to vsr−1+1, there is nothing

to do. Otherwise, there exist a child xr of vr with f(vsr−1+1) ≥ f(xr) and a path

Pr,sr−1+1 from vr to vsr−1+1. Without loss of generality, assume f(vsr−1+1) > f(xr).

Then there exist a parent ur of vsr−1+1 in Pr,sr−1+1 and some child wr which is not

in Pr,sr−1+1. Let Tr = T − vrxr − vsr−1+1wr + vrvsr−1+1 + xrwr(if xr ∈ Pr,sr−1+1)

or Tr = T − vrxr − vsr−1+1ur + xrur + vrvsr−1+1 (if xr /∈ Pr,sr−1+1). Since f(vr) ≥

f(ur), f(vr) ≥ f(wr) and f(vsr−1+1) > f(xr), we have λ(Tr) > λ(T ) by Lemma 3.1. It

is a contradiction to our assumption that T has the largest Dirichlet spectral radius

in Tπ. By the same procedure, we can prove that vr is adjacent to the respective

vertices vsr−1+2, vsr−1+3, . . . , vsr−1+d(vr)−1. By the induction, the assertion holds.

Lemma 3.3. Let G = (V0∪∂V,E0∪∂E) be a graph with boundary and P be a path

from an interior vertex v1 to another interior vertex v2. Suppose that v1ui ∈ E(G),

v2ui /∈ E(G) and ui is not on the path P for i = 1, 2, . . . , t with t ≤ d(v1) − 2. By

deleting the t edges v1u1, v1u2, . . . , v1ut and adding the t edges v2u1, v2u2, . . . , v2ut we

get a new tree G′. Let f be the Dirichlet Perron vector of G. Then if f(v1) ≤ f(v2),

we have

λ(G′) > λ(G).

Proof. By

λ(G′)− λ(G) ≥ ∆G′(f)−∆G(f)

=

t
∑

i=1

(f(v2) + f(ui))
2 −

t
∑

i=1

(f(v1) + f(ui))
2

≥ 0,

we have λ(G′) ≥ λ(G). If λ(G′) = λ(G), then f also must be a signless Dirichlet
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eigenfunction of λ(G′). By

λ(G′)f(v1) =
∑

x,v1x∈G′

(f(v1) + f(x))

= λ(G)f(v1)

=
∑

x,v1x∈G′

(f(v1) + f(x)) +

t
∑

i=1

(f(v1) + f(ui)),

we have
t
∑

i=1

(f(v1)+ f(ui)) = 0. This is a contradiction with f(v1) > 0 and f(ui) ≥ 0.

So, the assertion holds. The proof is completed.

In the following, we use the method of [12] to define a special tree T ∗
π with a given

nonincreasing tree degree sequence π = (d0, d1, . . . , dn−1)as follows. Select a vertex

v0,1 as the root of T
∗
π . and begin with v0,1 of the zero-th layer. Let s1 = d0 and select s1

vertices v1,1, v1,2, . . . , v1,s1 of the first layer as the children of v0,1. Next we construct

the second layer as follows. Let s2 =
s1
∑

i=1

di−s1 and select s2 vertices v2,1, v2,2, . . . , v2,s2

such that v2,1, . . . , v2,d1−1 are the children of v1,1, and v2,d1
, . . . , v2,d1+d2−2 are the chil-

dren of v1,2, . . ., and v2,d1+···+ds1−1−s1+2, . . . , v2,d1+···+ds1
−s1 are the children of v1,s1 .

Assume that all vertices of the t-st layer have been constructed and are denoted by

vt,1, vt,2, . . . , vt,st . We construct all the vertices of the(t+1)-st layer by the induction

hypothesis. Let st+1 = ds1+···+st−1+1 + · · · + ds1+···+st − st and select st+1 vertices

vt+1,1, vt+1,2, . . . , vt+1,st+1
of the(t+1)st layer such that vt+1,1, . . . , vt+1,ds1+···+st−1+1−1

are the children of vt1 , . . . , and vt+1,st+1−ds1+···+st
+2, . . . , vt+1,st+1

are the children of

vt,st . In this way, we obtain only one tree T ∗
π with degree sequence π such that v0,1

has the maximum degree in all interior vertices (see Fig. 3.1 for an example).

Example 3.4. Let π = (4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1). Then T ∗
π is as

follows:

✉

✉ ✉ ✉ ✉

✉ ✉ ✉ ✉ ✉ ❡ ❡

❡ ❡ ❡

✘✘✘✘✘✘✘✘✘✘✘✘

�
�

�

❍❍❍❍❍❍

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵
✡

✡
✡

✡✡

❇
❇
❇
❇❇

✡
✡

✡
✡✡

❇
❇
❇
❇

✡
✡

✡
✡✡

❇
❇
❇
❇

v0,1

v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7

v3,1 v3,2 v3,3
❡ ❡

v3,4 v3,5

Fig. 3.1. T
∗
π

with degree sequence π(◦ · · · boundary vertices).
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Proof of Theorem 1.1. Let T be a tree with the largest Dirichlet spectral radius

in Tπ. Suppose V (T ) = {v0, v1, . . . , vn−1} such that they satisfy the three assertions

in Lemma 3.2. Let f be the Dirichlet Perron vector of T .

In the following, we will prove that d(v0) ≥ d(v1) ≥ · · · ≥ d(vn−1). If the

assertion does not hold, there exists the smallest integer t ∈ {0, 1, . . . , n − 1} such

that d(vt) < d(vt+1). Since f(vt) ≥ f(vt+1), vt and vt+1 are interior vertices. Let

u1, u2, . . . , ud(vt+1)−1 be all the children of vt+1. Then we have f(vt) ≥ f(vt+1) ≥

f(ui) for 1 ≤ i ≤ d(vt+1)−1 by Lemma 3.2. Let T1 = T−vt+1u1−vt+1u2−· · ·−vt+1us

+vtu1+ vtu2 + · · ·+ vtus, where s = d(vt+1)− d(vt). Then T1 ∈ Tπ and λ(T1) > λ(T )

by Lemma 3.3. This is a contradiction to our assumption that T has the largest

Dirichlet spectral radius in Tπ. So, we have d(vi) = di for 0 ≤ i ≤ n− 1. Clearly, T

is isomorphic to T ∗
π . The proof is completed.

Let π = (d0, d1, . . . , dn−1) and π′ = (d′0, d
′
1, . . . , d

′
n−1) be two nonincreasing posi-

tive sequences. If
t
∑

i=0

di ≤
t
∑

i=0

d′i for t = 0, 1, . . . , n− 2 and
n−1
∑

i=0

di =
n−1
∑

i=0

d′i, then π′ is

said to majorize π, and is denoted by π E π′ (see [12]).

Lemma 3.5. ([12]) Let π = (d0, d1, . . . , dn−1) and π′ = (d′0, d
′
1, . . . , d

′
n−1) be two

nonincreasing graphic degree sequences. If π E π′, then there exist a series of graphic

degree sequences π1, π2, . . . , πk such that π E π1 E π2 E · · · E πk E π′, and only two

components of πi and πi+1 are different by 1.

Theorem 3.6. Let π and π′ be two tree degree sequences such that they have

same frequency of the number 1. If π E π′, then λ(T ∗
π ) ≤ λ(T ∗

π′) with equality holds

if and only if π = π′.

Proof. Let f be the Dirichlet Perron vector of T ∗
π and v0, v1, . . . , vn−1 ∈ V (T ∗

π )

such that they satisfy the three assertions in Lemma 3.2. Then f(v0) ≥ f(v1) ≥ · · · ≥

f(vn−1) and d(vt) = dt for 0 ≤ t ≤ n− 1. By Lemma 3.5, without loss of generality,

assume π = (d0, d1, . . . , dn−1) and π′ = (d′0, d
′
1, . . . , d

′
n−1) such that di = d′i − 1,

dj = d′j + 1 with 0 ≤ i < j ≤ n − 1, and dk = d′k for k 6= i, j. Since π and π′ have

the same frequency of the number 1, we have d′j ≥ 2 and dj = d′j + 1 ≥ 3. So, there

exists a vertex vp with p > j such that vjvp ∈ E(T ∗
π ), vivp /∈ E(T ∗

π ) and vp is not

in the path from vi to vj . Let T1 = T ∗
π − vjvp + vivp. Note f(vi) ≥ f(vj). We have

T1 ∈ Tπ′ and λ(T ∗
π ) < λ(T1) ≤ λ(T ∗

π′) by Lemma 3.3. The proof is completed.

Corollary 3.7. Let ω = {k, 2, . . . , 2, 1, . . . , 1} such that the frequency of 1 is

k. Then T ∗
ω is the unique tree with the largest Dirichlet spectral radius among all the

trees with k pendant vertices.

Proof. Let T be a tree with k pendant vertices and degree sequence π = (d0,

d1, . . . , dn−1). Then dn−k = dn−k+1 = · · · = dn−1 = 1 and dn−k−1 ≥ 2. Clearly,
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π E ω. By Theorem 3.6, the assertion holds.

Corollary 3.8. Let T be a tree of order n with k pendant vertices. If n ≤ 2k+1,

then λ(T ) ≤ 2+k+
√
k2−8k+4n
2 with equality if and only if T is T ∗

ω.

Proof. Let f be the Dirichlet Perron vector of T ∗
ω and u ∈ V (T ∗

ω) with d(u) = k.

Since n ≤ 2k + 1, the vertex u is adjacent to any vertex v with d(v) = 2. By

λ(T ∗
ω)f(u) = kf(u)+(n−k−1)f(v) and λ(T ∗

ω)f(v) = 2f(v)+f(u), we have λ(T ∗
ω) =

2+k+
√
k2−8k+4n
2 . The assertion holds by Corollary 3.7.
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