THE DIRICHLET SPECTRAL RADIUS OF TREES*

GUANG-JUN ZHANG ${ }^{\dagger}$ AND WEI-XIA LI ${ }^{\ddagger}$

Abstract

In this paper, the trees with the largest Dirichlet spectral radius among all trees with a given degree sequence are characterized. Moreover, the extremal graphs having the largest Dirichlet spectral radius are obtained in the set of all trees of order n with a given number of pendant vertices.

Key words. Dirichlet spectral radius, Degree sequence, Tree.

AMS subject classifications. 05C50.

1. Introduction. In this paper, we only consider simple connected graphs. Let $G=(V(G), E(G))$ be a graph of order n with vertex set $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and edge set $E(G)$. Let $d(v)$ denote the degree of a vertex v. Then $\pi(G)=$ $\left(d\left(v_{0}\right), d\left(v_{1}\right), \ldots, d\left(v_{n-1}\right)\right)$ is called the degree sequence of G. A sequence of positive integers $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ is said to be a tree degree sequence if there exists at least one tree whose degree sequence is π. The Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$, where $D(G)$ and $A(G)$ denote the diagonal matrix of vertex degrees and the adjacency matrix of G, respectively. Let \mathcal{T}_{π} be the set of all the trees with a given degree sequence π, where $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ satisfies $d_{0} \geq d_{1} \geq \cdots \geq d_{n-1}$. The adjacency eigenvalues and Laplacian eigenvalues of graphs have been intensively investigated during the last decades. Bıyıkoğlu et al. [1] and Zhang [12] determined all graphs with the maximal spectral radius and Laplacian spectral radius among all trees with a given degree sequence, respectively. Tan [10] determined the trees with the largest Laplacian spectral radius among all weighted trees with a given degree sequence and positive weight set. A graph $G=\left(V_{0} \cup \partial V, E_{0} \cup \partial E\right)$ with boundary consists of a set of interior vertices V_{0}, boundary vertices ∂V, interior edges E_{0} that connect interior vertices, and boundary edges ∂E that join interior vertices with boundary vertices (see [7]). A real number λ is called a Dirichlet eigenvalue of G if there exists a function $f \neq 0$ such that they satisfy the Dirichlet eigenvalue

[^0]problem:
\[

$$
\begin{cases}L(G) f(u)=\lambda f(u), & u \in V_{0} \\ f(u)=0, & u \in \partial V\end{cases}
$$
\]

The function f is called a Dirichlet eigenfunction corresponding to λ (see [7). The largest Dirichlet eigenvalue of G is called Dirichlet spectral radius, denoted by $\lambda(G)$. Recently, there is an increasing interest in the Dirichlet eigenvalues of graphs (see [2], [3] and [7]), since it can be regarded to be analogous to the Dirichlet eigenvalues of Laplacian operator on a manifold. The related eigenvalue problems have been occasionally occurred in fields like game theory [4], network analysis [5], and Pattern Recognition [8]. In this paper, we regard pendant vertices as boundary vertices and assume that both the set V_{0} and the set ∂V are not empty. Motivated by the above results, we will study the Dirichlet spectral radius of graphs in \mathcal{T}_{π}. The main result of this paper is as follows:

Theorem 1.1. For a given tree degree sequence π, T_{π}^{*} (see in Section 3) is the unique tree with the largest Dirichlet spectral radius in \mathcal{T}_{π}.

The rest of the paper is organized as follows. In Section 2, some notations and results are presented. In Section 3, we present the proof of Theorem 1.1 and some corollaries.
2. Preliminaries. Let $R_{G}(f)$ be the Rayleigh quotient of Laplace operator L on real-valued function f on $V(G)$, where

$$
R_{G}(f)=\frac{<L f, f>}{<f, f>}=\frac{\sum_{u v \in E}(f(u)-f(v))^{2}}{\sum_{v \in V} f^{2}(v)}
$$

Let \mathcal{F} denote the set of all real-valued functions f on $V(G)$ with $f(u)=0$ for any boundary vertex u. The following proposition states a well-known fact about the Rayleigh quotients.

Proposition 2.1. For a graph $G=\left(V_{0} \cup \partial V, E_{0} \cup \partial E\right)$ with boundary, we have

$$
\lambda(G)=\max _{f \in \mathcal{F}} R_{G}(f)=\max _{f \in \mathcal{F}} \frac{\langle L f, f>}{\langle f, f>}
$$

Moreover, if $R_{G}(f)=\lambda(G)$ for a function $f \in \mathcal{F}$, then f is a Dirichlet eigenfunction of $\lambda(G)$.

Let $Q(G)=D(G)+A(G)$ be the signless Laplacian matrix of G and its Rayleigh
quotient is denoted by

$$
\Delta_{G}(f)=\frac{<Q f, f>}{<f, f>}=\frac{\sum_{u v \in E}(f(u)+f(v))^{2}}{\sum_{v \in V} f^{2}(v)}
$$

A real number μ is called a signless Dirichlet eigenvalue of G if there exists a function $f \neq 0$ on $V(G)$ such that for $u \in V(G)$,

$$
\begin{cases}Q(G) f(u)=\mu f(u), & u \in V_{0} \\ f(u)=0, & u \in \partial V\end{cases}
$$

The largest signless Dirichlet eigenvalue of $Q(G)$, denoted by $\mu(G)$, is called the signless Dirichlet spectral radius. The function f is called a signless Dirichlet eigenfunction of $\mu(G)$. Then we have the following

Proposition 2.2. For a graph $G=\left(V_{0} \cup \partial V, E_{0} \cup \partial E\right)$ with boundary we have

$$
\mu(G)=\max _{f \in \mathcal{F}} \Delta_{G}(f)=\max _{f \in \mathcal{F}} \frac{\langle Q f, f>}{\langle f, f>}
$$

Moreover, if $\Delta_{G}(f)=\mu(G)$ for a function $f \in \mathcal{F}$, then f is a signless Dirichlet eigenfunction of $\mu(G)$.

A discrete signless Dirichlet operator $Q_{0}(G)$ of a graph G is the signless Laplacian $\operatorname{matrix} Q(G)$ restricted to interior vertices, i.e., $L_{0}(G)=D_{0}(G)+A_{0}(G)$, where $A_{0}(G)$ is the adjacency matrix of the graph $G\left(V_{0}, E_{0}\right)$ induced by the interior vertices and $D_{0}(G)$ is the degree diagonal matrix $D(G)$ restricted to the interior vertices $V_{0}(G)$. Note that $Q_{0}(G)$ is a irreducible nonnegative symmetric matrix. By the PerronFrobenius Theorem, we have the following lemma.

Lemma 2.3. Let G be a tree. Then the signless Dirichlet spectral radius $\mu(G)$ of G is positive. Moreover, if f is a signless Dirichlet eigenfunction of $\mu(G)$, then $f(v)>0$ for all $v \in V_{0}(G)$ or $f(v)<0$ for all $v \in V_{0}(G)$.

Let f be a unit eigenvector of $\mu(G)$. We call f a Dirichlet Perron vector of G if $f(v)>0$ for any $v \in V_{0}(G)$.

Lemma 2.4. Let G be a tree. Then $\lambda(G)=\mu(G)$.
Proof. Without loss of generality, assume that $G=\left(V_{1}, V_{2}, E(G)\right)$ is a tree with bipartition V_{1} and V_{2}. Let f be Dirichlet Perron vector of G. Define $f_{1}(x)=$ $\operatorname{sign}(x) f(x)$, where $\operatorname{sign}(x)=1$ if $x \in V_{1}$ and $\operatorname{sign}(x)=-1$ if $x \in V_{2}$. Then we have

$$
\mu(G)=\Delta_{G}(f)=\sum_{u v \in E}(f(u)+f(v))^{2}=\sum_{u v \in E}\left(f_{1}(u)-f_{1}(v)\right)^{2}=R_{G}\left(f_{1}\right) \leq \lambda(G)
$$

The condition $\lambda(G) \leq \mu(G)$ follows analogously.
3. The trees with the largest Dirichlet spectral radius in \mathcal{T}_{π}. In this section, we will characterize the trees with the largest Dirichlet spectral radius in \mathcal{T}_{π}. Let $G+u v$ (resp. $G-u v$) denote the graph obtained from G by adding (resp. deleting) an edge $u v$ in G. The following lemmas will be used in our proof.

Lemma 3.1. (See also [12]) Let $T \in \mathcal{T}_{\pi}$ and $u v, x y \in E(T)$ such that v and y are not in the path from u to x. Let f be the Dirichlet Perron vector of T and $T^{\prime}=T-u v-x y+u y+x v$. Then $T^{\prime} \in \mathcal{T}_{\pi}$ and $\lambda\left(T^{\prime}\right) \geq \lambda(T)$ if $f(u) \geq f(x)$ and $f(y) \geq f(v)$. Moreover, $\lambda\left(T^{\prime}\right)>\lambda(T)$ if one of the two inequalities is strict.

Proof. Let f be the Dirichlet Perron vector of T. Clearly, $T^{\prime} \in \mathcal{T}_{\pi}$. Then we have

$$
\begin{aligned}
\lambda\left(T^{\prime}\right)-\lambda(T) & \geq \Delta_{T^{\prime}}(f)-\Delta_{T}(f) \\
& =(f(u)+f(y))^{2}+(f(x)+f(v))^{2}-(f(u)+f(v))^{2}-(f(x)+f(y))^{2} \\
& =2(f(u)-f(x))(f(y)-f(v)) \\
& \geq 0
\end{aligned}
$$

If $\lambda\left(T^{\prime}\right)=\lambda(T)$, then f also must be a signless Dirichlet eigenfunction of $\lambda\left(T^{\prime}\right)$. By

$$
\begin{aligned}
\lambda(T) f(u) & =\sum_{z, z u \in E(T) \backslash\{u v\}}(f(u)+f(z))+(f(u)+f(v)) \\
& =\lambda\left(T^{\prime}\right) f(u) \\
& =\sum_{z, z u \in E(T) \backslash\{u v\}}(f(u)+f(z))+(f(u)+f(y)),
\end{aligned}
$$

we have $f(y)=f(v)$. Similarly, we have $f(u)=f(x)$. So, the assertion holds.
Let $\operatorname{dist}(v)$ denote the distance between v and v_{0}, where v_{0} is the root of G. We call y a child of x and x the parent of y, if $x y \in E(G)$ with $\operatorname{dist}(y)=\operatorname{dist}(x)+1$.

Lemma 3.2. Let $T=\left(V_{0} \cup \partial V, E_{0} \cup \partial E\right)$ be a tree with the largest Dirichlet spectral radius in \mathcal{T}_{π} and f be the Dirichlet Perron vector of T. Then the vertices of T can be relabelled $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ such that the following hold:
(1) $f\left(v_{0}\right) \geq f\left(v_{1}\right) \geq \cdots \geq f\left(v_{n-1}\right)$;
(2) Let v_{0} be the root of T, then $\operatorname{dist}\left(v_{0}\right) \leq \operatorname{dist}\left(v_{1}\right) \leq \cdots \leq \operatorname{dist}\left(v_{n-1}\right)$;
(3) If $v_{i}, v_{s} \in V(T)$ with $i<s$, then for any child v_{j} of v_{i} and any child v_{t} of v_{s}, there must be $j<t$.

Proof. Let $V(T)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ such that $f\left(v_{0}\right) \geq f\left(v_{1}\right) \geq \cdots \geq f\left(v_{n-1}\right)$. We start with the vertex v_{0}. If $v_{0} v_{1} \in V(T)$, there is nothing to do. Otherwise, there exists a child x_{0} of v_{0} with $f\left(v_{1}\right) \geq f\left(x_{0}\right)$. If $f\left(v_{1}\right)=f\left(x_{0}\right)$, we exchange the labelling of v_{1} and x_{0}. In the following, we assume $f\left(v_{1}\right)>f\left(x_{0}\right)$. Then v_{1} is not a pendant
vertex. Since T is connected, there exist a path $P_{0,1}$ from v_{0} to v_{1} and a parent u_{1} of v_{1} which is in $P_{0,1}$ and can not be v_{0}. Since v_{1} is an interior vertex, there is also some child w_{1} of v_{1} which is not in $P_{0,1}$. If $x_{0} \in P_{0,1}$, let $T_{1}=T-v_{0} x_{0}-v_{1} w_{1}+v_{0} v_{1}+x_{0} w_{1}$. Otherwise, let $T_{1}=T-v_{0} x_{0}-v_{1} u_{1}+v_{0} v_{1}+x_{0} u_{1}$. Since $f\left(v_{0}\right) \geq f\left(w_{1}\right), f\left(v_{1}\right)>f\left(x_{0}\right)$ and $f\left(v_{0}\right) \geq f\left(u_{1}\right)$, we have $\lambda\left(T_{1}\right)>\lambda(T)$ by Lemma 3.1. It is a contradiction to our assumption that T has the largest Dirichlet spectral radius in \mathcal{T}_{π}. Let $s_{0}=d\left(v_{0}\right)$. By the same way, we can prove that v_{0} is also adjacent to $v_{2}, v_{3}, \ldots, v_{s_{0}}$.

Next we proceed in an analogous way with all children of v_{1} and prove that the vertices $v_{d\left(v_{0}\right)+1}, v_{d\left(v_{0}\right)+2}, \ldots, v_{s_{1}}$ are adjacent to v_{1}, where $s_{1}=d\left(v_{0}\right)+d\left(v_{1}\right)-1$. Let $s_{r-1}=d\left(v_{0}\right)+d\left(v_{1}\right)+\cdots+d\left(v_{r-1}\right)-r+1$. Now assume that v_{r-1} has already been adjacent to the respective vertices $v_{s_{r-2}+1}, v_{s_{r-2}+2}, \ldots, v_{s_{r-2}+d\left(v_{r-1}\right)-1}$. In the following, we observe the vertex v_{r}. If v_{r} is adjacent to $v_{s_{r-1}+1}$, there is nothing to do. Otherwise, there exist a child x_{r} of v_{r} with $f\left(v_{s_{r-1}+1}\right) \geq f\left(x_{r}\right)$ and a path $P_{r, s_{r-1}+1}$ from v_{r} to $v_{s_{r-1}+1}$. Without loss of generality, assume $f\left(v_{s_{r-1}+1}\right)>f\left(x_{r}\right)$. Then there exist a parent u_{r} of $v_{s_{r-1}+1}$ in $P_{r, s_{r-1}+1}$ and some child w_{r} which is not in $P_{r, s_{r-1}+1}$. Let $T_{r}=T-v_{r} x_{r}-v_{s_{r-1}+1} w_{r}+v_{r} v_{s_{r-1}+1}+x_{r} w_{r}$ (if $x_{r} \in P_{r, s_{r-1}+1}$) or $T_{r}=T-v_{r} x_{r}-v_{s_{r-1}+1} u_{r}+x_{r} u_{r}+v_{r} v_{s_{r-1}+1}$ (if $x_{r} \notin P_{r, s_{r-1}+1}$). Since $f\left(v_{r}\right) \geq$ $f\left(u_{r}\right), f\left(v_{r}\right) \geq f\left(w_{r}\right)$ and $f\left(v_{s_{r-1}+1}\right)>f\left(x_{r}\right)$, we have $\lambda\left(T_{r}\right)>\lambda(T)$ by Lemma3.1. It is a contradiction to our assumption that T has the largest Dirichlet spectral radius in \mathcal{T}_{π}. By the same procedure, we can prove that v_{r} is adjacent to the respective vertices $v_{s_{r-1}+2}, v_{s_{r-1}+3}, \ldots, v_{s_{r-1}+d\left(v_{r}\right)-1}$. By the induction, the assertion holds.

Lemma 3.3. Let $G=\left(V_{0} \cup \partial V, E_{0} \cup \partial E\right)$ be a graph with boundary and P be a path from an interior vertex v_{1} to another interior vertex v_{2}. Suppose that $v_{1} u_{i} \in E(G)$, $v_{2} u_{i} \notin E(G)$ and u_{i} is not on the path P for $i=1,2, \ldots, t$ with $t \leq d\left(v_{1}\right)-2$. By deleting the t edges $v_{1} u_{1}, v_{1} u_{2}, \ldots, v_{1} u_{t}$ and adding the t edges $v_{2} u_{1}, v_{2} u_{2}, \ldots, v_{2} u_{t}$ we get a new tree G^{\prime}. Let f be the Dirichlet Perron vector of G. Then if $f\left(v_{1}\right) \leq f\left(v_{2}\right)$, we have

$$
\lambda\left(G^{\prime}\right)>\lambda(G)
$$

Proof. By

$$
\begin{aligned}
\lambda\left(G^{\prime}\right)-\lambda(G) & \geq \Delta_{G^{\prime}}(f)-\Delta_{G}(f) \\
& =\sum_{i=1}^{t}\left(f\left(v_{2}\right)+f\left(u_{i}\right)\right)^{2}-\sum_{i=1}^{t}\left(f\left(v_{1}\right)+f\left(u_{i}\right)\right)^{2} \\
& \geq 0
\end{aligned}
$$

we have $\lambda\left(G^{\prime}\right) \geq \lambda(G)$. If $\lambda\left(G^{\prime}\right)=\lambda(G)$, then f also must be a signless Dirichlet
eigenfunction of $\lambda\left(G^{\prime}\right)$. By

$$
\begin{aligned}
\lambda\left(G^{\prime}\right) f\left(v_{1}\right) & =\sum_{x, v_{1} x \in G^{\prime}}\left(f\left(v_{1}\right)+f(x)\right) \\
& =\lambda(G) f\left(v_{1}\right) \\
& =\sum_{x, v_{1} x \in G^{\prime}}\left(f\left(v_{1}\right)+f(x)\right)+\sum_{i=1}^{t}\left(f\left(v_{1}\right)+f\left(u_{i}\right)\right),
\end{aligned}
$$

we have $\sum_{i=1}^{t}\left(f\left(v_{1}\right)+f\left(u_{i}\right)\right)=0$. This is a contradiction with $f\left(v_{1}\right)>0$ and $f\left(u_{i}\right) \geq 0$. So, the assertion holds. The proof is completed.

In the following, we use the method of [12] to define a special tree T_{π}^{*} with a given nonincreasing tree degree sequence $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ as follows. Select a vertex $v_{0,1}$ as the root of T_{π}^{*}. and begin with $v_{0,1}$ of the zero-th layer. Let $s_{1}=d_{0}$ and select s_{1} vertices $v_{1,1}, v_{1,2}, \ldots, v_{1, s_{1}}$ of the first layer as the children of $v_{0,1}$. Next we construct the second layer as follows. Let $s_{2}=\sum_{i=1}^{s_{1}} d_{i}-s_{1}$ and select s_{2} vertices $v_{2,1}, v_{2,2}, \ldots, v_{2, s_{2}}$ such that $v_{2,1}, \ldots, v_{2, d_{1}-1}$ are the children of $v_{1,1}$, and $v_{2, d_{1}}, \ldots, v_{2, d_{1}+d_{2}-2}$ are the children of $v_{1,2}, \ldots$, and $v_{2, d_{1}+\cdots+d_{s_{1}-1}-s_{1}+2}, \ldots, v_{2, d_{1}+\cdots+d_{s_{1}}-s_{1}}$ are the children of $v_{1, s_{1}}$. Assume that all vertices of the t-st layer have been constructed and are denoted by $v_{t, 1}, v_{t, 2}, \ldots, v_{t, s_{t}}$. We construct all the vertices of the $(t+1)$-st layer by the induction hypothesis. Let $s_{t+1}=d_{s_{1}+\cdots+s_{t-1}+1}+\cdots+d_{s_{1}+\cdots+s_{t}}-s_{t}$ and select s_{t+1} vertices $v_{t+1,1}, v_{t+1,2}, \ldots, v_{t+1, s_{t+1}}$ of the $(t+1)$ st layer such that $v_{t+1,1}, \ldots, v_{t+1, d_{s_{1}+\cdots+s_{t-1}+1}-1}$ are the children of $v_{t 1}, \ldots$, and $v_{t+1, s_{t+1}-d_{s_{1}+\cdots+s_{t}+2}, \ldots, v_{t+1, s_{t+1}} \text { are the children of }}$ $v_{t, s_{t}}$. In this way, we obtain only one tree T_{π}^{*} with degree sequence π such that $v_{0,1}$ has the maximum degree in all interior vertices (see Fig. 3.1 for an example).

EXAMPLE 3.4. Let $\pi=(4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1,1)$. Then T_{π}^{*} is as follows:

FIG. 3.1. T_{π}^{*} with degree sequence $\pi(\circ \cdots$ boundary vertices $)$.

Proof of Theorem 1.1. Let T be a tree with the largest Dirichlet spectral radius in \mathcal{T}_{π}. Suppose $V(T)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ such that they satisfy the three assertions in Lemma 3.2. Let f be the Dirichlet Perron vector of T.

In the following, we will prove that $d\left(v_{0}\right) \geq d\left(v_{1}\right) \geq \cdots \geq d\left(v_{n-1}\right)$. If the assertion does not hold, there exists the smallest integer $t \in\{0,1, \ldots, n-1\}$ such that $d\left(v_{t}\right)<d\left(v_{t+1}\right)$. Since $f\left(v_{t}\right) \geq f\left(v_{t+1}\right), v_{t}$ and v_{t+1} are interior vertices. Let $u_{1}, u_{2}, \ldots, u_{d\left(v_{t+1}\right)-1}$ be all the children of v_{t+1}. Then we have $f\left(v_{t}\right) \geq f\left(v_{t+1}\right) \geq$ $f\left(u_{i}\right)$ for $1 \leq i \leq d\left(v_{t+1}\right)-1$ by Lemma3.2. Let $T_{1}=T-v_{t+1} u_{1}-v_{t+1} u_{2}-\cdots-v_{t+1} u_{s}$ $+v_{t} u_{1}+v_{t} u_{2}+\cdots+v_{t} u_{s}$, where $s=d\left(v_{t+1}\right)-d\left(v_{t}\right)$. Then $T_{1} \in \mathcal{T}_{\pi}$ and $\lambda\left(T_{1}\right)>\lambda(T)$ by Lemma 3.3. This is a contradiction to our assumption that T has the largest Dirichlet spectral radius in \mathcal{T}_{π}. So, we have $d\left(v_{i}\right)=d_{i}$ for $0 \leq i \leq n-1$. Clearly, T is isomorphic to T_{π}^{*}. The proof is completed.

Let $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ and $\pi^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ be two nonincreasing positive sequences. If $\sum_{i=0}^{t} d_{i} \leq \sum_{i=0}^{t} d_{i}^{\prime}$ for $t=0,1, \ldots, n-2$ and $\sum_{i=0}^{n-1} d_{i}=\sum_{i=0}^{n-1} d_{i}^{\prime}$, then π^{\prime} is said to majorize π, and is denoted by $\pi \unlhd \pi^{\prime}$ (see [12]).

Lemma 3.5. (12]) Let $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ and $\pi^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ be two nonincreasing graphic degree sequences. If $\pi \unlhd \pi^{\prime}$, then there exist a series of graphic degree sequences $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ such that $\pi \unlhd \pi_{1} \unlhd \pi_{2} \unlhd \cdots \unlhd \pi_{k} \unlhd \pi^{\prime}$, and only two components of π_{i} and π_{i+1} are different by 1 .

Theorem 3.6. Let π and π^{\prime} be two tree degree sequences such that they have same frequency of the number 1. If $\pi \unlhd \pi^{\prime}$, then $\lambda\left(T_{\pi}^{*}\right) \leq \lambda\left(T_{\pi^{\prime}}^{*}\right)$ with equality holds if and only if $\pi=\pi^{\prime}$.

Proof. Let f be the Dirichlet Perron vector of T_{π}^{*} and $v_{0}, v_{1}, \ldots, v_{n-1} \in V\left(T_{\pi}^{*}\right)$ such that they satisfy the three assertions in Lemma 3.2. Then $f\left(v_{0}\right) \geq f\left(v_{1}\right) \geq \cdots \geq$ $f\left(v_{n-1}\right)$ and $d\left(v_{t}\right)=d_{t}$ for $0 \leq t \leq n-1$. By Lemma 3.5 without loss of generality, assume $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ and $\pi^{\prime}=\left(d_{0}^{\prime}, d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ such that $d_{i}=d_{i}^{\prime}-1$, $d_{j}=d_{j}^{\prime}+1$ with $0 \leq i<j \leq n-1$, and $d_{k}=d_{k}^{\prime}$ for $k \neq i, j$. Since π and π^{\prime} have the same frequency of the number 1 , we have $d_{j}^{\prime} \geq 2$ and $d_{j}=d_{j}^{\prime}+1 \geq 3$. So, there exists a vertex v_{p} with $p>j$ such that $v_{j} v_{p} \in E\left(T_{\pi}^{*}\right), v_{i} v_{p} \notin E\left(T_{\pi}^{*}\right)$ and v_{p} is not in the path from v_{i} to v_{j}. Let $T_{1}=T_{\pi}^{*}-v_{j} v_{p}+v_{i} v_{p}$. Note $f\left(v_{i}\right) \geq f\left(v_{j}\right)$. We have $T_{1} \in \mathcal{T}_{\pi^{\prime}}$ and $\lambda\left(T_{\pi}^{*}\right)<\lambda\left(T_{1}\right) \leq \lambda\left(T_{\pi^{\prime}}^{*}\right)$ by Lemma 3.3. The proof is completed.

Corollary 3.7. Let $\omega=\{k, 2, \ldots, 2,1, \ldots, 1\}$ such that the frequency of 1 is k. Then T_{ω}^{*} is the unique tree with the largest Dirichlet spectral radius among all the trees with k pendant vertices.

Proof. Let T be a tree with k pendant vertices and degree sequence $\pi=\left(d_{0}\right.$, $\left.d_{1}, \ldots, d_{n-1}\right)$. Then $d_{n-k}=d_{n-k+1}=\cdots=d_{n-1}=1$ and $d_{n-k-1} \geq 2$. Clearly,
$\pi \unlhd \omega$. By Theorem [3.6, the assertion holds.
Corollary 3.8. Let T be a tree of order n with k pendant vertices. If $n \leq 2 k+1$, then $\lambda(T) \leq \frac{2+k+\sqrt{k^{2}-8 k+4 n}}{2}$ with equality if and only if T is T_{ω}^{*}.

Proof. Let f be the Dirichlet Perron vector of T_{ω}^{*} and $u \in V\left(T_{\omega}^{*}\right)$ with $d(u)=k$. Since $n \leq 2 k+1$, the vertex u is adjacent to any vertex v with $d(v)=2$. By $\lambda\left(T_{\omega}^{*}\right) f(u)=k f(u)+(n-k-1) f(v)$ and $\lambda\left(T_{\omega}^{*}\right) f(v)=2 f(v)+f(u)$, we have $\lambda\left(T_{\omega}^{*}\right)=$ $\frac{2+k+\sqrt{k^{2}-8 k+4 n}}{2}$. The assertion holds by Corollary 3.7, 口

Acknowledgment. The authors would like to thank the referees for giving valuable corrections, suggestions and comments.

REFERENCES

[1] T. Bıyıkoğlu and J. Leydold. Graphs with given degree sequence and maximal spectral radius. Electronic Journal of Combinatorics, 15:R119, 2008.
[2] T. Bıyıkoğlu and J. Leydold. Faber-Krahn type inequalities for trees. Journal of Combinatorial Theory, Series B, 97:159-174, 2007.
[3] F. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
[4] F. Chung and R.B. Ellis. A chip-firing game and Dirichlet eigenvalues. Discrete Mathematics, 257(2/3):341-355, 2002.
[5] A. Tsiatas, I. Saniee, O. Narayan, and M. Andrews. Spectral analysis of communication networks using Dirichlet eigenvalues. Proceedings of the 22nd International Conference on World Wide Web Pages, 1297-1306, 2013.
[6] Y.Z. Fan and D. Yang. The signless Laplacian spectral radius of graphs with given number of pendant vertices. Graphs and Combinatorics, 25:291-298, 2009.
[7] J. Friedman. Some geometric aspects of graphs and their eigenfunctions. Duke Mathematical Journal, 69(3):487-525, 1993.
[8] M.A. Khabou, L. Hermi, and M.B.H. Rhouma. Shape recognition using eigenvalues of the Dirichlet Laplacian. Pattern Recognition, 40:141-153, 2007.
[9] R. Merris. Laplacian matrices of graphs: A survey. Linear Algebra and its Applications, 197/198:143-176, 1994.
[10] S.W. Tan. On the weighted trees with given degree sequence and positive weight set. Linear Algebra and its Applications, 433:380-389, 2010.
[11] X.D. Zhang. On the two conjectures of Graffiti. Linear Algebra and its Applications, 385:369379, 2004.
[12] X.D. Zhang. The Laplacian spectral radii of trees with degree sequences. Discrete Mathematics, 308:3143-3150, 2008.

[^0]: *Received by the editors on September 20, 2014. Accepted for publication on March 11, 2015. Handling Editor: Stephen J. Kirkland.
 ${ }^{\dagger}$ School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China (guangjunzhang@126.com). This work was supported by National Natural Science Foundation of China (no. 11271256).
 \ddagger School of Mathematical Sciences, Qingdao University, Qingdao 266071, China (liweixia99@163.com).

