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ON THE LAPLACIAN CHARACTERISTIC
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Abstract. Let G be a mixed graph and L(G) be the Laplacian matrix of G. In this paper, the

coefficients of the Laplacian characteristic polynomial of G are studied. The first derivative of the

characteristic polynomial of L(G) is explicitly expressed by means of Laplacian characteristic poly-

nomials of its edge deleted subgraphs. As a consequence, it is shown that the Laplacian characteristic

polynomial of a mixed graph is reconstructible from the collection of the Laplacian characteristic

polynomials of its edge deleted subgraphs. Then, it is investigated how graph modifications affect

the mixed Laplacian characteristic polynomial. Also, a connection between the Laplacian character-

istic polynomial of a non-singular connected mixed graph and the signless Laplacian characteristic

polynomial is provided, and it is used to establish a lower bound for the spectral radius of L(G).

Finally, using Coates digraphs, the perturbation of the mixed Laplacian spectral radius under some

graph transformations is discussed.
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1. Introduction. Let G be a mixed graph having n vertices and m edges, ob-

tained from an undirected simple graph by orienting some of its edges. The underlying

graph of G is denoted by G. The vertex set and the edge set of G are denoted by

V (G) and E(G), respectively. The incidence matrix of G is a {−1, 0, 1}-matrix, whose

rows and columns are labelled by vertices and edges, respectively, and is denoted by

M(G) = (mij)n×m. The entry mij = 1 if ej is an unoriented edge incident with vi,

or if ej is an oriented edge with head vi, mij = −1 if ej is an oriented edge with tail

vi, and mij = 0 otherwise. The Laplacian matrix of the mixed graph G is defined as

L(G) = M(G)M(G)t, so that L(G) is positive semi-definite. Hence, its eigenvalues

can be arranged as µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) ≥ 0. One may see that, to obtain

L(G), we only check that an edge is oriented or not, and do not care which vertex is

the head and which one is the tail of an oriented edge. So, for each e ∈ E(G), we could

consider a sign function which is denoted by sgn(e) and defined as sgn(e) = 1 if e is
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unoriented in G and sgn(e) = −1 otherwise. The adjacency matrix of G is denoted

by A(G) = (aij)n×n, where aij = sgn(vivj) if vivj ∈ E(G), and aij = 0 otherwise.

So that, the Laplacian matrix of the mixed graph G is L(G) = D(G) + A(G), where

D(G) = diag(dG(v1), . . . , dG(vn)) is a diagonal matrix, and dG(v) denotes the degree

of the vertex v in G. It should be noted that the standard Laplacian matrix defined

for simple graphs is equal to the Laplacian matrix of any all-oriented mixed graph,

for bibliographies on the standard Laplacian matrix of simple graphs, the reader is

referred to [9]. Further, the Laplacian matrix of a mixed graph with no directed edges

is called the signless Laplacian matrix (e.g. see [4]). Also, the path, the cycle, and

the star on n vertices are denoted by Pn, Cn, and Sn, respectively.

In the present paper, using the principal minor version of the Matrix-Tree The-

orem for a mixed graph, we study the Laplacian characteristic polynomials of mixed

graphs. Next, we explicitly express the first derivative of the Laplacian characteristic

polynomial of a mixed graph by means of Laplacian characteristic polynomials of its

edge deleted subgraphs. We prove that the Laplacian characteristic polynomials of

mixed graphs are reconstructible from the collection of mixed Laplacian polynomi-

als of their edge deleted subgraphs. We then investigate how graph modifications

affect the mixed Laplacian characteristic polynomial. Also, we provide a connection

between the Laplacian characteristic polynomial of a non-singular connected mixed

graph and the standard Laplacian and the signless Laplacian characteristic polyno-

mial of a simple graph obtained from it, and so we obtain a lower bound for the

spectral radius of L(G). Finally, using Coates digraphs, we discuss the perturbation

of the mixed Laplacian spectral radius under some graph transformations.

2. Graphical interpretation of a determinant. In this section, we give a

general overview how to use graphs in the situations when we would like to prove

results on coefficients of the Laplacian characteristic polynomial. Noting that the

main reference for this section is [3].

Let A = (aij)n×n be a matrix of order n with eigenvalues λ1(A), λ2(A), . . . , λn(A).

The characteristic polynomial of A is denoted by χ(A, x) = det(xI − A). Associated

with a matrix A, one may correspond a weighted digraph D(A) with n vertices, such

that there is an edge from vertex vi to vertex vj of weight aij , for 1 ≤ i, j ≤ n.

Also, the edges of weight zero, corresponding to the zero entries of A, can be removed

from D(A). The digraph D(A) is called the Coates digraph of the matrix A, for more

details the reader is referred to [3, page 65].

Recall that a digraph with equal number of vertices and edges is called a cycle

digraph, when its vertices can be labelled as v1, v2, . . . , vn; in such a way that its edge

set consists of the edges directed from vertex vi to vertex vi+1, for 1 ≤ i ≤ n− 1, and

an edge from vertex vn to vertex v1. In addition, a linear subdigraph of a digraph D
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is a subdigraph of D such that the indegree is equal to the outdegree of each vertex

and is equal to one, in which the indegree of a vertex v in D is the number of arcs

with head v, and the outdegree of v is the number of arcs with tail v. Thus, a linear

subdigraph consists of disjoint union of cycle digraphs. Let L be a linear subdigraph

of the digraph D(A). The product of the weights of the edges of L is called the weight

of L, and is denoted by ω(L). The number of cycles contained in L is denoted by

c(L). Also, the set of all linear subdigraphs of the Coates digraph D(A) with exactly

i vertices is denoted by Li(A). So, we have the following theorem which is based on

graphical interpretation of the determinant of matrices.

Theorem 2.1. [3, Chapter 4] Let A be a matrix of order n, and let χ(A, x) =∑n
i=0 cix

n−i be the characteristic polynomial of A. Then for 1 ≤ i ≤ n, we have

ci =
∑

L∈Li(A)

(−1)c(L)ω(L).

There are some theorems which extend some well-known formulas in the spectral

graph theory to matrices as you see in the following. For e ∈ E(G), the graph G− e

denotes the spanning subgraph of G with edge set E(G) \ {e}. Also, if v ∈ V (G),

then the graph G− v is an induced subgraph of G, obtained from G by removing the

vertex v and all edges incident with it. The next result states the relation between

characteristic polynomial of a symmetric matrix A and symmetric matrices obtained

from A by replacing some entries with zero.

Theorem 2.2. [2, Theorem 3.4] Let A be any symmetric matrix, and let G =

D(A) be its Coates digraph. If −→uv (u 6= v) is a fixed edge of G, then

χ(G, x) = χ(G−−→uv −−→vu, x)− a2uvχ(G− u− v, x) − 2
∑

Z∈Cuv

ω(Z)χ(G− V (Z), x),

where Cuv is the set of all undirected cycles of G of length greater than or equal to 3

containing u and v, while ω(Z) =
∏

ij∈E(Z) aij .

Suppose that we have two weighted digraphs G and H with v ∈ V (G) and

u ∈ V (H). The coalescence of G and H with respect to v and u, obtained from G

and H by identifying v with u and is denoted by GvuH (see e.g. [2]). Note that the

weight of loop at w(= v = u) in GvuH is equal to the sum of weights of loops at v

and u.

Theorem 2.3. [2, Theorem 3.5] Let GuvH be the coalescence of two weighted

digraphs G and H with v ∈ V (G) and u ∈ V (H). Then we have

χ(GuvH, x) = χ(G− u, x)χ(H,x) + χ(G, x)χ(H − v, x)

− xχ(G− u, x)χ(H − v, x).
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3. Laplacian characteristic polynomials of mixed graphs. We begin this

section by studying the coefficients of the Laplacian characteristic polynomial of a

mixed graph G. The characteristic polynomial of L(G) is denoted by L(G, x) =

det(xI−L(G)) =
∑n

i=0 lix
n−i. One may see that the coefficient li can be expressed in

terms of substructures of G, for each 0 ≤ i ≤ n. Indeed, in the article [1, Theorem 1],

the principal minor version of the Matrix-Tree Theorem for a mixed graph is proved.

For more details, we first need to consider the substructure of G which is obtained

from G by deleting some edges or some vertices. We also could delete vertices without

deleting the edges incident with them, although we assume that each undeleted edge is

incident with at least one undeleted vertex. If we delete one vertex of a spanning tree

of G without deleting the edges incident with that vertex, the resulting substructure is

called a rootless spanning tree, which has n−1 vertices and n−1 edges. Also, a mixed

graph G is called singular (or non-singular) if L(G) is singular (or non-singular). In

[1, Lemma 1], it is shown that a cycle is non-singular if and only if it contains an odd

number of unoriented edges. A connected mixed graph containing exactly one cycle

with that cycle being non-singular, is called a non-singular unicyclic graph. Thus,

a non-singular unicyclic graph consists of a non-singular cycle together with trees

attached to each of the vertices of the cycle. A k-reduced spanning substructure of G is

a substructure containing n−k vertices, each connected component of which contains

an equal number of vertices and edges and has no singular cycles. It is easy to see

that any k-reduced spanning substructure R of the mixed graph G has rootless trees

and non-singular unicyclic graphs as its connected components and satisfies |V (R)| =
|E(R)| = n− k. A mixed graph G is called quasi-bipartite if it does not contain any

non-singular cycle. So, a mixed graph with all edges unoriented is quasi-bipartite if

and only if it is bipartite, and a mixed graph with all edges oriented is always quasi-

bipartite. Let ω(G) and ω0(G) denote the number of connected components and the

number of quasi-bipartite connected components of G, respectively.

Theorem 3.1. Let G be a mixed graph. The mixed Laplacian coefficient lk of G

is given by

(−1)klk =
∑

R∈Rk

4ω1(R),

where Rk is the set of all (n − k)-reduced substructures R of G with k edges and

ω1(R) = ω(R)− ω0(R).

Proof. According to this fact that the coefficient lk, for each 0 ≤ k ≤ n, is the

sum of the kth order principal minors of the matrix L(G), [1, Theorem 1] yields the

assertion.

As we see in the following remark, one may apply more simple structures instead
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of (n− k)-reduced substructures, to compute the coefficient lk.

Remark 3.1. Let G be a mixed graph, and let Sk(G) be the set of all spanning

subgraphs of G with k edges whose connected components are trees or non-singular

unicyclic graphs, where 1 ≤ k ≤ n. Suppose that H ∈ Sk(G) contains trees T1, T2,

. . ., Tω0(H). The weight of H is defined by W (H) = 4ω1(H)
∏ω0(H)

i=1 ni, in which ni is

the order of Ti, and ω1(H) is the number of non-singular unicyclic components of H .

So, the previous theorem implies that (−1)klk =
∑

H W (H), where H ∈ Sk.

It is worth mentioning that the above result is a generalization of [4, Theorem 4.4]

and a theorem attributed to Kel’mans who gave a combinatorial interpretation to

coefficients of the Laplacian characteristic polynomial of simple graphs in terms of

the numbers of certain subforests, for more details see [9, Theorem 4.3].

In the next result, we obtain the first derivative of the Laplacian characteristic

polynomial of a graph G by means of whose edge deleted subgraphs.

Theorem 3.2. Let G be a mixed graph of order n and size m. Then the first

derivative of the Laplacian characteristic polynomial of G is equal to

xL′(G, x) = (n−m)L(G, x) +
∑

e∈E(G)

L(G− e, x).

Proof. If H ∈ Si(G), then H ∈ Si(G−e) for each e /∈ E(H). So that, Remark 3.1

deduces that (m − i)li(G) =
∑

e∈E(G) li(G − e), for 1 ≤ i ≤ n. Consequently, the

following holds

xL′(G, x) + (m− n)L(G, x) =

n∑

i=0

(m− i)li(G)xn−i

=

n∑

i=0

∑

e∈E(G)

li(G− e)xn−i

=
∑

e∈E(G)

L(G− e, x).

Suppose that G = K2, and e ∈ E(G) (either oriented or not). Then one may

readily check that L(G, x) = x2 − 2x ≤ L(G − e, x) = x2 for x ≥ µ1(G) = 2. Next,

we want to prove this observation in general.

Let G be a mixed graph and let S(G) =

[
0 M(G)

M(G)t 0

]
, where M(G) is the

incidence matrix of G. Then, the characteristic polynomial of S(G) is

χ(S(G), x) = xm−nL(G, x2).(3.1)
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Note that Eq. (3.1) is independent of the orientation of edges of G.

Theorem 3.3. [6, Page 43] Let A be a matrix of order n, with characteristic

polynomial χ(A, x) = det(xI − A). Then χ′(A, x) =
∑n

i=1 χ(Ai, x), where Ai is the

square matrix obtained from A by removing the ith row and the ith column.

Lemma 3.2. Let A be a symmetric matrix of order n such that all of whose

diagonal entries are zero. Then we have xχ(Ai, x) − χ(A, x) ≥ 0 for x ≥ λ1(A),

where Ai is the matrix obtained from A by removing the ith row and the ith column,

for 1 ≤ i ≤ n. Moreover, if λ1(A) > λ1(Ai), then xχ(Ai, x) − χ(A, x) > 0 for

x ≥ λ1(A).

Proof. If the ith row of the matrix A is equal to zero, then the lemma is obvious.

So, suppose that the ith row of A is non-zero. Let A′ be a matrix of order n, obtained

by replacing all non-zero entries of ith row and ith column of A with 0. By induction

on n, we prove that f(x) = χ(A′, x) − χ(A, x) ≥ 0 for x ≥ λ1(A). One may readily

check that the assertion holds when n = 2. So, suppose that n ≥ 3. Applying

Theorem 3.3, we find that

f ′(x) = χ′(A′, x)− χ′(A, x)

=

n∑

j=1

(χ(A′
j , x)− χ(Aj , x)).

Since the ith row of the matrix A is non-zero, for some j, we have Aj 6= A′
j . So that,

induction hypothesis implies

χ(A′
j , x) − χ(Aj , x) ≥ 0, when x ≥ λ1(Aj).

Moreover, Interlacing Theorem of eigenvalues [6, Theorem 4.3.15] specifies λ1(A) ≥
λ1(Aj) ≥ λ1(A

′
j), for each j. Thus, f ′(x) ≥ 0 for x ≥ λ1(A), consequently, f(x) is

a non-decreasing function on x ≥ λ1(A). On the other hand, Interlacing Theorem of

eigenvalues follows that λ1(A) ≥ λ1(A
′). Hence, χ(A′, x)−χ(A, x) ≥ χ(A′, λ1(A)) ≥ 0

for x ≥ λ1(A).

For the second part, if λ1(A) > λ1(A
′), then χ(A′, x)−χ(A, x) ≥ χ(A′, λ1(A)) >

0. So, we are done.

In the following, we recall the interlacing-type theorem for the Laplacian eigen-

values of mixed graphs.

Lemma 3.4. [11, Lemma 2.2] Let G be a mixed graph of order n, and e be an

edge of G. Then

µ1(G) ≥ µ1(G− e) ≥ µ2(G) ≥ · · · ≥ µn(G) ≥ µn(G− e).
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Theorem 3.5. Let G be a mixed graph with n vertices and m edges, and let H

be a spanning subgraph of G. Then L(H,x) ≥ L(G, x) for x ≥ µ1(G).

Proof. In order to prove this theorem, we consider the first derivative of the

polynomial p(x) = xm−nL(G, x2), which is

p(x)′ = (m− n)xm−n−1L(G, x2) + 2xm−n+1L′(G, x2).(3.2)

On the other hand, using Eq. (3.1) and Theorem 3.3 together, we find that

p(x)′ = χ′(S(G), x)

=
∑

e∈E(G)

χ(S(G− e), x) +
∑

v∈V (G)

χ(S(G)v, x)

=
∑

e∈E(G)

xm−1−nL(G− e, x2) +
∑

v∈V (G)

χ(S(G)v, x),(3.3)

in which S(G)v =

[
0 M(G)v

M(G)tv 0

]
and also the matrix M(G)v obtained from

M(G) by removing the row corresponding to the vertex v. Thus, combining Theo-

rem 3.2, and Eq. (3.2) and (3.3), we obtain that

xm−n+1L′(G, x2) =
∑

v∈V (G)

χ(S(G)v, x).(3.4)

Now, suppose that H is obtained from G by deleting a edges e1, e2, . . . , ea (a ≥ 1).

Therefore, for the subgraph H , we have

xm−a−n+1L′(H,x2) =
∑

v∈V (H)

χ(S(H)v, x).(3.5)

Applying Eq. (3.4) and (3.5), we find that

L′(H,x2)− L′(G, x2) = xn−1−m
∑

v∈V (G)

xaχ(S(H)v, x) − χ(S(G)v, x).

On the other hand, S(G)v is a symmetric matrix with zero diagonal, so by Lemma 3.2

χ(S(G)v, x) ≤ xχ(S(G − e1)v, x) ≤ · · · ≤ xaχ(S(H)v, x), for each v ∈ V (G) and

x ≥
√
µ1(G) ≥ λ1(S(G)v). Hence, we have L′(H,x) − L′(G, x) ≥ 0 for x ≥ µ1(G).

Moreover, Lemma 3.4 implies that µ1(G) ≥ µ1(H), and so L(H,x) − L(G, x) ≥
L(H,µ1(G)) ≥ 0, for x ≥ µ1(G). In addition, if µ1(G) > µ1(H), then L(H,x) −
L(G, x) ≥ L(H,µ1(G)) > 0 for x ≥ µ1(G). This completes the proof.
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Here, we consider the problem of reconstructing L(G, x) from the Laplacian char-

acteristic polynomial of edge deleted subgraphs of a mixed graph G.

Theorem 3.6. The Laplacian characteristic polynomial of a mixed graph G is

reconstructible from the collection of the Laplacian characteristic polynomial of edge

deleted subgraphs of G.

Proof. One may see that the number of edges is reconstructible from the collec-

tion of the Laplacian characteristic polynomial of edge deleted subgraphs of G. So,

Theorem 3.2 implies that

n∑

i=0

(m− i)li(G)xn−i =
∑

e∈E(G)

L(G− e, x).

Consequently, the coefficients of the Laplacian characteristic polynomial are recon-

structible.

Let G be a mixed graph. Denote by
−→
G an all-oriented mixed graph obtained

from G by assigning to each unoriented edge of G an arbitrary orientation. Also, the

mixed graph with adjacency matrix −A(G) is denoted by Ĝ. Let D be a signature

matrix which is a diagonal matrix with ±1 along its diagonal. Then DtL(G)D is the

Laplacian matrix of a mixed graph with the same underlying graph as that of G such

that some oriented edges of G may turn to be unoriented and vice versa. We use the

notation DG to denote the graph obtained from G by a re-signing under the signature

D, and assume that the labelling of the vertices of DG is the same as that of G.

Theorem 3.7. [11, Lemma 2.4] Let G be a connected mixed graph. Then G is

singular if and only if G is quasi-bipartite.

Theorem 3.8. [1, Theorem 4] Let G be a connected mixed graph. Then G is

quasi-bipartite if and only if there exists a signature matrix D such that DtL(G)D =

L(
−→
G).

Now, suppose that µ is an eigenvalue of the matrix L(G) with the corresponding

eigenvector X = (x1, x2, . . . , xn)
t. Then for every v ∈ V (G), we have

(d(v) − µ)xv =
∑

e=uv∈V (G)

(−sgn(e))xu.(3.6)

In the next result, we provide connections between Laplacian characteristic poly-

nomial of a mixed graph and the Laplacian characteristic polynomial of a digraph.

Theorem 3.9. Let G be a non-singular connected mixed graph of order n and

size m. Then there exists a digraph DG with 2n vertices and 2m edges such that

(i) L(DG, x) = L(G, x)L(
−→
G, x);
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(ii) L(DG, x) = L(Ĝ, x)L(G, x).

Proof. Let G be a mixed graph with vertex set V (G) = {v1, v2, . . . , vn}. Let

A = {e1, . . . , ek} be a minimum subset of E(G) whose removal from G results in a

quasi-bipartite subgraph of G. By Theorem 3.8, we may find a signature matrix D

such that DtL(G \A)D = L(
−−−→
G \A). Let G′ = DG, obviously two matrices L(G) and

L(G′) have the same eigenvalues. Because the set A is the minimum subset of E(G)

by which G \ A is singular, the graph G′ is a non-singular mixed graph such that

only the edges in A are unoriented. Suppose that G′′ is a copy of G′ and the vertex

ui ∈ V (G′′) corresponds to the vertex vi ∈ V (G′). Now, let DG be an all-oriented

graph on 2n vertices which is obtained from the disjoint union (G′ \ A) ∪ (G′′ \ A)

by adding edges e′i = ui1vi2 and e′′i = vi1ui2 , where ei = vi1vi2 ∈ A, and 1 ≤ i ≤ k.

Then assign an arbitrary orientation to the edges e′i and e′′i . Also, order the vertices

of DG as v1, v2, . . ., vn, u1, u2, . . ., un.

To prove case (i), suppose that {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Yn} are two

sets of orthonormal basis for Rn consisting of eigenvectors of the matrices L(G′) and

L(
−→
G), corresponding to eigenvalues µi(G) and µi(

−→
G ), respectively. Then by Eq. (3.6),

X̂i =

[
Xi

−Xi

]
and Ŷi =

[
Yi

Yi

]
are eigenvectors of the matrix L(DG) corresponding to

the eigenvalues µi(G) and µi(
−→
G), respectively, for 1 ≤ i ≤ n. In order to prove (i), it

is enough to show that the set {X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn} is a linearly independent set.

Obviously, two sets {X̂1, . . . , X̂n} and {Ŷ1, . . . , Ŷn} are linearly independent. Suppose

that
∑n

i=1 ciX̂i +
∑n

i=1 c
′
iŶi = 0 for some ci, c

′
i ∈ R. Thus,

∑n
i=1 ciXi +

∑n
i=1 c

′
iYi =∑n

i=1 ciXi−
∑n

i=1 c
′
iYi. Consequently,

∑n

i=1 c
′
iYi = 0, and so c′i = 0 for each 1 ≤ i ≤ n.

This completes the proof of (i).

(ii) Suppose that {X1, X2, . . . , Xn} and {Y1, Y2, . . . , Yn} are two sets of orthonor-

mal basis for R
n consisting of eigenvectors of the matrices L(Ĝ′) and L(G), corre-

sponding to µi(Ĝ) and µi(G), respectively, for 1 ≤ i ≤ n. Then by Eq. (3.6), the

vectors X̂i =

[
Xi

−Xi

]
and Ŷi =

[
Yi

Yi

]
are eigenvectors of the matrix L(DG) corre-

sponding to µi(Ĝ) and µi(G), respectively, for 1 ≤ i ≤ n. In a similar way, one may

check that {X̂1, . . . , X̂n, Ŷ1, . . . , Ŷn} is a linearly independent set.

It should be noted that the part (i) of the above theorem follows directly from

[8, Theorem 30]. However, we are unaware of this result.

Corollary 3.3. Let G be a non-singular mixed graph of order n, and DG be

the graph constructed in the proof of Theorem 3.9. Then for each e ∈ E(DG), we

have µ1(G) ≥ µ1(DG− e).

Proof. This is an immediate result of Lemma 3.4.
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Note that the lower bound on the spectral radius of L(G) in the previous corollary

is better than 1 + ∆(G) (see e.g [11, Lemma 3.1]). More precisely, with the notation

used in proof of Theorem 3.9, we have dDG(ui) = dDG(vi) = dG(vi). So, ∆(DG) =

∆(G), and we then find that µ1(DG− e) ≥ ∆(G) + 1, by [11, Lemma 3.1].

A mixed graph G is called bipartite, if its underlying graph is bipartite.

Proposition 3.4. Let G be a singular connected mixed graph. If the matrices

L(G) and L(Ĝ) have the same eigenvalues, then G is bipartite.

Proof. Since G is singular, using Theorem 3.8, there exist signature matrices

D1 and D2 such that Dt
1L(G)D1 = Dt

2L(Ĝ)D2 = L(
−→
G). Then Ĝ = DG, when

D = D1D2. Therefore, for each vivj ∈ E(G) we have DiiDjjLij(G) = −Lij(G).

Suppose that V1 = {vi ∈ V (G)|Dii = 1} and V2 = {vi ∈ V (G)|Dii = −1}. Obviously,

G is a bipartite graph.

Note that the previous proposition is not true in general. Regarding Fig. 1, one

may check that G is a non-bipartite mixed graph such that L(G, x) = L(Ĝ, x) =

x6 − 14x5 + 74x4 − 184x3 + 217x2 − 106x+ 12.

Fig. 1. The graph G.

Proposition 3.5. Let G be a bipartite mixed graph. Then the matrices L(G)

and L(Ĝ) have the same eigenvalues.

Proof. Since G is bipartite, the digraph DG is also bipartite. Thus, L(DG, x) =

L(DG, x) and consequently by Theorem 3.9, L(G, x) = L(Ĝ, x). This completes the

proof.

Lemma 3.6. Let G be a mixed graph. Then µ1(G) ≤ µ1(G), and equality holds

if and only if Ĝ is a quasi bipartite graph.

Proof. Suppose that X = (x1, . . . , xn)
t is an eigenvector of L(G) corresponding

to µ1(G). Then by Rayleigh-Ritz Theorem [6, Theorem 4.2.2], we have

µ1(G) = XtL(G)X

=
∑

e=vivj∈E(G)

(xi + sgn(e)xj)
2

≤
∑

e=vivj∈E(G)

(|xi|+ |xj |)2
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= |X |tL(G)|X |
≤ µ1(G),

where |X | = (|x1|, . . . , |xn|)t. Moreover, the equality obtained from [10, Lemma 2.3].

So, if G is a quasi-bipartite mixed graph, then µ1(G) ≤ µ1(Ĝ). Also, by Propo-

sition 3.5, we obtain µ1(G) = µ1(Ĝ), when G is bipartite.

4. Some transformations. As we see in Section 2, associated with a square

matrix, one may correspond a weighted digraph called Coates digraph. Using the

connection between the Laplacian matrix and a partitioned matrix involving the in-

cidence matrix of a mixed graph G (see Eq. (3.1)), and also properties of Coates

digraphs, in this section we discuss changes in the mixed Laplacian characteristic

polynomial. More precisely, in the first part, we state some results on the Laplacian

characteristic polynomial by which we could order mixed unicyclic graphs based on

their Laplacian spectral radius. Finally, in the last part we focus our attention to

the Laplacian characteristic polynomial of unoriented graphs, which is called signless

Laplacian characteristic polynomial.

4.1. Laplacian matrix of a mixed graph. For convenience, we use the nota-

tion D(G) = D(S(G)) for the Coates digraph of S(G) =

[
0 M(G)

M(G)t 0

]
, where

M(G) is incidence matrix of G. Noting that this matrix is defined in Section 3.

The following theorem is a generalization of Theorem 3.5 in [7] and Theorem 2.10

in [5]. Note that a pendent mixed path is a mixed path whose inner vertices all have

degree 2 and one of its end vertices is a pendent vertex.

Theorem 4.1. Let v be a vertex of a non-trivial connected mixed graph G, and

for non-negative integers l, k, let G(l, k) denote the graph obtained from G by adding

pendent mixed paths of lengths l and k at vertex v. If 1 ≤ k ≤ l, then

L(G(l + 1, k − 1), x)− L(G(l, k), x) ≥ 0,

for x ≥ µ1(G(l + 1, k − 1)). In particular µ1(G(l, k)) ≥ µ1(G(l + 1, k − 1)).

In order to prove Theorem 4.1, we state the following lemmas.

Lemma 4.1. Let l, k be non-negative integers such that 1 ≤ k ≤ l. Then we have

L(G(l + k, 0), x) ≥ L(G(l, k), x), for x ≥ µ1(G(l + k, 0)).

Proof. LetH = D(G(l, k)) andH ′ = D(G(l+k, 0)). By Eq. (3.1), equivalently, we

want to prove that χ(H ′, x) ≥ χ(H,x) for x ≥ λ1(H
′). Using the notation of Section 2,

we have H = D(G)vuD(Pl+k), and H ′ = D(G)vwD(Pl+k) in which v ∈ V (G), and
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w, u ∈ V (Pl+k) such that dPl+k
(u) = 2 and dPl+k

(w) = 1. So, applying Theorem 2.3

to the graphs H and H ′, we find that

χ(H ′, x)− χ(H,x) =
(
xχ(D(G) − v, x) − χ(D(G), x)

)

(
χ(D(Pl+k)− u, x)− χ(D(Pl+k)− w, x)

)
.

According to Lemma 3.2, we have xχ(D(G)−v, x)−χ(D(G), x) ≥ 0 for x ≥ λ1(D(G)).

Moreover,D(Pl+k)−u is a proper spanning subdigraph ofD(Pl+k)−w (i.e., D(Pl+k)−
u obtained from D(Pl+k) − w by deleting the some edges for instance st). Thus,

Theorem 2.2 implies that

χ(D(Pl+k)− u, x)− χ(D(Pl+k)− w, x) = −χ(D(Pl+k)− u− s− t, x)

− 2
∑

Z∈Cst

χ(D(Pl+k)− u− V (Z), x).

Now, by Interlacing Theorem, we obtain

χ(D(Pl+k)− u, x)− χ(D(Pl+k)− w, x) ≥ 0, for x ≥ λ1(D(Pl+k)− u).

This completes the proof.

Lemma 4.2. Let G be a mixed graph which has a pendent vertex u adjacent to a

vertex v of degree 2. Then we have

L(G, x) = (x − 2)L(G− u, x)− L(G− u− v, x).

Proof. Recall that L(G, x) =
∑n

i=0 li(G)xn−i. Obviously, l0(G) = l0(G− u) = 1,

l1(G) = l1(G − u) − 2l0(G − u) = l1(G − u) − 2 = −2m. Moreover, in Remark 3.1,

each subgraph H ∈ Si(G) with i edges contains n − i mixed trees. Therefore, all

connected components of H ∈ Sn(G) are non-singular unicyclic graphs. So that

ln(G) = −ln−1(G− u) = ln−2(G− u− v). Thus, to prove the lemma, it is enough to

show that for each 2 ≤ i ≤ n− 1,

li(G) = li(G− u)− 2 li−1(G − u)− li−2(G− u− v).

Consider H ∈ Si(G), where Si(G) is the set of all spanning subgraphs of G whose

connected components are trees or non-singular unicyclic graphs with i edges. Then

the following cases occur:

Case (i). If uv /∈ E(H), let H ′ = H − u ∈ Si(G− u).

Case (ii). Suppose uv ∈ E(H), and vw /∈ E(H), where w is the other neighbor of

v. Let H ′ = H − u ∈ Si−1(G− u).
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Case (iii). Suppose uv, vw ∈ E(H), and also these two edges are contained in

a tree of order a in H . Let H ′ = H − u ∈ Si−1(G − u) and H ′′ = H − u − v ∈
Si−2(G− u− v).

Case (iv). Suppose uv, vw ∈ E(H), and these two edges are contained in a non-

singular unicyclic graph in H . Let H ′ = H −u ∈ Si−1(G−u) and H ′′ = H−u− v ∈
Si−2(G− u− v).

It should be noted that this correspondence is obviously a one-to-one correspon-

dence. Moreover, if H contributes (−1)iW (H) toward the coefficient li of xn−i on

the left, then on the right H ′ and H ′′ also contribute the same amount in each of the

above cases, as it is shown in the following:

• In case (i), H ′ contributes (−1)iW (H) to the coefficient li(G− u) of xn−1−i in

L(G−u, x). So, it supplies (−1)iW (H) toward the coefficient of xn−i in xL(G−u, x).

• In case (ii), H ′ ∈ Si−1(G − u) contributes (−1)i−1 W (H)
2 to the coefficient

li−1(G− u) of xn−1−(i−1) in L(G− u, x).

• In case (iii), H ′ ∈ Si−1(G−u) contributes (−1)i−1(a−1)W (H)
a

to the coefficient

li−1(G− u) of xn−1−(i−1) in L(G− u, x) and also H ′′ = H − u− v ∈ Si−2(G− u− v)

contributes (−1)i−2(a − 2)W (H)
a

to the coefficient li−2(G − u − v) of xn−2−(i−2) in

L(G− u− v, x).

• In case (iv), H ′ ∈ Si−1(G − u) contributes (−1)i−1W (H) to the coefficient

li−1(G− u) of xn−1−(i−1) in L(G− u, x) and also H ′′ = H − u− v ∈ Si−2(G− u− v)

contributes (−1)i−2W (H) to the coefficient li−2(G − u − v) of xn−2−(i−2) in L(G −
u− v, x).

Thus, the contribution of each subgraph in Si(G) to the left side is matched by

the corresponding contribution on the right side by H ′ and H ′′. So we are done.

Proof of Theorem 4.1. By induction on k, we prove that L(G(l + 1, k − 1), x) ≥
L(G(l, k), x) for x ≥ µ1(G(l + 1, k − 1)). If k = 1, then by Lemma 4.1, the assertion

holds. Suppose that k ≥ 2, so that applying Lemma 4.2 to the graphs G(l, k) and

G(l + 1, k − 1), we obtain that

L(G(l + 1, k − 1), x)− L(G(l, k), x) = L(G(l, k − 2), x)− L(G(l − 1, k − 1), x).

Now, the induction hypothesis yields

L(G(l + 1, k − 1), x) ≥ L(G(l, k), x), for x ≥ µ1(G(l, k − 2)).

Moreover, Lemma 3.4 implies that µ1(G(l + 1, k − 1)) ≥ µ1(G(l, k − 2)). This com-

pletes the proof of the first part of the theorem. For the second part, we have

L(G(l, k), µ1(G(l + 1, k − 1))) ≤ 0, so that µ1(G(l + 1, k − 1)) ≤ µ1(G(l, k)).
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Example 4.3. Suppose that G and G′ are two graphs depicted in Fig. 2. By

Maple, one may check that G′ has the same Laplacian spectral radius as G, µ1(G) =

µ1(G
′) = 3 +

√
6, and the same corresponding eigenvector X = (−2 −

√
6, 0,−2 −√

6, 1, 1, 0, 0, 1, 1)t. So that, in the previous theorem the equality attains.

G

v1 v2

v3

v4

v5

v6

v7

v8

v9

=⇒

G′

v1 v2

v3

v4

v5

v6 v7

v8

v9

Fig. 2. The graphs G and G′.

A starlike is a subdivision of a star. Then a starlike has exactly one vertex of

degree greater than two.

Theorem 4.2. Let G be a mixed graph G 6= K1,K2 and T be a mixed star like

graph. Let H = GvuT and H ′ = GvwT where v ∈ V (G), u,w ∈ V (T ) such that

dT (u) = n− 1 and dT (w) = 1. Then we have L(H ′, x) ≥ L(H,x) for x ≥ µ1(H
′). In

particular µ1(H) ≥ µ1(H
′).

Proof. By Eq. (3.1), equivalently, we should prove that χ(D(H ′), x) ≥ χ(D(H), x)

for x ≥ λ1(D(H ′)). By Theorem 2.3, we conclude that

χ(D(H ′), x)− χ(D(H), x) = (xχ(D(G) − v, x)− χ(D(G), x))

(χ(D(T )− u, x)− χ(D(T )− w, x)) .

One may see thatD(T )−u is the spanning subdigraph ofD(T )−w. Thus, Theorem 2.2

and Interlacing Theorem imply that

χ(D(T )− u, x)− χ(D(T )− w, x) ≥ 0 for x ≥ λ1(D(T )− u).

On the other hand, Lemma 3.2 specifies that xχ(D(G) − v, x) − χ(D(G), x) ≥ 0 for

x ≥ λ1(D(G)). Therefore, L(H ′, x) ≥ L(H,x) for x ≥ µ1(H
′). Moreover, we have

L(H,µ1(H
′)) ≤ 0, so that µ1(H

′) ≤ µ1(H). This completes the proof.

Noting that, by Example 4.3, one may see that in the previous theorem, the

equality case may occur.

Next, let Un,g be the collection of all mixed unicyclic graphs on n vertices with

girth g. Suppose that the vertices of the cycle Cg are labelled by v1, . . . , vg, ordered
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in a natural way around Cg, say in the clockwise direction. Also, assume that Ti is a

rooted tree of order ni ≥ 1 attached to vi, where
∑g

i=1 ni = n. Then we denote U by

C(T1, . . . , Tg). In the following results, we are interested in ordering mixed unicyclic

graphs with fixed girth, based on their Laplacian spectral radius.

Corollary 4.4. Let G = C(T1, . . . , Tg). Then for every 1 ≤ i ≤ n,

µ1(C(T1, . . . , Pni
, . . . , Tg)) ≤ µ1(G) ≤ µ1(C(T1, . . . , Sni

, . . . , Tg)),

where the roots of Pni
and Sni

have degree 1 and ni − 1, respectively.

Proof. If Ti 6= Pmi
, then let u ∈ V (Ti) such that dG(u) > 2 and d(u, vi) is

the largest one, where d(u, v) denotes the length of a shortest path from u to v.

Applying Theorem 4.1 to the vertex u, we obtain a unicyclic mixed graph H , for

which µ1(H) ≤ µ1(G). Repeating this procedure, the left inequality is proved.

For the right inequality, suppose that Ti 6= Smi
. Let w be a vertex in V (Ti), such

that all of its neighbors except one are pendent and d(w, vi) is also the largest one.

Applying Theorem 4.2 to the vertex w, we obtain the graph H ′ with µ1(H
′) ≥ µ1(G).

So by repeating this procedure, the right inequality is proved.

Corollary 4.5. Let G = C(T1, . . . , Tg). Then

µ1(C(Pn1
, . . . , Png

)) ≤ µ1(G) ≤ µ1(C(Sn1
, . . . , Sng

)).

Proof. By applying the previous corollary to every i (1 ≤ i ≤ g), we are done.

4.2. Signless Laplacian matrix. In this part, we study the Laplacian matrix

of a simple undirected graph G which is called signless Laplacian matrix of G, and

is denoted by Q(G). Also, the signless Laplacian characteristic polynomial of G is

denoted by Q(G, x) = det(xI −Q(G)). It is worth mentioning that part (ii) of The-

orem 3.9, establishes the connection between the Laplacian characteristic polynomial

of a mixed graph and the signless Laplacian characteristic polynomial of the graph

DG.

Also, the following relations are well-known (see for instance [4])

Q(G) = M(G)M(G)t, M(G)tM(G) = A(L(G)) + 2Im,(4.1)

where L(G) is the line graph of G. Since non-zero eigenvalues of M(G)M(G)t and

M(G)tM(G) are identical, Eq. (4.1) implies that the adjacency characteristic poly-

nomial of the graph L(G), denoted by A(L(G), x), equals

A(L(G), x) = (x + 2)m−nQ(G, x+ 2).(4.2)
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In the following result, we state the relation between the Laplacian characteristic

polynomials of G and G− e, whenever e ∈ E(G).

Theorem 4.3. Let G be a simple graph of order n and size m. Then for each

e ∈ E(G), we have

Q(G, x) =
x− 2

x
Q(G− e, x)− 1

x2

∑

e′∈N(e)

Q(G− e− e′, x)

− 2
∑

Z∈Ce

1

x|E(Z)|
Q(G− E(Z), x),

where N(e) ⊆ E(G) is the set of edges incident with the edge e in G.

Proof. Using Eq. (4.2) and Theorem 2.2, we obtain that

(x+ 2)m−nQ(G, x+ 2) = A(L(G), x)

= xA(L(G − e), x)−
∑

e′∈N(e)

A(L(G− e− e′), x)

− 2
∑

Z∈Ce

A(L(G − E(Z)), x)

= x(x+ 2)m−1−nQ(G− e, x+ 2)

− (x+ 2)m−2−n
∑

e′∈N(e)

Q(G− e− e′, x+ 2)

−
∑

Z∈Ce

(x+ 2)m−|E(Z)|−nQ(G− E(Z), x+ 2).

This completes the proof.

Accordingly, the following results hold.

Corollary 4.6. Let H be a spanning subgraph of G, then for x ≥ µ1(G)

Q(H,x)− 2

x
Q(H,x) ≥ Q(G, x).

If µ1(G) > µ1(H) (in particular, if G is connected and H is a spanning subgraph of

G), then Q(H,x)− 2
x
Q(H,x) > Q(G, x) for x ≥ µ1(G).

Proof. Let E(H) = E(G) \ {e1, e2, . . . , ea}. According to Theorem 4.3, we obtain

for x ≥ µ1(G)

Q(G− e1 − e2 − · · · − ea−1, x)−Q(H,x) +
2

x
Q(H,x) ≤ 0.

On the other hand, for every 1 ≤ i ≤ a− 2, Theorem 3.5 yields that

Q(G− e1 − e2 − · · · − ei, x)−Q(G− e1 − e2 − · · · − ei − ei+1, x) ≤ 0

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 135-151, March 2015



ELA

On the Laplacian Characteristic Polynomials of Mixed Graphs 151

for x ≥ µ1(G). This completes the proof.

Remark 4.7. If H is a spanning subgraph of G, the previous corollary together

with Theorem 3.5 imply that for x ≥ µ1(G)

Q(G, x) +
2

x
Q(G, x) ≤ Q(G, x) +

2

x
Q(H,x) ≤ Q(H,x).

If µ1(H) < µ1(G) (in particular, if G is connected and H is a spanning subgraph of

G), then Q(G, x) + 2
x
Q(G, x) < Q(H,x) for x ≥ µ1(G).
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