FURTHER RESULTS ON GENERALIZED INVERSES IN RINGS WITH INVOLUTION*

N. CASTRO-GONZÁLEZ ${ }^{\dagger}$, JIANLONG CHEN ${ }^{\ddagger}$, AND LONG WANG ${ }^{\ddagger}$

Abstract

Let \mathcal{R} be a unital ring with an involution. Necessary and sufficient conditions for the existence of the Bott-Duffin inverse of $a \in \mathcal{R}$ relative to a pair of self-adjoint idempotents (e, f) are derived. The existence of a $\{1,3\}$-inverse, $\{1,4\}$-inverse, and the Moore-Penrose inverse of a matrix product is characterized, and explicit formulas for their computations are obtained. Some applications to block matrices over a ring are given.

Key words. Ring, outer inverse, Bott-Duffin-inverse, $\{1,3\}$-inverse, $\{1,4\}$-inverse, MoorePenrose inverse.

AMS subject classifications. $16 \mathrm{~W} 10,15 \mathrm{~A} 09$.

1. Introduction. Let \mathcal{R} be an associative ring with unity 1 . The set of all idempotent elements of \mathcal{R} will be denoted by $E(\mathcal{R})$. Let $a \in \mathcal{R}$ and $e \in E(\mathcal{R})$ such that $a e+1-e$ is invertible. Then the Bott-Duffin e-inverse of a (see 3, Chapter 2, Section 10]) is defined as the element $y=e(a e+1-e)^{-1}$. It is an outer inverse for a, i.e., $y a y=y$.

Let $e, f \in E(\mathcal{R})$. Djordjević and Wei introduced a type of outer inverse by prescribing the idempotens $y a$ and $a y$ in [8]: The (e, f)-outer generalized inverse of a is the unique element $y \in \mathcal{R}$, whenever it exists, satisfying

$$
y a y=y, \quad y a=e, \quad a y=1-f .
$$

A characterization of the existence of the (e, f)-outer generalized inverse was given in [8, Theorem 2.1].

For $a \in \mathcal{R}$, we associate the image and kernel ideals:

$$
a \mathcal{R}=\{a x: x \in \mathcal{R}\}, \quad a^{0}=\{x \in \mathcal{R}: a x=0\} .
$$

[^0]Kantún-Montiel [14] explored the idea of prescribing the image ideal yaR and the kernel ideal $(a y)^{0}$ related to the outer inverse: The image-kernel (e, f)-inverse of a is the unique element $y \in \mathcal{R}$, whenever it exists, satisfying

$$
y a y=y, \quad y a \mathcal{R}=e \mathcal{R}, \quad(a y)^{0}=(1-f)^{0} .
$$

If y is the (e, f)-outer generalized inverse of a, then it is the image-kernel (e, f) inverse of a. The converse part is as follows. If y is the image-kernel (e, f)-inverse of a then y is the (eya,f(1-ay))-outer generalized inverse of a. Elements with equal idempotents related to their image-kernel (e, f)-inverses are characterized in 18. The representation and approximation for the outer inverse having prescribed range and null space in the setting of complex matrices were given in [23].

Drazin in [9, Definition 3.2] introduced the following generalization of the BottDuffin inverse relative of a pair of idempotents: The Bott-Duffin (e, f)-inverse of a is the unique element $y \in \mathcal{R}$, when it exists, such that

$$
\begin{equation*}
y=e y=y f, \quad y a e=e, \quad f a y=f . \tag{1.1}
\end{equation*}
$$

We abbreviate Bott-Duffin to B-D. It was showed in [14, Proposition 3.4] that y is the the image-kernel (e, f)-inverse of a if and only if it is the B-D $(e, 1-f)$-inverse of a.

By [9. Theorem 2.2], we know that there exists a B-D (e, f)-inverse of a if and only if $e \in \mathcal{R} f a e$ and $f \in f a e \mathcal{R}$.

On account of the above result, for $e=f$ the equations in (1.1) have a common solution iff $e \in \mathcal{R} e a e \cap e a e \mathcal{R}$. This is equivalent to the invertibility of $e a+1-e$, see Lemma 2.1 In fact, the element for which (1.1) holds is precisely the classical Bott-Duffin e-inverse of $a, y=e(a e+1-e)^{-1}$.

We ask whether the existence of B-D (e, f)-inverse can be characterized in terms of classical invertibility. We present a result in Section 2 to answer this question in the setting of a ring with an involution under the assumption that both e and f are self-adjoint idempotents.

We recall that $*$ is an involution in \mathcal{R} if it is a map $*: \mathcal{R} \rightarrow \mathcal{R}$ such that for all $a, b \in \mathcal{R}:\left(a^{*}\right)^{*}=a,(a+b)^{*}=a^{*}+b^{*},(a b)^{*}=b^{*} a^{*}$. The set of all idempotent self-adjoint elements of $\mathcal{R}\left(e=e^{2}=e^{*}\right)$ will be denoted by $E^{*}(\mathcal{R})$.

Let $\mathcal{M}_{m \times n}(\mathcal{R})$ denote the set of $m \times n$ matrices over \mathcal{R} and let $\mathcal{M}_{m}(\mathcal{R})$ denote the ring of $m \times m$ matrices over \mathcal{R}. For any matrix $A=\left(a_{i j}\right) \in \mathcal{M}_{m \times n}(\mathcal{R}), A^{*} \in$ $\mathcal{M}_{n \times m}(\mathcal{R})$ stands for $(\bar{A})^{T}$ where $\bar{A}=\left(a_{i j}^{*}\right)$.

A matrix $A \in \mathcal{M}_{m \times n}(\mathcal{R})$ is said to be Moore-Penrose invertible with respect to
the involution $*$ if the equations
(1) $A X A=A$,
(2) $X A X=X$,
(3) $(A X)^{*}=A X$,
(4) $(X A)^{*}=X A$
have a unique common solution. Such a solution, when exists, is denoted by A^{\dagger}.
A is called regular if there exists X satisfying (1). Let $A\{1\}$ denote the set of matrices $X \in \mathcal{M}_{n \times m}(\mathcal{R})$ which satisfy equation (1).

If X is a solution of both (1) and (3) then it is called a $\{1,3\}$-inverse of A. Similarly, if X is a solution of both (1) and (4) then it is called a $\{1,4\}$-inverse of A. We will consider the following sets:

$$
\begin{aligned}
& A\{1,3\}=\left\{X \in A\{1\}:(A X)^{*}=A X\right\} \\
& A\{1,4\}=\left\{X \in A\{1\}:(X A)^{*}=X A\right\}
\end{aligned}
$$

Necessary and sufficient conditions for the existence of $\{1,3\}$-inverse, $\{1,4\}$ inverse and the Moore-Penrose inverse were presented in [22, Proposition 3.10]. When A is regular, the existence of A^{\dagger} was characterized by means of classical invertibility, see [20, Remark 3] and [19, Theorem 1.1]:

Lemma 1.1. Let $A \in \mathcal{M}_{m \times n}(\mathcal{R})$ be regular and let $A^{(1)}$ be an arbitrary element of $A\{1\}$. Then the following conditions are equivalent:

1. A^{\dagger} exists (with respect to *).
2. $U=A A^{*}+I_{m}-A A^{(1)}$ is invertible.
3. $V=A^{*} A+I_{n}-A^{(1)} A$ is invertible.

In this case,

$$
A^{\dagger}=A^{*}\left(U^{*}\right)^{-1}=\left(V^{*}\right)^{-1} A^{*}
$$

The existence of the Moore-Penrose inverse of a matrix product $P A Q$ was studied in [10, 20. We recall that if P and Q are both invertible then the Moore-Penrose inverse of $P A Q$ exists if and only if $P A$ has a $\{1,3\}$-inverse and $A Q$ has a $\{1,4\}$ inverse, in which case

$$
\begin{equation*}
(P A Q)^{\dagger}=(A Q)^{(1,4)} A(P A)^{(1,3)} \tag{1.2}
\end{equation*}
$$

where $(P A)^{(1,3)}$ and $(A Q)^{(1,4)}$ are arbitrary elements of $(P A)\{1,3\}$ and $(A Q)\{1,4\}$, respectively.

In Section 3, Theorems 3.1 3.4 and 3.6 provide necessary and sufficient conditions for the existence of a $\{1,3\}$-inverse of $P A$, a $\{1,4\}$-inverse of $A Q$, and the MoorePenrose inverse of $P A Q$, respectively, under some conditions. We also give explicit
formulas for the computation of these generalized inverses. In Section 4, we consider some applications of our results to block matrices.

For a treatment of generalized inverses of block matrices over a ring we refer the reader to [12].
2. Bott-Duffin inverses in involutory rings. Let \mathcal{R} be a ring with unity 1 and an involution $*$. Let $e, f \in E^{*}(\mathcal{R})$, in this section we derive necessary and sufficient conditions for the existence of the Bott-Duffin (e, f)-inverse, as well as an explicit formula for its computation.

It will be convenient to introduce the following sets. For $e \in E(\mathcal{R})$, we consider

$$
e \mathcal{R} e+1-e=\{e x e+1-e: x \in \mathcal{R}\}
$$

which is a submonoid of \mathcal{R} under multiplication and the group U_{e} of e-units in the subring $e \mathcal{R} e$ (corner ring) given by

$$
U_{e}=\{e x e: \text { exe } \mathcal{R}=e \mathcal{R}, \mathcal{R} e x e=\mathcal{R} e\} .
$$

Next known result links invertible elements in $e \mathcal{R} e+1-e$ and elements of U_{e}.
Lemma 2.1. Let $a \in \mathcal{R}$ and $e \in E(\mathcal{R})$. Then the following conditions are equivalent:
(i) $e \in e a e \mathcal{R} \cap \mathcal{R e a e}$.
(ii) eae $+1-e$ is invertible.
(iii) $a e+1-e$ is invertible.
(iv) $e a e \in U_{e}$.

In this case, the e-inverse of eae in U_{e} is given by

$$
\begin{equation*}
(e a e)_{e \mathcal{R} e}^{-1}=e(e a e+1-e)^{-1} e . \tag{2.1}
\end{equation*}
$$

We can now formulate our main result of this section.
Theorem 2.2. Let $a \in \mathcal{R}$ and $e, f \in E^{*}(\mathcal{R})$. Then the following conditions are equivalent:
(a) There exists a Bott-Duffin (e, f)-inverse of a.
(b) $e \in \mathcal{R}\left(\right.$ fae * fae and $f \in f a e(f a e)^{*} \mathcal{R}$.
(c) $u=(f a e)^{*} f a e+1-e$ is invertible and $f a e u^{-1}(f a e)^{*}=f$.
(d) $v=f a e(f a e)^{*}+1-f$ is invertible and $(f a e)^{*} v^{-1} f a e=e$.
(e) Both $u=(f a e)^{*} f a e+1-e$ and $v=f a e(f a e)^{*}+1-f$ are invertible.
(f) $e a^{*} f a e \in U_{e}$ and faea* $f \in U_{f}$.

In this case, the $B-D(e, f)$-inverse of a is given by

$$
\begin{align*}
y & =u^{-1}(f a e)^{*}=(f a e)^{*} v^{-1} \\
& =\left(e a^{*} f a e\right)_{e \mathcal{R} e}^{-1} a^{*} f=e a^{*}\left(f a e a^{*} f\right)_{f \mathcal{R} f}^{-1} \tag{2.2}
\end{align*}
$$

Proof. $(a) \Rightarrow(b)$. Let $y \in \mathcal{R}$ be a common solution of equations in (1.1). Then $e=y f a e$ and $f=$ faey. By substituting $e=(f a e)^{*} y^{*}$ into the last identity we get $f=f a e(f a e)^{*} y^{*} y$ and thus, $f \in f a e(f a e)^{*} \mathcal{R}$. Similarly, by substituting $f=y^{*}(f a e)^{*}$ in $e=y f a e$ we obtain $e=y y^{*}(f a e)^{*} f a e$ and $e \in \mathcal{R}(f a e)^{*} f a e$.
$(b) \Rightarrow(c)$. Suppose that there exists $s, t \in \mathcal{R}$ such that $e=s(\text { fae })^{*} f a e$ and $f=f a e(f a e)^{*} t$. Since $e=e^{*}$ we have $e=(f a e)^{*} f^{\prime} a e s^{*}$ and it follows that se=es*. Then

$$
(s e+1-e)\left((f a e)^{*} f a e+1-e\right)=\left((f a e)^{*} f a e+1-e\right)\left(e s^{*}+1-e\right)=1
$$

Hence, $x=s e+1-e$ is the inverse of $u=(f a e)^{*} f a e+1-e$. Further, we have $f a e u^{-1}(f a e)^{*}=f a e u^{-1}(f a e)^{*} f a e(f a e)^{*} t=f a e(f a e)^{*} t=f$.
$(c) \Leftrightarrow(d)$. We prove that (c) implies (d). Let $v=f a e(f a e)^{*}+1-f$. Using the relation $f a e u^{-1}(f a e)^{*}=f$, we obtain $v=1+f a e\left(1-u^{-1}\right)(f a e)^{*}$. Hence, v is invertible if and only if $1+\left(1-u^{-1}\right)(f a e)^{*}$ fae is invertible. But this last element is equal to u since $u^{-1}(f a e)^{*}$ fae $=e$. Now, it is easy to check that $(f a e)^{*} v=u(f a e)^{*}$ and, hence, $(f a e)^{*} v^{-1}=u^{-1}(f a e)^{*}$. Then $(f a e)^{*} v^{-1} f a e=u^{-1}(f a e)^{*} f a e=e$.

In the same manner, we can see that (d) implies (c).
$(d) \Rightarrow(e)$. On account of the above equivalence, this implication is immediate.
$(e) \Leftrightarrow(f)$. It follows by Lemma 2.1.
$(e) \Rightarrow(a)$. Suppose that both u and v are invertible. Now, we will prove that $y=(f a e)^{*} v^{-1}=u^{-1}(f a e)^{*}$ is a common solution of equations in (1.1). Clearly, $y=e y=y f$. Now, using this relation,

$$
y a e=y f a e=(f a e)^{*} v^{-1} f a e=u^{-1}(f a e)^{*} f a e=e
$$

In the same manner, we see that $f a y=f$, and thus y the B-D (e, f)-inverse of a. The last two identities in (2.2) are clear by (2.1).

We observe that if the Moore-Penrose inverse of a exists, then it is the B-D (e, f) inverse of a with $e=a^{\dagger} a$ and $f=a a^{\dagger}$. In this case, the element u given in item (c) and v given in item (d) of the above theorem are of the form $u=a^{*} a+1-a^{\dagger} a$ and $v=a a^{*}+1-a a^{\dagger}$, which are invertible whenever a^{\dagger} exists, see Lemma 1.1. Koliha et al. in [15, Theorem 1] established a relation between Moore-Penrose invertible and well-supported elements in a ring with involution.

We specialize the preceding theorem to Bott-Duffin e-inverse.
Corollary 2.3. Let $a \in \mathcal{R}$ and $e \in E^{*}(\mathcal{R})$. Then the following conditions are equivalent:
(a) There exists a B - D-inverse of a.
(b) $e \in \mathcal{R}(e a e)^{*}$ eae \cap eae $(e a e)^{*} \mathcal{R}$.
(c) $u=(e a e)^{*} e a e+1-e$ is invertible and eaeu ${ }^{-1}(e a e)^{*}=e$.
(d) $v=e a e(e a e)^{*}+1-e$ is invertible and $(e a e)^{*} v^{-1} e a e=e$.
(e) Both $u=(e a e)^{*} e a e+1-e$ and $v=e a e(e a e)^{*}+1-e$ are invertible.
(f) ea*eae $\in U_{e}$ and eaea* $e \in U_{e}$.

In this case, $y=u^{-1}(e a e)^{*}=(e a e)^{*} v^{-1}$ is the B-D e-inverse of a.
Next, we consider the product paq. We are interested in establishing a relation between the B-D (e, f)-inverse of $p a q$ and certain classes of generalized inverses of $p a$ and $a q$.

Theorem 2.4. Let $a, p, q \in \mathcal{R}$ and let $e, f \in E(\mathcal{R})$. Then the following conditions are equivalent:
(a) paq has a $B-D(e, f)$-inverse y.
(b) There exist $x, z \in \mathcal{R}$ such that:

$$
\begin{array}{ll}
x=e x, & x(a q) e=e, \\
z=z f, & f(p a) z=f, \tag{2.4}\\
z(p a) q=f p=q e
\end{array}
$$

In this case, we have $y=x a z$, where x and z are any solution of (2.3) and (2.4), respectively.

Proof. First, let y be the B-D (e, f)-inverse of paq. Then

$$
\begin{equation*}
y=e y=y f, \quad \text { ypaqe }=e, \quad f p a q y=f . \tag{2.5}
\end{equation*}
$$

We will prove that $x=y p$ satisfies (2.3). From $y=e y$ it follows $y p=e y p$, and hence, $x=e x$. Since ypaqe $=e$ we also have xaqe $=e$. Using fpaqy $=f$ it follows that fpaqyp $=f p a q x=f p$. Analogously, we can prove that $z=q y$ satisfies (2.4).

Conversely, let x be any solution of (2.3) and let z be any solution of (2.4). Define $y=x a z$. We will prove that y is a common solution of equations in (2.5). Clearly, $y=e y=y f$. Now, ypaqe $=x a z(p a) q e=x a q e=e$ and fpaqy $=f p a q x a z=f p a z=$ f.

REMARK 2.5. Conditions on x in (2.3) (or conditions on z in (2.4)) are not sufficient to ensure the uniqueness as we show in the following example. Let $\mathcal{R}=$ $\mathcal{M}_{2}\left(\mathbb{Z}_{12}\right)$ be the ring of 2×2 matrices over $\mathbb{Z}_{12}, a=\left(\begin{array}{ll}5 & 5 \\ 0 & 0\end{array}\right), p=q=I$, and let
the idempotents $e=\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)$ and $f=\left(\begin{array}{ll}4 & 0 \\ 0 & 0\end{array}\right)$ be given. Then $x=\left(\begin{array}{ll}5 & 0 \\ 0 & 0\end{array}\right)$ and $\widehat{x}=\left(\begin{array}{ll}5 & 3 \\ 0 & 0\end{array}\right)$ are two different solutions of (2.3).
3. Generalized inverses of a matrix product. Theorems 3.1, 3.4 and 3.6 give the existence of $(P A)^{(1,3)},(A Q)^{(1,4)}$ and the Moore-Penrose invertibility of $P A Q$ from the classical invertibility of matrices. These characterization results in the setting of matrices over a ring are news. Formulae (3.1), (3.3) and (3.4) are extensions to matrices over a ring of similar formulae obtained for matrices over the complexes in [5]. We recall that if $*$ is the conjugate transpose of a complex matrix, then a $\{1,3\}$ inverse, a $\{1,4\}$-inverse, and the Moore-Penrose inverse of a complex matrix always exist.

In what follows, E^{\prime} denotes the matrix $I-E$ for any idempotent matrix E.
We begin by giving a characterization for a matrix product $P A$ to have a $\{1,3\}$ inverse when a $A^{(1,3)}$ exists.

Theorem 3.1. Let $A \in \mathcal{M}_{m \times n}(\mathcal{R})$ be such that a $A^{(1,3)}$ exists and let $E=$ $A A^{(1,3)}$, and $P \in \mathcal{M}_{m}(\mathcal{R})$ be invertible. If $P E^{\prime}=E^{\prime}$ then the following conditions are equivalent:
(a) $P A$ has a $\{1,3\}$-inverse.
(b) $E \in \mathcal{M}_{m}(\mathcal{R}) Z \cap Z \mathcal{M}_{m}(\mathcal{R})$ where $Z=E P^{*} P E$.
(c) $U=P^{*} P E+I-E$ is invertible.
(d) $I+R^{*} R$ is invertible with $R=E^{\prime}\left(I-P^{-1}\right)$.

In this case, there exists a $\{1,3\}$-inverse of $P A$ of the form

$$
\begin{equation*}
(P A)^{(1,3)}=A^{(1,3)} U^{-1} P^{*}=A^{(1,3)} P^{-1}\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right) \tag{3.1}
\end{equation*}
$$

Proof. Let us first observe that if X be an arbitrary element of $A\{1,3\}$, then $X=A^{(1,3)}+\left(I-A^{(1,3)} A\right) Z$ with $Z \in \mathcal{M}_{n \times m}(\mathcal{R})$ and, thus, $A X=A A^{(1,3)}$. Therefore, if $P E^{\prime}=E^{\prime}$ we also have $P(I-A X)=I-A X$.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$. If $P A$ has a $\{1,3\}$-inverse Y then $Y^{*} A^{*} P^{*}=P A Y$ and $P A=P A Y P A$. Hence, $E=A A^{(1,3)}=A Y P E=P^{-1}(P A Y) P E=S E P^{*} P E$, where $S=P^{-1} Y^{*} A^{*}$. Since $E^{*}=E$, then it also follows that $E=E P^{*} P E S^{*} \in E P^{*} P E \mathcal{M}_{m}(\mathcal{R})$ and, (b) holds.
$(\mathrm{b}) \Leftrightarrow(\mathrm{c})$. This equivalence follows from Lemma 2.1.
$(\mathrm{c}) \Leftrightarrow(\mathrm{d})$. Let $R=E^{\prime}\left(I-P^{-1}\right)$. Using $R^{2}=0$, we can write

$$
\begin{aligned}
I+R^{*} R & =I+R^{*}-R^{*} P^{-1}=\left(I+R^{*}\right)\left(I-R^{*} P^{-1}\right) \\
& =\left(I+R^{*}\right)\left(P E+\left(P^{-1}\right)^{*} E^{\prime}\right) P^{-1}=\left(I+R^{*}\right)\left(P^{-1}\right)^{*} U P^{-1}
\end{aligned}
$$

where $U=P^{*} P E+I-E$. Since $I+R^{*}$ is invertible, then $I+R^{*} R$ is invertible if and only if U is invertible. Moreover,

$$
\left(I+R^{*} R\right)^{-1}=P U^{-1} P^{*}\left(I-R^{*}\right)
$$

From this, we also obtain that $U^{-1} P^{*}=P^{-1}\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right)$ whenever (c) holds and, thus, the second equality of (3.1) holds.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Define $Y=A^{(1,3)} U^{-1} P^{*}$. We will prove that Y is a $\{1,3\}$-inverse of $P A$. Firstly, we see that

$$
\begin{equation*}
Y P A=A^{(1,3)} U^{-1} P^{*} P A=A^{(1,3)} U^{-1}\left(P^{*} P E+I-E\right) A=A^{(1,3)} A . \tag{3.2}
\end{equation*}
$$

Then $P A Y P A=P A$, and thus, Y is a $\{1\}$-inverse of $P A$. Since $U^{*} E=E U$ it follows that $(P A Y)^{*}=P\left(U^{-1}\right)^{*} E P^{*}=P E U^{-1} P^{*}=P A Y$ and so $Y \in(P A)\{1,3\}$.

Remark 3.2. If we replace $A^{(1,3)}$ and $(P A)^{(1,3)}$ by $A^{(1,2,3)}$ and $(P A)^{(1,2,3)}$, respectively, in Theorem 3.1, then we obtain an analogous characterization of the existence of $\{1,2,3\}$-inverses of the product $P A$.

Some applications of previous results will be develop in Section 4. Here we include an example using the incidence matrix of a graph.

Example 3.3. Let $*$ be the conjugate transpose of a complex matrix and let A be an $m \times n$ incidence matrix of a connected graph. With an application of formula (3.1) we will derive an expression of a $\{1,3\}$-inverse of $P A$ when P is an $m \times m$ invertible row stochastic matrix.

For any $A^{(1,3)}$, denote $E=A A^{(1,3)}$, we have $E^{\prime}=\frac{1}{m} \mathbf{e e}^{T}$ where $\mathbf{e e}^{T}$ is the $m \times m$ matrix whose elements are all 1 (see [3, Ex. 109]). Since P is row stochastic, then $P \mathbf{e e}^{T}=\mathbf{e e}^{T}$ and, thus, $P E^{\prime}=E^{\prime}$ holds. Therefore, by (3.1),

$$
(P A)^{(1,3)}=A^{(1,3)} U^{-1} P^{*}=A^{(1,3)} P^{-1}\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right),
$$

where $U=P^{*} P-\left(P^{*} P+I\right) \frac{1}{m} \mathbf{e e}^{T}$ and $R=\frac{1}{m} \mathbf{e e}^{T}\left(I-P^{-1}\right)$.
Now we state an analogue of the above theorem concerning the $\{1,4\}$-inverse of the matrix product $A Q$.

Theorem 3.4. Let $A \in \mathcal{M}_{m \times n}(\mathcal{R})$ be such that A has a $\{1,4\}$-inverse, let $F=A^{(1,4)} A$ and let $Q \in \mathcal{M}_{n}(\mathcal{R})$ be invertible. If $F^{\prime} Q=F^{\prime}$, then the following conditions are equivalent:
(a) $A Q$ has a $\{1,4\}$-inverse.
(b) $F \in \mathcal{M}_{n}(\mathcal{R}) W \cap W \mathcal{M}_{n}(\mathcal{R})$ where $W=F Q Q^{*} F$.
(c) $V=F Q Q^{*}+I-F$ is invertible.
(d) $I+L L^{*}$ is invertible with $L=\left(I-Q^{-1}\right) F^{\prime}$.

In this case, there exists a $\{1,4\}$-inverse of $A Q$ of the form

$$
\begin{equation*}
(A Q)^{(1,4)}=Q^{*} V^{-1} A^{(1,4)}=\left(I+L^{*}\right)\left(I+L L^{*}\right)^{-1} Q^{-1} A^{(1,4)} \tag{3.3}
\end{equation*}
$$

Proof. We first note that $\left(A^{(1,4)}\right)^{*}$ is a $\{1,3\}$-inverse of A^{*} and $Q^{*}\left(I-A^{*}\left(A^{(1,4)}\right)^{*}\right)$ $=I-A^{*}\left(A^{(1,4)}\right)^{*}$. An application of Theorem 3.1 to the product $Q^{*} A^{*}$ shows that the following conditions are equivalent:
(a') $Q^{*} A^{*}$ has a $\{1,3\}$-inverse.
($\left.\mathrm{b}^{\prime}\right) F \in \mathcal{M}_{n}(\mathcal{R}) F Q Q^{*} F \cap F Q Q^{*} F \mathcal{M}_{n}(\mathcal{R})$.
(c') $U=Q Q^{*} F+I-F$ is invertible.
(d') $I+R^{*} R$ is invertible with $R=F^{\prime}\left(I-\left(Q^{*}\right)^{-1}\right)$.
From these relations, we conclude that (a), (b), (c), and (d) in this theorem are equivalent. Finally, by (3.1) we have $Y=\left(A^{(1,4)}\right)^{*} U^{-1} Q=\left(A^{(1,4)}\right)^{*}\left(Q^{*}\right)^{-1}(I+$ $\left.R^{*} R\right)^{-1}\left(I+R^{*}\right)$ is a $\{1,3\}$-inverse of $(A Q)^{*}$. Hence, Y^{*} is a $\{1,4\}$-inverse of $A Q$ and, thus, (3.3) holds.

Remark 3.5. If we replace $A^{(1,4)}$ and $(A Q)^{(1,4)}$ by $A^{(1,2,4)}$ and $(A Q)^{(1,4)}$, respectively, in Theorem[3.4, then we obtain an analogous characterization of the existence of $\{1,2,4\}$-inverses of the product $A Q$.

Based on previous Theorems, we derive a characterization of the existence of the Moore-Penrose inverse of a matrix product $P A Q$ in the case that A^{\dagger} exists.

Theorem 3.6. Let $A \in \mathcal{M}_{m \times n}(\mathcal{R})$ be such that A^{\dagger} exists, let $E=A A^{\dagger}, F=A^{\dagger} A$ and let $P \in \mathcal{M}_{m}(\mathcal{R})$ and $Q \in \mathcal{M}_{n}(\mathcal{R})$ be invertible matrices. If $P E^{\prime}=E^{\prime}$ and $F^{\prime} Q=F^{\prime}$, then the following are equivalent:
(a) $(P A Q)^{\dagger}$ exists.
(b) $E \in \mathcal{M}_{m}(\mathcal{R}) Z \cap Z \mathcal{M}_{m}(\mathcal{R})$ and $F \in \mathcal{M}_{n}(\mathcal{R}) W \cap W \mathcal{M}_{n}(\mathcal{R})$, where $Z=$ $E P^{*} P E$ and $W=F Q Q^{*} F$.
(c) $U=P^{*} P E+I-E$ and $V=F Q Q^{*}+I-F$ are invertible.
(d) $I+R^{*} R$ and $I+L L^{*}$ are invertible with $R=E^{\prime}\left(I-P^{-1}\right)$ and $L=\left(I-Q^{-1}\right) F^{\prime}$.

In this case,

$$
\begin{align*}
(P A Q)^{\dagger} & =Q^{*} V^{-1} A^{\dagger} U^{-1} P^{*} \\
& =\left(I+L^{*}\right)\left(I+L L^{*}\right)^{-1} Q^{-1} A^{\dagger} P^{-1}\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right) \tag{3.4}
\end{align*}
$$

Proof. We know that the Moore-Penrose inverse of $P A Q$ exists if and only if $P A$ has a $\{1,3\}$-inverse and $A Q$ has a $\{1,4\}$-inverse, in which case

$$
(P A Q)^{\dagger}=(A Q)^{(1,4)} A(P A)^{(1,3)}
$$

Now, the proof of the theorem is a consequence of Theorems 3.1 and 3.4.
4. Applications. Several authors described generalized inverses of block matrices and their properties [1, 2, 4, 6, 7, 11, 12, 16, 17, 21.

In this section, some applications of Theorems 3.1, 3.4 and 3.6 are indicated.
First, we characterize the existence of a $\{1,3\}$-inverse of a 2×2 block matrix M over \mathcal{R} of the form

$$
M=\left(\begin{array}{ll}
a & c \tag{4.1}\\
b & d
\end{array}\right)
$$

where $a \in \mathcal{M}_{m}(\mathcal{R})$ is invertible, b, c and d are matrices over \mathcal{R} of orders $k \times m, m \times l$ and $k \times l$, respectively. We denote by either I or 1_{m} the identity matrix in $\mathcal{M}_{m}(\mathcal{R})$.

Consider the factorization

$$
M=\left(\begin{array}{ll}
a & c \tag{4.2}\\
b & d
\end{array}\right)=\left(\begin{array}{cc}
1_{m} & 0 \\
b a^{-1} & 1_{l}
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & s
\end{array}\right)\left(\begin{array}{cc}
1_{m} & a^{-1} c \\
0 & 1_{l}
\end{array}\right)=P A Q
$$

Theorem 4.1. Let M as in 4.1) and let $s=d-b a^{-1} c$. Assume that $s\{1,3\} \neq \emptyset$ and let $s^{(1,3)} \in s\{1,3\}$ and $e=1_{k}-s s^{(1,3)}$. Then $M\{1,3\} \neq \emptyset$ if and only if $u=1_{m}+\left(b a^{-1}\right)^{*} e b a^{-1}$ is invertible. In this case, a $\{1,3\}$-inverse of M is given by

$$
M^{(1,3)}=\left(\begin{array}{cc}
\alpha u^{-1} & \alpha u^{-1}\left(b a^{-1}\right)^{*} e-a^{-1} c s^{(1,3)} \tag{4.3}\\
-s^{(1,3)} b a^{-1} u^{-1} & s^{(1,3)}\left(1_{k}-b a^{-1} u^{-1}\left(b a^{-1}\right)^{*} e\right)
\end{array}\right)
$$

where $\alpha=\left(1_{m}+a^{-1} c s^{(1,3)} b\right) a^{-1}$.
Proof. Let P, A and Q as in (4.2). It is easy to check that a $\{1,3\}$-inverse of A is of the form $A^{(1,3)}=\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & s^{(1,3)}\end{array}\right)$. Then

$$
E^{\prime}=I-A A^{(1,3)}=\left(\begin{array}{ll}
0 & 0 \\
0 & e
\end{array}\right)
$$

where $e=1_{k}-s s^{(1,3)}$. Hence, $P E^{\prime}=E^{\prime}$ holds. Set

$$
R=E^{\prime}\left(I-P^{-1}\right)=\left(\begin{array}{cc}
0 & 0 \\
e b a^{-1} & 0
\end{array}\right), \quad I+R^{*} R=\left(\begin{array}{cc}
u & 0 \\
0 & 1_{k}
\end{array}\right)
$$

where $u=1_{m}+\left(b a^{-1}\right)^{*} e b a^{-1}$. By Theorem 3.1] there exists a $\{1,3\}$-inverse of $P A$ if and only if u is invertible in the $\operatorname{ring} \mathcal{M}_{m}(\mathcal{R})$. By (3.1), a $\{1,3\}$-inverse of $P A$ is of the form $(P A)^{(1,3)}=A^{(1,3)} P^{-1}\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right)$. Therefore,

$$
\begin{align*}
(P A)^{(1,3)} & =\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & s^{(1,3)}
\end{array}\right)\left(\begin{array}{cc}
1_{m} & 0 \\
-b a^{-1} & 1_{l}
\end{array}\right)\left(\begin{array}{cc}
u^{-1} & 0 \\
0 & 1_{k}
\end{array}\right)\left(\begin{array}{cc}
1_{m} & \left(b a^{-1}\right)^{*} e \\
0 & 1_{k}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{-1} u^{-1} & a^{-1} u^{-1}\left(b a^{-1}\right)^{*} e \\
-s^{(1,3)} b a^{-1} u^{-1} & s^{(1,3)}\left(1_{k}-b a^{-1} u^{-1}\left(b a^{-1}\right)^{*} e\right)
\end{array}\right) . \tag{4.4}
\end{align*}
$$

Now, since Q is invertible then $P A Q\{1,3\} \neq \emptyset$ if and only if $P A\{1,3\} \neq \emptyset$ in which case $(P A Q)^{(1,3)}=Q^{-1}(P A)^{(1,3)}$. Pre-multiplying (4.4) by Q^{-1}, (4.3) is proved.

We can now state the analogue of previous theorem for the characterization of the existence of a $\{1,4\}$-inverse of matrix M.

Theorem 4.2. Let M as in 4.1) and let $s=d-b a^{-1} c$. Assume that $s\{1,4\} \neq \emptyset$ and let $s^{(1,4)} \in s\{1,4\}$ and $f=1_{l}-s^{(1,4)} s$. Then $M\{1,4\} \neq \emptyset$ if and only if $v=1_{m}+a^{-1} c f\left(a^{-1} c\right)^{*}$ is invertible. In this case, a $\{1,4\}$-inverse of M is given by

$$
M^{(1,4)}=\left(\begin{array}{cc}
v^{-1} \beta & -v^{-1} a^{-1} c s^{(1,4)} \tag{4.5}\\
f\left(a^{-1} c\right)^{*} v^{-1} \beta-s^{(1,4)} b a^{-1} & \left(1_{l}-f\left(a^{-1} c\right)^{*} v^{-1} a^{-1} c\right) s^{(1,4)}
\end{array}\right)
$$

where $\beta=a^{-1}\left(1_{m}+c s^{(1,4)} b a^{-1}\right)$.
Proof. We use the factorization (4.2). Choose $A^{(1,4)}=\left(\begin{array}{cc}a^{-1} & 0 \\ 0 & s^{(1,4)}\end{array}\right)$, which gives $F^{\prime}=I-A^{(1,4)} A=\left(\begin{array}{ll}0 & 0 \\ 0 & f\end{array}\right)$, where $f=1_{l}-s^{(1,4)} s$. Now, set

$$
L=\left(I-Q^{-1}\right) F^{\prime}=\left(\begin{array}{cc}
0 & a^{-1} c f \\
0 & 0
\end{array}\right), \quad I+L L^{*}=\left(\begin{array}{cc}
v & 0 \\
0 & 1_{l}
\end{array}\right)
$$

where $v=1_{m}+a^{-1} c f\left(a^{-1} c\right)^{*}$. With an application of Theorem 3.4 we obtain $A Q\{1,4\} \neq \emptyset$ iff v is invertible and

$$
(A Q)^{(1,4)}=\left(\begin{array}{cc}
v^{-1} a^{-1} & -v^{-1} a^{-1} c s^{(1,4)} \tag{4.6}\\
f\left(a^{-1} c\right)^{*} v^{-1} a^{-1} & \left(1_{l}-f\left(a^{-1} c\right)^{*} v^{-1} a^{-1} c\right) s^{(1,4)}
\end{array}\right)
$$

Since $(P A Q)^{(1,4)}=(A Q)^{(1,4)} P^{-1}$. Pre-multiplying (4.6) by P^{-1}, (4.5) is proved.
If $s=d-b a^{-1} c$ is regular, by Lemma 1.1 we have that s^{\dagger} exists iff $s^{*} s+1_{l}-s^{(1)} s$ is invertible. In this case, using previous results we can characterize the existence of the Moore-Penrose inverse of matrix M.

Theorem 4.3. Let M as in 4.1) and let $s=d-b a^{-1} c$. Assume that s^{\dagger} exists and set $e=1_{k}-s s^{\dagger}$ and $f=1_{l}-s^{\dagger} s$. Then M^{\dagger} exists if and only if both
$u=1_{m}+\left(b a^{-1}\right)^{*} e b a^{-1}$ and $v=1_{m}+a^{-1} c f\left(a^{-1} c\right)^{*}$ are invertible. In this case,

$$
M^{\dagger}=\left(\begin{array}{cc}
\gamma & \gamma\left(b a^{-1}\right)^{*} e-v^{-1} a^{-1} c s^{\dagger} \tag{4.7}\\
f\left(a^{-1} c\right)^{*} \gamma-s^{\dagger} b a^{-1} u^{-1} & \delta
\end{array}\right)
$$

where

$$
\begin{aligned}
& \gamma=v^{-1}\left(a^{-1}+a^{-1} c s^{\dagger} b a^{-1}\right) u^{-1} \\
& \delta=s^{\dagger}+f\left(a^{-1} c\right)^{*} \gamma\left(b a^{-1}\right)^{*} e-f\left(a^{-1} c\right)^{*} v^{-1} a^{-1} c s^{\dagger}-s^{\dagger} b a^{-1} u^{-1}\left(b a^{-1}\right)^{*} e
\end{aligned}
$$

Proof. In view of the factorization (4.2), we have that M is Moore-Penrose invertible iff $P A$ has a $\{1,3\}$-inverse and $A Q$ has a $\{1,4\}$-inverse. Now, since s^{\dagger} exists we can consider $s^{(1,3)}=s^{\dagger}$ in Theorem4.1 and $s^{(1,4)}=s^{\dagger}$ in Theorem4.2 to conclude that M is Moore-Penrose invertible iff both u and v defined as in the statement of this theorem are invertible. Using expressions (4.4) and (4.6), we compute $M^{\dagger}=$ $(A Q)^{(1,4)} A(P A)^{(1,3)}$ and we obtain the expression (4.7).

In what sequel, let T be a matrix over \mathcal{R} of the form

$$
T=\left(\begin{array}{ll}
a & 0 \tag{4.8}\\
b & d
\end{array}\right)
$$

where a, b and d are matrices over \mathcal{R} of orders $m \times n, k \times n$, and $k \times l$, respectively.
We will characterize the existence of a $\{1,3\}$-inverse of T when $a\{1,2,3\} \neq \emptyset$ and $d\{1,3\} \neq \emptyset$. Set

$$
\begin{equation*}
e=1_{k}-d d^{(1,3)}, \quad f=1_{n}-a^{(1,2,3)} a, \quad c=e b f . \tag{4.9}
\end{equation*}
$$

Consider the factorization

$$
T=\left(\begin{array}{ll}
a & 0 \tag{4.10}\\
b & d
\end{array}\right)=\left(\begin{array}{cc}
1_{m} & 0 \\
e b a^{(1,2,3)} & 1_{k}
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1_{n} & 0 \\
d^{(1,3)} b & 1_{l}
\end{array}\right)=P A Q
$$

Theorem 4.4. Let e, f, and c as in 4.9) and T as in 4.10. Assume that $c\{1,3\} \neq \emptyset$ and let $c^{(1,3)} \in c\{1,3\}$. Then $T\{1,3\} \neq \emptyset$ if and only if $u=1_{m}+$ $\left(b a^{(1,2,3)}\right)^{*}$ egba $a^{(1,2,3)}$ is invertible, where $g=1_{k}-c c^{(1,3)}$. In this case,

$$
T^{(1,3)}=\left(\begin{array}{cc}
1_{n} & 0 \tag{4.11}\\
-d^{(1,3)} b & 1_{l}
\end{array}\right)\left(\begin{array}{cc}
\sigma & \sigma\left(b a^{(1,2,3)}\right)^{*} e g+f c^{(1,3)} \\
-\eta & d^{(1,3)}-\eta\left(b a^{(1,2,3)}\right)^{*} e g
\end{array}\right)
$$

where $\sigma=\left(1-f c^{(1,3)} e b\right) a^{(1,2,3)} u^{-1}$ and $\eta=d^{(1,3)} e b a^{(1,2,3)} u^{-1}$.
Proof. Let P, A, and Q as in (4.10). We observe that $c c^{(1,3)}=c c^{(1,3)} e$. Using this, it is easy to check that a $\{1,3\}$-inverse of A is given by

$$
A^{(1,3)}=\left(\begin{array}{cc}
a^{(1,2,3)} & f c^{(1,3)} \\
0 & d^{(1,3)}
\end{array}\right)
$$

Then

$$
E^{\prime}=I-A A^{(1,3)}=\left(\begin{array}{cc}
1_{m}-a a^{(1,2,3)} & 0 \\
0 & e g
\end{array}\right)
$$

where $g=1_{k}-c c^{(1,3)}$. We can see that $P E^{\prime}=E^{\prime}$. Then we can apply Theorem 3.1 to the product $P A$. With the notation $R=\hat{E}^{\prime}\left(I-P^{-1}\right)$, using that ege $=g e$, we have

$$
R=\left(\begin{array}{cc}
0 & 0 \\
g e b a^{(1,2,3)} & 0
\end{array}\right), \quad R^{*}=\left(\begin{array}{cc}
0 & \left(b a^{(1,2,3)}\right)^{*} e g \\
0 & 0
\end{array}\right), \quad I+R^{*} R=\left(\begin{array}{cc}
u & 0 \\
0 & 1_{k}
\end{array}\right)
$$

where $u=1_{m}+\left(b a^{(1,2,3)}\right)^{*} e g b a^{(1,2,3)}$. By Theorem 3.1 $P A$ has a $\{1,3\}$-inverse if and only if $I+R^{*} R$ is invertible, or equivalently, u is invertible. In this case, a $\{1,3\}$-inverse of $P A$ has the form

$$
(P A)^{(1,3)}=A^{(1,3)} P^{-1}\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right)
$$

Substituting into this expression the matrix products

$$
A^{(1,3)} P^{-1}=\left(\begin{array}{cc}
a^{(1,2,3)} & f c^{(1,3)} \\
0 & d^{(1,3)}
\end{array}\right)\left(\begin{array}{cc}
1_{m} & 0 \\
-e b a^{(1,2,3)} & 1_{k}
\end{array}\right)=\left(\begin{array}{cc}
\left(1-f c^{(1,3)} e b\right) a^{(1,2,3)} & f c^{(1,3)} \\
-d^{(1,3)} e b a^{(1,2,3)} & d^{(1,3)}
\end{array}\right)
$$

and

$$
\left(I+R^{*} R\right)^{-1}\left(I+R^{*}\right)=\left(\begin{array}{cc}
u^{-1} & u^{-1}\left(b a^{(1,2,3)}\right)^{*} e g \\
0 & 1
\end{array}\right)
$$

we obtain, after an easy computation,

$$
(P A)^{(1,3)}=\left(\begin{array}{cc}
\sigma & \sigma\left(b a^{(1,2,3)}\right)^{*} e g+f c^{(1,3)} \\
-\eta & d^{(1,3)}-\eta\left(b a^{(1,2,3)}\right)^{*} e g
\end{array}\right)
$$

where $\sigma=\left(1-f c^{(1,3)} e b\right) a^{(1,2,3)} u^{-1}$ and $\eta=d^{(1,3)} e b a^{(1,2,3)} u^{-1}$. Now, since Q is invertible then $P A Q\{1,3\} \neq \emptyset$ if and only if $P A\{1,3\} \neq \emptyset$ in which case $(P A Q)^{(1,3)}=$ $Q^{-1}(P A)^{(1,3)}$. The latter establishes the formula (4.11).

In order to characterize the existence of a $\{1,4\}$-inverse of T when $a\{1,4\} \neq \emptyset$ and $d\{1,2,4\} \neq \emptyset$, set

$$
\begin{equation*}
e=1_{k}-d d^{(1,2,4)}, \quad f=1_{n}-a^{(1,4)} a, \quad c=e b f \tag{4.12}
\end{equation*}
$$

and consider the factorization

$$
T=\left(\begin{array}{ll}
a & 0 \tag{4.13}\\
b & d
\end{array}\right)=\left(\begin{array}{cc}
1_{m} & 0 \\
b a^{(1,4)} & 1_{k}
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1_{n} & 0 \\
d^{(1,2,4)} b f & 1_{l}
\end{array}\right)=\hat{P} \hat{A} \hat{Q}
$$

Similarly, with an application Theorem 3.4 we derive the analogue of previous theorem.

Theorem 4.5. Let e, f, and c as in 4.12) and T as in 4.13). Assume that $c\{1,4\} \neq \emptyset$ and let $c^{(1,4)} \in c\{1,4\}$. Then $T\{1,4\} \neq \emptyset$ if and only if $v=1_{l}+$ $d^{(1,2,4)} b h f\left(d^{(1,2,4)} b\right)^{*}$ is invertible, where $h=1_{n}-c^{(1,4)} c$. In this case,

$$
T^{(1,4)}=\left(\begin{array}{cc}
a^{(1,4)}-h f\left(d^{(1,2,4)} b\right)^{*} \mu & h f\left(d^{(1,2,4)} b\right)^{*} \rho+c^{(1,4)} e \tag{4.14}\\
-\mu & \rho
\end{array}\right)\left(\begin{array}{cc}
1_{m} & 0 \\
-b a^{(1,4)} & 1_{k}
\end{array}\right)
$$

where $\rho=v^{-1} d^{(1,2,4)}\left(1-b f c^{(1,4)} e\right)$ and $\mu=v^{-1} d^{(1,2,4)} b f a^{(1,4)}$.
We will characterize the Moore-Penrose invertibility of T when there exist a^{\dagger} and d^{\dagger}. Set

$$
\begin{equation*}
e=1_{k}-d d^{\dagger}, \quad f=1_{n}-a^{\dagger} a, \quad c=e b f . \tag{4.15}
\end{equation*}
$$

We begin by finding conditions for the existence of c^{\dagger}.
Proposition 4.6. Let e, f and c as in 4.15). If any of the following conditions hold, then c^{\dagger} exists.
(i) $w=c c^{*}+d d^{*}$ is invertible.
(ii) $z=c^{*} c+a^{*} a$ is invertible.

Proof. (i) First, we prove that if w is invertible then c is regular. Let $x=c^{*} w^{-1}$. Since $e w=c c^{*}$ we also have $e=c c^{*} w^{-1}=c x$. Using this, we get $c x c=e c=c$. Hence, x is a 1 -inverse of c.

Now, choose $c^{(1)}=c^{*} w^{-1}$. Then $c c^{(1)}=e$ and by Lemma 1.1, c^{\dagger} exists if and only if $v=c c^{*}+1-e$ is invertible. We only need to show that v is invertible. Since $\left(c c^{*}+1-e\right)\left(d d^{*}+e\right)=c c^{*}+d d^{*}$ we have that $c c^{*}+1-e$ is invertible because both w and $d d^{*}+e$ are invertible, the last one due to the fact that d^{\dagger} exists.
(ii). The proof is similar to the case (i).

THEOREM 4.7. Let T as in 4.8) and let e, f, and c as in 4.15). If c^{\dagger} exists, then T^{\dagger} exists if and only if both $u=1_{m}+\left(b a^{\dagger}\right)^{*}$ egba ${ }^{\dagger}$ and $v=1_{l}+d^{\dagger} b h f\left(d^{\dagger} b\right)^{*}$ are invertible, where $g=1_{k}-c c^{\dagger}$ and $h=1_{n}-c^{\dagger} c$. In this case,

$$
\left(\begin{array}{ll}
a & 0 \tag{4.16}\\
b & d
\end{array}\right)^{\dagger}=\left(\begin{array}{cc}
\left(1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right) \sigma & \gamma \\
-\rho b a^{\dagger} u^{-1} & \rho\left(1_{l}-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right)
\end{array}\right)
$$

where $\rho=v^{-1} d^{\dagger}\left(1_{l}-b c^{\dagger}\right), \sigma=\left(1_{k}-c^{\dagger} b\right) a^{\dagger} u^{-1}$ and

$$
\begin{equation*}
\gamma=c^{\dagger}+h f\left(d^{\dagger} b\right)^{*} \rho\left(1_{l}-b a^{\dagger} u^{-1}\left(b a^{\dagger}\right)^{*} e g\right)+\sigma\left(b a^{\dagger}\right)^{*} e g . \tag{4.17}
\end{equation*}
$$

Proof. We can apply Theorem4.4 with $a^{(1,2,3)}=a^{\dagger}, d^{(1,3)}=d^{\dagger}$, and $c^{(1,3)}=c^{\dagger}$ to obtain that $T^{(1,3)}$ exists iff $u=1_{m}+\left(b a^{\dagger}\right)^{*} e g b a^{\dagger}$ is invertible and, using that $d^{\dagger} e=0$, a $\{1,3\}$-inverse of T is of the form

$$
T^{(1,3)}=\left(\begin{array}{cc}
1_{n} & 0 \\
-d^{\dagger} b & 1_{l}
\end{array}\right)\left(\begin{array}{cc}
\sigma & \sigma\left(b a^{\dagger}\right)^{*} e g+f c^{\dagger} \\
0 & d^{\dagger}
\end{array}\right)=\widetilde{Q} X
$$

where $\sigma=\left(1-c^{\dagger} b\right) a^{\dagger} u^{-1}$. Similarly, we apply Theorem4.5 to derive that $T^{(1,4)}$ exists iff $v=1_{l}+d^{\dagger} b h f\left(d^{\dagger} b\right)^{*}$ is invertible, and a $\{1,4\}$-inverse of T is of the form

$$
T^{(1,4)}=\left(\begin{array}{cc}
a^{\dagger} & h f\left(d^{\dagger} b\right)^{*} \rho+c^{\dagger} e \\
0 & \rho
\end{array}\right)\left(\begin{array}{cc}
1_{m} & 0 \\
-b a^{\dagger} & 1_{k}
\end{array}\right)=Y \widetilde{P}
$$

where $\rho=v^{-1} d^{\dagger}\left(1_{l}-b c^{\dagger}\right)$.
We now compute $T^{\dagger}=T^{(1,4)} T T^{(1,3)}=Y \widetilde{P} T \widetilde{Q} X$. One sees that

$$
\widetilde{P} T \widetilde{Q}=\left(\begin{array}{cc}
a & 0 \\
b f-d d^{\dagger} b & d
\end{array}\right)
$$

Using that $\rho\left(b f-d d^{\dagger} b\right)=-v^{-1} d^{\dagger} b\left(a^{\dagger} a+c^{\dagger} c\right)$ and $\rho d=v^{-1} d^{\dagger} d$, we have

$$
Y \widetilde{P} T \widetilde{Q}=\left(\begin{array}{cc}
\left(1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right)\left(a^{\dagger} a+c^{\dagger} c\right) & h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} d \\
-v^{-1} d^{\dagger} b\left(a^{\dagger} a+c^{\dagger} c\right) & v^{-1} d^{\dagger} d
\end{array}\right)
$$

Using $\left(a^{\dagger} a+c^{\dagger} c\right) \sigma=\sigma$ we obtain

$$
T^{\dagger}=Y \widetilde{P} T \widetilde{Q} X=\left(\begin{array}{cc}
\left(1-h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right) \sigma & \gamma \\
-v^{-1} d^{\dagger} b \sigma & -v^{-1} d^{\dagger} b \sigma\left(b a^{\dagger}\right)^{*} e g+\rho
\end{array}\right)
$$

where $\gamma=\left(1+h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger} b\right)\left(\sigma\left(b a^{\dagger}\right)^{*} e g+c^{\dagger}\right)+h f\left(d^{\dagger} b\right)^{*} v^{-1} d^{\dagger}$.
Finally, the formula in this theorem is proved by taking into account that $v^{-1} d^{\dagger} b \sigma$ $=\rho b a^{\dagger} u^{-1}$.

We recall that a ring \mathcal{R} with involution has the Gelfand-Naimark property (GNproperty) if $1+x^{*} x$ is invertible for all $x \in \mathcal{R}$.

We can rewrite u and v in Theorem 4.7 as $u=1_{m}+\left(e g b a^{\dagger}\right)^{*}\left(e g b a^{\dagger}\right)$ and $v=$ $1_{l}+d^{\dagger} b h f\left(d^{\dagger} b h f\right)^{*}$. On account of this, we obtain the next corollary.

Corollary 4.8. Let \mathcal{R} be a ring with involution such that it has the GN-property. Consider $T=\left(\begin{array}{ll}a & 0 \\ b & d\end{array}\right)$ with $a, b, d \in \mathcal{R}$. Let e, f, and c as in 4.15). If a^{\dagger}, d^{\dagger} and c^{\dagger} exists then T^{\dagger} exists, and it is given by (4.16)-4.17).

We find, after some computations, that our formula (4.16)-(4.17) is the same as the expression given by (10)-(19) in [14, Section 2.2] for the Moore-Penrose inverse of a 2×2 lower triangular matrix. Here, we conclude that Corollary 4.8 generalizes the main result of [13, Section 2.2] to more general conditions that those assumed therein.

Corollary 4.9. Let $T=\left(\begin{array}{ll}a & 0 \\ b & d\end{array}\right)$ be such that a^{\dagger} exists and d is an invertible matrix of order $k \times k$. Then T^{\dagger} exists if and only if $v=1_{k}+d^{-1} b f\left(d^{-1} b\right)^{*}$ is invertible. In this case

$$
\left(\begin{array}{ll}
a & 0 \\
b & d
\end{array}\right)^{\dagger}=\left(\begin{array}{cc}
\left(1_{n}-f\left(d^{-1} b\right)^{*} v^{-1} d^{-1} b\right) a^{\dagger} & f\left(d^{-1} b\right)^{*} v^{-1} d^{-1} \\
-v^{-1} d^{-1} b a^{\dagger} & v^{-1} d^{-1}
\end{array}\right)
$$

Proof. Follows from previous theorem with $d^{\dagger}=d^{-1}$. Then $e=0, c=0, g=1_{k}$, and $h=1_{n}$ and (4.16) reduces to the formula in this corollary.

For the special case of a companion matrix of the form

$$
\left(\begin{array}{cc}
0 & a \\
1_{k} & \mathbf{b}
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
\mathbf{b} & 1_{k}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1_{k} & 0
\end{array}\right)=T U
$$

where $a \in \mathcal{R}$ is Moore-Penrose invertible and $\mathbf{b} \in \mathcal{M}_{k \times 1}(\mathcal{R})$, using that $(T U)^{\dagger}=$ $U^{*} T^{\dagger}$ we obtain from previous corollary that $(T U)^{\dagger}$ exists iff $v=1_{k}+\mathbf{b}\left(1-a^{\dagger} a\right) \mathbf{b}^{*}$ is invertible. In this case,

$$
(T U)^{\dagger}=\left(\begin{array}{cc}
-v^{-1} \mathbf{b} a^{\dagger} & v^{-1} \\
\left(1-f \mathbf{b}^{*} v^{-1} \mathbf{b}\right) a^{\dagger} & f \mathbf{b}^{*} v^{-1}
\end{array}\right)
$$

which is the result in [19, Theorem 2.1].

Acknowledgment. The authors wish to thank the three referees for their helpful comments and corrections, and for pointing out the result presented in [14].

REFERENCES

[1] J.K. Baksalary and O.M. Baksalary. Particular formulae for the Moore-Penrose inverses of a columnwise partitioned matrix. Linear Algebra Appl., 421:16-23, 2007.
[2] J.K. Baksalary and G.P.H. Styan. Generalized inverses of partitioned matrices in BanachiewiczSchur form. Linear Algebra Appl., 354:41-47, 2002.
[3] A. Ben-Israel and T.N.E. Greville. Generalized Inverses: Theory and Applications. CMS Books in Mathematics, Springer, New York, 2003.
[4] D. Carlson, E. Haynsworth, and T. Markham. A generalization of the Schur complement by means of the Moore-Penrose inverse. SIAM J. Appl. Math., 26(1):169-175, 1974.
[5] N. Castro-González, M.F. Martínez-Serrano, and J. Robles. Expressions for the Moore-Penrose inverse of block matrices involving the Schur complement. Linear Algebra Appl., 471:353368, 2015.
[6] D.S. Cvetković-Ilić. Expression of the Drazin and MP-inverse of partitioned matrix and quotient identity of generalized Schur complement. Appl. Math. Comput., 213(1):18-24, 2009.
[7] C.Y. Deng and H.K. Du. Representations of the Moore-Penrose inverses for a class of 2-by-2 block operator valued partial matrices. Linear Multilinear Algebra, 58:15-26, 2010.
[8] D.S. Djordjević and Y.M. Wei. Outer generalized inverses in rings. Comm. Algebra, 58:30513060, 2005.
[9] M.P. Drazin. A class of outer gneralized inverses. Linear Algebra Appl., 436:1909-1923, 2012.
[10] M.C. Gouveia and R. Puystjens. About the Group inverse and Moore-Penrose Inverse of a product. Linear Algebra Appl., 150:361-369, 1991.
[11] F.J. Hall and R.E. Hartwig. Further results on generalized inverses of partitioned matrices. SIAM J. Appl. Math., 30(4):617-624, 1976.
[12] R.E. Hartwig. Block generalized inverses. Arch. Ration. Mech. Anal., 61:197-251, 1976.
[13] R.E. Hartwig and P. Patricio. When does the Moore-Penrose inverse flip?. Oper. Matrices, 6(1):181-192, 2012.
[14] G. Kantún-Montiel. Outer generalized inverses with prescribed ideals. Linear Multilinear Algebra, 62(9):1187-1196, 2014.
[15] J.J. Koliha, D. Djordjević, and D. Cvetković. Moore-Penrose inverse in rings with involution. Linear Algebra Appl., 426:371-381, 2007.
[16] X.J. Liu, H. Jin, and D.S. Cvetković-Ilić. Representations of generalized inverses of partitioned matrix involving Schur complement. Appl. Math. Comput., 219:9615-9629, 2013.
[17] J.M. Miao. General expressions for the Moore-Penrose inverse of a 2×2 block matrix. Linear Algebra Appl., 151:1-15, 1991.
[18] D. Mosić, D.S. Djordjević, and G. Kantún-Montiel. Image-Kernel (P, Q)-inverses in rings. Electron. J. Linear Algebra, 27:272-283, 2014.
[19] P. Patricio. The Moore-Penrose inverse of a companion matrix. Linear Algebra Appl., 437(3):870-877, 2010.
[20] P. Patricio. The Moore-Penrose inverse of von Neumann regular matrices over a ring. Linear Algebra Appl., 332-334:469-483, 2001.
[21] M.A. Rakha. On the Moore-Penrose generalized inverse matrix. Appl. Math. Comput., 158:185200, 2004.
[22] K.P.S. Bhaskara Rao. The Theory of Generalized Inverses over Commutative Rings. CRC Press, London, 2002.
[23] Y.M. Wei and H.B. Wu. The representation and approximation for the generalized inverse $A_{T, S}^{2}$. Appl. Math. Comput., 135:263-276, 2003.

[^0]: *Received by the editors on June 18, 2014. Accepted for publication on January 8, 2015. Handling Editor: Oskar Maria Baksalary.
 ${ }^{\dagger}$ ETSI Informática, Universidad Politécnica de Madrid, 28660 Madrid, Spain (nieves@fi.upm.es). The research was supported by Project MTM2010-18057, "Ministerio de Economía y Competitividad" of Spain.
 ${ }^{\ddagger}$ Department of Mathematics, Southeast University, Nanjing, 210096, China (jlchen@seu.edu.cn, wanglseu@hotmail.com). The research was supported by the NNSF of China (11371089), NSF of Jiangsu Province (BK 20141327) and Specialized Research Fund for the Doctoral Program of Higher Education (20120092110020).

