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Abstract. Let R be a unital ring with an involution. Necessary and sufficient conditions for

the existence of the Bott-Duffin inverse of a ∈ R relative to a pair of self-adjoint idempotents (e, f)

are derived. The existence of a {1, 3}-inverse, {1, 4}-inverse, and the Moore-Penrose inverse of a

matrix product is characterized, and explicit formulas for their computations are obtained. Some

applications to block matrices over a ring are given.
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1. Introduction. Let R be an associative ring with unity 1. The set of all

idempotent elements of R will be denoted by E(R). Let a ∈ R and e ∈ E(R) such

that ae + 1 − e is invertible. Then the Bott-Duffin e-inverse of a (see [3, Chapter 2,

Section 10]) is defined as the element y = e(ae + 1 − e)−1. It is an outer inverse for

a, i.e., yay = y.

Let e, f ∈ E(R). Djordjević and Wei introduced a type of outer inverse by

prescribing the idempotens ya and ay in [8]: The (e, f)-outer generalized inverse of a

is the unique element y ∈ R, whenever it exists, satisfying

yay = y, ya = e, ay = 1− f.

A characterization of the existence of the (e, f)-outer generalized inverse was given in

[8, Theorem 2.1].

For a ∈ R, we associate the image and kernel ideals:

aR = {ax : x ∈ R}, a0 = {x ∈ R : ax = 0}.
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Kantún-Montiel [14] explored the idea of prescribing the image ideal yaR and the

kernel ideal (ay)0 related to the outer inverse: The image-kernel (e, f)-inverse of a is

the unique element y ∈ R, whenever it exists, satisfying

yay = y, yaR = eR, (ay)0 = (1 − f)0.

If y is the (e, f)-outer generalized inverse of a, then it is the image-kernel (e, f)-

inverse of a. The converse part is as follows. If y is the image-kernel (e, f)-inverse of

a then y is the (eya, f(1 − ay))-outer generalized inverse of a. Elements with equal

idempotents related to their image-kernel (e, f)-inverses are characterized in [18]. The

representation and approximation for the outer inverse having prescribed range and

null space in the setting of complex matrices were given in [23].

Drazin in [9, Definition 3.2] introduced the following generalization of the Bott-

Duffin inverse relative of a pair of idempotents: The Bott-Duffin (e, f)-inverse of a is

the unique element y ∈ R, when it exists, such that

y = ey = yf, yae = e, fay = f. (1.1)

We abbreviate Bott-Duffin to B-D. It was showed in [14, Proposition 3.4] that y is

the the image-kernel (e, f)-inverse of a if and only if it is the B-D (e, 1− f)-inverse of

a.

By [9, Theorem 2.2], we know that there exists a B-D (e, f)-inverse of a if and

only if e ∈ Rfae and f ∈ faeR.

On account of the above result, for e = f the equations in (1.1) have a common

solution iff e ∈ Reae ∩ eaeR. This is equivalent to the invertibility of ea + 1 − e,

see Lemma 2.1. In fact, the element for which (1.1) holds is precisely the classical

Bott-Duffin e-inverse of a, y = e(ae+ 1− e)−1.

We ask whether the existence of B-D (e, f)-inverse can be characterized in terms

of classical invertibility. We present a result in Section 2 to answer this question in

the setting of a ring with an involution under the assumption that both e and f are

self-adjoint idempotents.

We recall that ∗ is an involution in R if it is a map ∗ : R → R such that for

all a, b ∈ R: (a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗. The set of all idempotent

self-adjoint elements of R (e = e2 = e∗) will be denoted by E∗(R).

Let Mm×n(R) denote the set of m× n matrices over R and let Mm(R) denote

the ring of m × m matrices over R. For any matrix A = (aij) ∈ Mm×n(R), A∗ ∈

Mn×m(R) stands for (A)T where A = (a∗ij).

A matrix A ∈ Mm×n(R) is said to be Moore-Penrose invertible with respect to
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the involution ∗ if the equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA

have a unique common solution. Such a solution, when exists, is denoted by A†.

A is called regular if there exists X satisfying (1). Let A{1} denote the set of

matrices X ∈ Mn×m(R) which satisfy equation (1).

If X is a solution of both (1) and (3) then it is called a {1, 3}-inverse of A.

Similarly, if X is a solution of both (1) and (4) then it is called a {1, 4}-inverse of A.

We will consider the following sets:

A{1, 3} = {X ∈ A{1} : (AX)∗ = AX},

A{1, 4} = {X ∈ A{1} : (XA)∗ = XA}.

Necessary and sufficient conditions for the existence of {1, 3}-inverse, {1, 4}-

inverse and the Moore-Penrose inverse were presented in [22, Proposition 3.10]. When

A is regular, the existence of A† was characterized by means of classical invertibility,

see [20, Remark 3] and [19, Theorem 1.1]:

Lemma 1.1. Let A ∈ Mm×n(R) be regular and let A(1) be an arbitrary element

of A{1}. Then the following conditions are equivalent:

1. A† exists (with respect to ∗).

2. U = AA∗ + Im −AA(1) is invertible.

3. V = A∗A+ In −A(1)A is invertible.

In this case,

A† = A∗(U∗)−1 = (V ∗)−1A∗.

The existence of the Moore-Penrose inverse of a matrix product PAQ was studied

in [10, 20]. We recall that if P and Q are both invertible then the Moore-Penrose

inverse of PAQ exists if and only if PA has a {1, 3}-inverse and AQ has a {1, 4}-

inverse, in which case

(PAQ)† = (AQ)(1,4)A(PA)(1,3), (1.2)

where (PA)(1,3) and (AQ)(1,4) are arbitrary elements of (PA){1, 3} and (AQ){1, 4},

respectively.

In Section 3, Theorems 3.1, 3.4 and 3.6 provide necessary and sufficient conditions

for the existence of a {1, 3}-inverse of PA, a {1, 4}-inverse of AQ, and the Moore-

Penrose inverse of PAQ, respectively, under some conditions. We also give explicit
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formulas for the computation of these generalized inverses. In Section 4, we consider

some applications of our results to block matrices.

For a treatment of generalized inverses of block matrices over a ring we refer the

reader to [12].

2. Bott-Duffin inverses in involutory rings. Let R be a ring with unity

1 and an involution ∗. Let e, f ∈ E∗(R), in this section we derive necessary and

sufficient conditions for the existence of the Bott-Duffin (e, f)-inverse, as well as an

explicit formula for its computation.

It will be convenient to introduce the following sets. For e ∈ E(R), we consider

eRe+ 1− e = {exe+ 1− e : x ∈ R},

which is a submonoid of R under multiplication and the group Ue of e-units in the

subring eRe (corner ring) given by

Ue = {exe : exeR = eR, Rexe = Re}.

Next known result links invertible elements in eRe+ 1− e and elements of Ue.

Lemma 2.1. Let a ∈ R and e ∈ E(R). Then the following conditions are

equivalent:

(i) e ∈ eaeR∩Reae.

(ii) eae+ 1− e is invertible.

(iii) ae+ 1− e is invertible.

(iv) eae ∈ Ue.

In this case, the e-inverse of eae in Ue is given by

(eae)−1
eRe = e(eae+ 1− e)−1e. (2.1)

We can now formulate our main result of this section.

Theorem 2.2. Let a ∈ R and e, f ∈ E∗(R). Then the following conditions are

equivalent:

(a) There exists a Bott-Duffin (e, f)-inverse of a.

(b) e ∈ R(fae)∗fae and f ∈ fae(fae)∗R.

(c) u = (fae)∗fae+ 1− e is invertible and faeu−1(fae)∗ = f .

(d) v = fae(fae)∗ + 1− f is invertible and (fae)∗v−1fae = e.

(e) Both u = (fae)∗fae+ 1− e and v = fae(fae)∗ + 1− f are invertible.

(f) ea∗fae ∈ Ue and faea∗f ∈ Uf .
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In this case, the B-D (e, f)-inverse of a is given by

y = u−1(fae)∗ = (fae)∗v−1

= (ea∗fae)−1
eRea

∗f = ea∗(faea∗f)−1
fRf .

(2.2)

Proof. (a) ⇒ (b). Let y ∈ R be a common solution of equations in (1.1). Then

e = yfae and f = faey. By substituting e = (fae)∗y∗ into the last identity we get

f = fae(fae)∗y∗y and thus, f ∈ fae(fae)∗R. Similarly, by substituting f = y∗(fae)∗

in e = yfae we obtain e = yy∗(fae)∗fae and e ∈ R(fae)∗fae.

(b) ⇒ (c). Suppose that there exists s, t ∈ R such that e = s(fae)∗fae and

f = fae(fae)∗t. Since e = e∗ we have e = (fae)∗faes∗ and it follows that se = es∗.

Then

(se + 1− e)((fae)∗fae+ 1− e) = ((fae)∗fae+ 1− e)(es∗ + 1− e) = 1.

Hence, x = se + 1 − e is the inverse of u = (fae)∗fae + 1 − e. Further, we have

faeu−1(fae)∗ = faeu−1(fae)∗fae(fae)∗t = fae(fae)∗t = f .

(c) ⇔ (d). We prove that (c) implies (d). Let v = fae(fae)∗ + 1 − f . Using

the relation faeu−1(fae)∗ = f , we obtain v = 1 + fae(1 − u−1)(fae)∗. Hence, v is

invertible if and only if 1 + (1− u−1)(fae)∗fae is invertible. But this last element is

equal to u since u−1(fae)∗fae = e. Now, it is easy to check that (fae)∗v = u(fae)∗

and, hence, (fae)∗v−1 = u−1(fae)∗. Then (fae)∗v−1fae = u−1(fae)∗fae = e.

In the same manner, we can see that (d) implies (c).

(d) ⇒ (e). On account of the above equivalence, this implication is immediate.

(e) ⇔ (f). It follows by Lemma 2.1.

(e) ⇒ (a). Suppose that both u and v are invertible. Now, we will prove that

y = (fae)∗v−1 = u−1(fae)∗ is a common solution of equations in (1.1). Clearly,

y = ey = yf . Now, using this relation,

yae = yfae = (fae)∗v−1fae = u−1(fae)∗fae = e.

In the same manner, we see that fay = f , and thus y the B-D (e, f)-inverse of a. The

last two identities in (2.2) are clear by (2.1).

We observe that if the Moore-Penrose inverse of a exists, then it is the B-D (e, f)-

inverse of a with e = a†a and f = aa†. In this case, the element u given in item (c)

and v given in item (d) of the above theorem are of the form u = a∗a+ 1 − a†a and

v = aa∗ + 1− aa†, which are invertible whenever a† exists, see Lemma 1.1. Koliha et

al. in [15, Theorem 1] established a relation between Moore-Penrose invertible and

well-supported elements in a ring with involution.
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We specialize the preceding theorem to Bott-Duffin e-inverse.

Corollary 2.3. Let a ∈ R and e ∈ E∗(R). Then the following conditions are

equivalent:

(a) There exists a B-D e-inverse of a.

(b) e ∈ R(eae)∗eae ∩ eae(eae)∗R.

(c) u = (eae)∗eae+ 1− e is invertible and eaeu−1(eae)∗ = e.

(d) v = eae(eae)∗ + 1− e is invertible and (eae)∗v−1eae = e.

(e) Both u = (eae)∗eae+ 1− e and v = eae(eae)∗ + 1− e are invertible.

(f) ea∗eae ∈ Ue and eaea∗e ∈ Ue.

In this case, y = u−1(eae)∗ = (eae)∗v−1 is the B-D e-inverse of a.

Next, we consider the product paq. We are interested in establishing a relation

between the B-D (e, f)-inverse of paq and certain classes of generalized inverses of pa

and aq.

Theorem 2.4. Let a, p, q ∈ R and let e, f ∈ E(R). Then the following conditions

are equivalent:

(a) paq has a B-D (e, f)-inverse y.

(b) There exist x, z ∈ R such that:

x = ex, x(aq)e = e, fp(aq)x = fp (2.3)

z = zf, f(pa)z = f, z(pa)qe = qe. (2.4)

In this case, we have y = xaz, where x and z are any solution of (2.3) and

(2.4), respectively.

Proof. First, let y be the B-D (e, f)-inverse of paq. Then

y = ey = yf, ypaqe = e, fpaqy = f. (2.5)

We will prove that x = yp satisfies (2.3). From y = ey it follows yp = eyp, and hence,

x = ex. Since ypaqe = e we also have xaqe = e. Using fpaqy = f it follows that

fpaqyp = fpaqx = fp. Analogously, we can prove that z = qy satisfies (2.4).

Conversely, let x be any solution of (2.3) and let z be any solution of (2.4). Define

y = xaz. We will prove that y is a common solution of equations in (2.5). Clearly,

y = ey = yf . Now, ypaqe = xaz(pa)qe = xaqe = e and fpaqy = fpaqxaz = fpaz =

f .

Remark 2.5. Conditions on x in (2.3) (or conditions on z in (2.4)) are not

sufficient to ensure the uniqueness as we show in the following example. Let R =

M2(Z12) be the ring of 2 × 2 matrices over Z12, a =

(
5 5

0 0

)
, p = q = I, and let
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the idempotents e =

(
1 2

0 0

)
and f =

(
4 0

0 0

)
be given. Then x =

(
5 0

0 0

)
and

x̂ =

(
5 3

0 0

)
are two different solutions of (2.3).

3. Generalized inverses of a matrix product. Theorems 3.1, 3.4 and 3.6

give the existence of (PA)(1,3), (AQ)(1,4) and the Moore-Penrose invertibility of PAQ

from the classical invertibility of matrices. These characterization results in the setting

of matrices over a ring are news. Formulae (3.1), (3.3) and (3.4) are extensions to

matrices over a ring of similar formulae obtained for matrices over the complexes in

[5]. We recall that if ∗ is the conjugate transpose of a complex matrix, then a {1, 3}-

inverse, a {1, 4}-inverse, and the Moore-Penrose inverse of a complex matrix always

exist.

In what follows, E′ denotes the matrix I − E for any idempotent matrix E.

We begin by giving a characterization for a matrix product PA to have a {1, 3}-

inverse when a A(1,3) exists.

Theorem 3.1. Let A ∈ Mm×n(R) be such that a A(1,3) exists and let E =

AA(1,3), and P ∈ Mm(R) be invertible. If PE′ = E′ then the following conditions

are equivalent:

(a) PA has a {1, 3}-inverse.

(b) E ∈ Mm(R)Z ∩ ZMm(R) where Z = EP ∗PE.

(c) U = P ∗PE + I − E is invertible.

(d) I +R∗R is invertible with R = E′(I − P−1).

In this case, there exists a {1, 3}-inverse of PA of the form

(PA)(1,3) = A(1,3)U−1P ∗ = A(1,3)P−1(I +R∗R)−1(I +R∗). (3.1)

Proof. Let us first observe that if X be an arbitrary element of A{1, 3}, then

X = A(1,3)+(I−A(1,3)A)Z with Z ∈ Mn×m(R) and, thus, AX = AA(1,3). Therefore,

if PE′ = E′ we also have P (I −AX) = I −AX .

(a)⇒(b). If PA has a {1, 3}-inverse Y then Y ∗A∗P ∗ = PAY and PA = PAY PA.

Hence, E = AA(1,3) = AY PE = P−1(PAY )PE = SEP ∗PE, where S = P−1Y ∗A∗.

Since E∗ = E, then it also follows that E = EP ∗PES∗ ∈ EP ∗PEMm(R) and, (b)

holds.

(b)⇔(c). This equivalence follows from Lemma 2.1.
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(c)⇔(d). Let R = E′(I − P−1). Using R2 = 0, we can write

I +R∗R = I +R∗ −R∗P−1 = (I +R∗)(I −R∗P−1)

= (I +R∗)(PE + (P−1)∗E′)P−1 = (I +R∗)(P−1)∗UP−1,

where U = P ∗PE + I − E. Since I + R∗ is invertible, then I + R∗R is invertible if

and only if U is invertible. Moreover,

(I +R∗R)−1 = PU−1P ∗(I −R∗).

From this, we also obtain that U−1P ∗ = P−1(I+R∗R)−1(I+R∗) whenever (c) holds

and, thus, the second equality of (3.1) holds.

(c)⇒(a). Define Y = A(1,3)U−1P ∗. We will prove that Y is a {1, 3}-inverse of

PA. Firstly, we see that

Y PA = A(1,3)U−1P ∗PA = A(1,3)U−1(P ∗PE + I − E)A = A(1,3)A. (3.2)

Then PAY PA = PA, and thus, Y is a {1}-inverse of PA. Since U∗E = EU it follows

that (PAY )∗ = P (U−1)∗EP ∗ = PEU−1P ∗ = PAY and so Y ∈ (PA){1, 3}.

Remark 3.2. If we replace A(1,3) and (PA)(1,3) by A(1,2,3) and (PA)(1,2,3),

respectively, in Theorem 3.1, then we obtain an analogous characterization of the

existence of {1, 2, 3}-inverses of the product PA.

Some applications of previous results will be develop in Section 4. Here we include

an example using the incidence matrix of a graph.

Example 3.3. Let ∗ be the conjugate transpose of a complex matrix and let A

be an m× n incidence matrix of a connected graph. With an application of formula

(3.1) we will derive an expression of a {1, 3}-inverse of PA when P is an m × m

invertible row stochastic matrix.

For any A(1,3), denote E = AA(1,3), we have E′ = 1
m
eeT where eeT is the m×m

matrix whose elements are all 1 (see [3, Ex. 109]). Since P is row stochastic, then

PeeT = eeT and, thus, PE′ = E′ holds. Therefore, by (3.1),

(PA)(1,3) = A(1,3)U−1P ∗ = A(1,3)P−1(I +R∗R)−1(I +R∗),

where U = P ∗P − (P ∗P + I) 1
m
eeT and R = 1

m
eeT (I − P−1).

Now we state an analogue of the above theorem concerning the {1, 4}-inverse of

the matrix product AQ.

Theorem 3.4. Let A ∈ Mm×n(R) be such that A has a {1, 4}-inverse, let

F = A(1,4)A and let Q ∈ Mn(R) be invertible. If F ′Q = F ′, then the following

conditions are equivalent:
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(a) AQ has a {1, 4}-inverse.

(b) F ∈ Mn(R)W ∩WMn(R) where W = FQQ∗F .

(c) V = FQQ∗ + I − F is invertible.

(d) I + LL∗ is invertible with L = (I −Q−1)F ′.

In this case, there exists a {1, 4}-inverse of AQ of the form

(AQ)(1,4) = Q∗V −1A(1,4) = (I + L∗)(I + LL∗)−1Q−1A(1,4). (3.3)

Proof. We first note that (A(1,4))∗ is a {1, 3}-inverse of A∗ and Q∗(I−A∗(A(1,4))∗)

= I − A∗(A(1,4))∗. An application of Theorem 3.1 to the product Q∗A∗ shows that

the following conditions are equivalent:

(a′) Q∗A∗ has a {1, 3}-inverse.

(b′) F ∈ Mn(R)FQQ∗F ∩ FQQ∗FMn(R).

(c′) U = QQ∗F + I − F is invertible.

(d′) I +R∗R is invertible with R = F ′(I − (Q∗)−1).

From these relations, we conclude that (a), (b), (c), and (d) in this theorem are

equivalent. Finally, by (3.1) we have Y = (A(1,4))∗U−1Q = (A(1,4))∗(Q∗)−1(I +

R∗R)−1(I+R∗) is a {1, 3}-inverse of (AQ)∗. Hence, Y ∗ is a {1, 4}-inverse of AQ and,

thus, (3.3) holds.

Remark 3.5. If we replace A(1,4) and (AQ)(1,4) by A(1,2,4) and (AQ)(1,4), respec-

tively, in Theorem 3.4, then we obtain an analogous characterization of the existence

of {1, 2, 4}-inverses of the product AQ.

Based on previous Theorems, we derive a characterization of the existence of the

Moore-Penrose inverse of a matrix product PAQ in the case that A† exists.

Theorem 3.6. Let A ∈ Mm×n(R) be such that A† exists, let E = AA†, F = A†A

and let P ∈ Mm(R) and Q ∈ Mn(R) be invertible matrices. If PE′ = E′ and

F ′Q = F ′, then the following are equivalent:

(a) (PAQ)† exists.

(b) E ∈ Mm(R)Z ∩ ZMm(R) and F ∈ Mn(R)W ∩ WMn(R), where Z =

EP ∗PE and W = FQQ∗F .

(c) U = P ∗PE + I − E and V = FQQ∗ + I − F are invertible.

(d) I+R∗R and I+LL∗ are invertible with R = E′(I−P−1) and L = (I−Q−1)F ′.

In this case,

(PAQ)† = Q∗V −1A†U−1P ∗

= (I + L∗)(I + LL∗)−1Q−1A†P−1(I +R∗R)−1(I +R∗).
(3.4)
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Proof. We know that the Moore-Penrose inverse of PAQ exists if and only if PA

has a {1, 3}-inverse and AQ has a {1, 4}-inverse, in which case

(PAQ)† = (AQ)(1,4)A(PA)(1,3).

Now, the proof of the theorem is a consequence of Theorems 3.1 and 3.4.

4. Applications. Several authors described generalized inverses of block matri-

ces and their properties [1, 2, 4, 6, 7, 11, 12, 16, 17, 21].

In this section, some applications of Theorems 3.1, 3.4 and 3.6 are indicated.

First, we characterize the existence of a {1, 3}-inverse of a 2× 2 block matrix M

over R of the form

M =

(
a c

b d

)
, (4.1)

where a ∈ Mm(R) is invertible, b, c and d are matrices over R of orders k×m, m× l

and k × l, respectively. We denote by either I or 1m the identity matrix in Mm(R).

Consider the factorization

M =

(
a c

b d

)
=

(
1m 0

ba−1 1l

)(
a 0

0 s

)(
1m a−1c

0 1l

)
= PAQ. (4.2)

Theorem 4.1. Let M as in (4.1) and let s = d−ba−1c. Assume that s{1, 3} 6= ∅

and let s(1,3) ∈ s{1, 3} and e = 1k − ss(1,3). Then M{1, 3} 6= ∅ if and only if

u = 1m + (ba−1)∗eba−1 is invertible. In this case, a {1, 3}-inverse of M is given by

M (1,3) =

(
αu−1 αu−1(ba−1)∗e− a−1cs(1,3)

−s(1,3)ba−1u−1 s(1,3)(1k − ba−1u−1(ba−1)∗e)

)
, (4.3)

where α = (1m + a−1cs(1,3)b)a−1.

Proof. Let P , A and Q as in (4.2). It is easy to check that a {1, 3}-inverse of A

is of the form A(1,3) =

(
a−1 0

0 s(1,3)

)
. Then

E′ = I −AA(1,3) =

(
0 0

0 e

)
,

where e = 1k − ss(1,3). Hence, PE′ = E′ holds. Set

R = E′(I − P−1) =

(
0 0

eba−1 0

)
, I +R∗R =

(
u 0

0 1k

)
,
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where u = 1m + (ba−1)∗eba−1. By Theorem 3.1 there exists a {1, 3}-inverse of PA if

and only if u is invertible in the ring Mm(R). By (3.1), a {1, 3}-inverse of PA is of

the form (PA)(1,3) = A(1,3)P−1(I +R∗R)−1(I +R∗). Therefore,

(PA)(1,3) =

(
a−1 0

0 s(1,3)

)(
1m 0

−ba−1 1l

)(
u−1 0

0 1k

)(
1m (ba−1)∗e

0 1k

)

=

(
a−1u−1 a−1u−1(ba−1)∗e

−s(1,3)ba−1u−1 s(1,3)(1k − ba−1u−1(ba−1)∗e)

)
. (4.4)

Now, since Q is invertible then PAQ{1, 3} 6= ∅ if and only if PA{1, 3} 6= ∅

in which case (PAQ)(1,3) = Q−1(PA)(1,3). Pre-multiplying (4.4) by Q−1, (4.3) is

proved.

We can now state the analogue of previous theorem for the characterization of

the existence of a {1, 4}-inverse of matrix M .

Theorem 4.2. Let M as in (4.1) and let s = d−ba−1c. Assume that s{1, 4} 6= ∅

and let s(1,4) ∈ s{1, 4} and f = 1l − s(1,4)s. Then M{1, 4} 6= ∅ if and only if

v = 1m + a−1cf(a−1c)∗ is invertible. In this case, a {1, 4}-inverse of M is given by

M (1,4) =

(
v−1β −v−1a−1cs(1,4)

f(a−1c)∗v−1β − s(1,4)ba−1 (1l − f(a−1c)∗v−1a−1c)s(1,4)

)
, (4.5)

where β = a−1(1m + cs(1,4)ba−1).

Proof. We use the factorization (4.2). Choose A(1,4) =

(
a−1 0

0 s(1,4)

)
, which

gives F ′ = I −A(1,4)A =

(
0 0

0 f

)
, where f = 1l − s(1,4)s. Now, set

L = (I −Q−1)F ′ =

(
0 a−1cf

0 0

)
, I + LL∗ =

(
v 0

0 1l

)
,

where v = 1m + a−1cf(a−1c)∗. With an application of Theorem 3.4 we obtain

AQ{1, 4} 6= ∅ iff v is invertible and

(AQ)(1,4) =

(
v−1a−1 −v−1a−1cs(1,4)

f(a−1c)∗v−1a−1 (1l − f(a−1c)∗v−1a−1c)s(1,4)

)
. (4.6)

Since (PAQ)(1,4) = (AQ)(1,4)P−1. Pre-multiplying (4.6) by P−1, (4.5) is proved.

If s = d− ba−1c is regular, by Lemma 1.1 we have that s† exists iff s∗s+1l−s(1)s

is invertible. In this case, using previous results we can characterize the existence of

the Moore-Penrose inverse of matrix M .

Theorem 4.3. Let M as in (4.1) and let s = d − ba−1c. Assume that s†

exists and set e = 1k − ss† and f = 1l − s†s. Then M † exists if and only if both
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u = 1m + (ba−1)∗eba−1 and v = 1m + a−1cf(a−1c)∗ are invertible. In this case,

M † =

(
γ γ(ba−1)∗e− v−1a−1cs†

f(a−1c)∗γ − s†ba−1u−1 δ

)
, (4.7)

where

γ = v−1(a−1 + a−1cs†ba−1)u−1,

δ = s† + f(a−1c)∗γ(ba−1)∗e− f(a−1c)∗v−1a−1cs† − s†ba−1u−1(ba−1)∗e.

Proof. In view of the factorization (4.2), we have that M is Moore-Penrose

invertible iff PA has a {1, 3}-inverse and AQ has a {1, 4}-inverse. Now, since s† exists

we can consider s(1,3) = s† in Theorem 4.1 and s(1,4) = s† in Theorem 4.2 to conclude

that M is Moore-Penrose invertible iff both u and v defined as in the statement of

this theorem are invertible. Using expressions (4.4) and (4.6), we compute M † =

(AQ)(1,4)A(PA)(1,3) and we obtain the expression (4.7).

In what sequel, let T be a matrix over R of the form

T =

(
a 0

b d

)
, (4.8)

where a, b and d are matrices over R of orders m× n, k × n, and k × l, respectively.

We will characterize the existence of a {1, 3}-inverse of T when a{1, 2, 3} 6= ∅ and

d{1, 3} 6= ∅. Set

e = 1k − dd(1,3), f = 1n − a(1,2,3)a, c = ebf. (4.9)

Consider the factorization

T =

(
a 0

b d

)
=

(
1m 0

eba(1,2,3) 1k

)(
a 0

c d

)(
1n 0

d(1,3)b 1l

)
= PAQ. (4.10)

Theorem 4.4. Let e, f , and c as in (4.9) and T as in (4.10). Assume that

c{1, 3} 6= ∅ and let c(1,3) ∈ c{1, 3}. Then T {1, 3} 6= ∅ if and only if u = 1m +

(ba(1,2,3))∗egba(1,2,3) is invertible, where g = 1k − cc(1,3). In this case,

T (1,3) =

(
1n 0

−d(1,3)b 1l

)(
σ σ(ba(1,2,3))∗eg + fc(1,3)

−η d(1,3) − η(ba(1,2,3))∗eg

)
, (4.11)

where σ = (1− fc(1,3)eb)a(1,2,3)u−1 and η = d(1,3)eba(1,2,3)u−1.

Proof. Let P , A, and Q as in (4.10). We observe that cc(1,3) = cc(1,3)e. Using

this, it is easy to check that a {1, 3}-inverse of A is given by

A(1,3) =

(
a(1,2,3) fc(1,3)

0 d(1,3)

)
.
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Then

E′ = I −AA(1,3) =

(
1m − aa(1,2,3) 0

0 eg

)
,

where g = 1k − cc(1,3). We can see that PE′ = E′. Then we can apply Theorem 3.1

to the product PA. With the notation R = Ê′(I − P−1), using that ege = ge, we

have

R =

(
0 0

geba(1,2,3) 0

)
, R∗ =

(
0 (ba(1,2,3))∗eg

0 0

)
, I +R∗R =

(
u 0

0 1k

)
,

where u = 1m + (ba(1,2,3))∗egba(1,2,3). By Theorem 3.1, PA has a {1, 3}-inverse if

and only if I + R∗R is invertible, or equivalently, u is invertible. In this case, a

{1, 3}-inverse of PA has the form

(PA)(1,3) = A(1,3)P−1(I +R∗R)−1(I +R∗).

Substituting into this expression the matrix products

A(1,3)P−1 =

(
a(1,2,3) fc(1,3)

0 d(1,3)

)(
1m 0

−eba(1,2,3) 1k

)
=

(
(1− fc(1,3)eb)a(1,2,3) fc(1,3)

−d(1,3)eba(1,2,3) d(1,3)

)

and

(I +R∗R)−1(I +R∗) =

(
u−1 u−1(ba(1,2,3))∗eg

0 1

)
,

we obtain, after an easy computation,

(PA)(1,3) =

(
σ σ(ba(1,2,3))∗eg + fc(1,3)

−η d(1,3) − η(ba(1,2,3))∗eg

)
,

where σ = (1 − fc(1,3)eb)a(1,2,3)u−1 and η = d(1,3)eba(1,2,3)u−1. Now, since Q is

invertible then PAQ{1, 3} 6= ∅ if and only if PA{1, 3} 6= ∅ in which case (PAQ)(1,3) =

Q−1(PA)(1,3). The latter establishes the formula (4.11).

In order to characterize the existence of a {1, 4}-inverse of T when a{1, 4} 6= ∅

and d{1, 2, 4} 6= ∅, set

e = 1k − dd(1,2,4), f = 1n − a(1,4)a, c = ebf (4.12)

and consider the factorization

T =

(
a 0

b d

)
=

(
1m 0

ba(1,4) 1k

)(
a 0

c d

)(
1n 0

d(1,2,4)bf 1l

)
= P̂ ÂQ̂. (4.13)
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Similarly, with an application Theorem 3.4, we derive the analogue of previous

theorem.

Theorem 4.5. Let e, f , and c as in (4.12) and T as in (4.13). Assume that

c{1, 4} 6= ∅ and let c(1,4) ∈ c{1, 4}. Then T {1, 4} 6= ∅ if and only if v = 1l +

d(1,2,4)bhf(d(1,2,4)b)∗ is invertible, where h = 1n − c(1,4)c. In this case,

T (1,4) =

(
a(1,4) − hf(d(1,2,4)b)∗µ hf(d(1,2,4)b)∗ρ+ c(1,4)e

−µ ρ

)(
1m 0

−ba(1,4) 1k

)

(4.14)

where ρ = v−1d(1,2,4)(1 − bfc(1,4)e) and µ = v−1d(1,2,4)bfa(1,4).

We will characterize the Moore-Penrose invertibility of T when there exist a† and

d†. Set

e = 1k − dd†, f = 1n − a†a, c = ebf. (4.15)

We begin by finding conditions for the existence of c†.

Proposition 4.6. Let e, f and c as in (4.15). If any of the following conditions

hold, then c† exists.

(i) w = cc∗ + dd∗ is invertible.

(ii) z = c∗c+ a∗a is invertible.

Proof. (i) First, we prove that if w is invertible then c is regular. Let x = c∗w−1.

Since ew = cc∗ we also have e = cc∗w−1 = cx. Using this, we get cxc = ec = c.

Hence, x is a 1-inverse of c.

Now, choose c(1) = c∗w−1. Then cc(1) = e and by Lemma 1.1, c† exists if and

only if v = cc∗ + 1− e is invertible. We only need to show that v is invertible. Since

(cc∗ + 1− e)(dd∗ + e) = cc∗ + dd∗ we have that cc∗ + 1− e is invertible because both

w and dd∗ + e are invertible, the last one due to the fact that d† exists.

(ii). The proof is similar to the case (i).

Theorem 4.7. Let T as in (4.8) and let e, f , and c as in (4.15). If c† exists,

then T † exists if and only if both u = 1m + (ba†)∗egba† and v = 1l + d†bhf(d†b)∗ are

invertible, where g = 1k − cc† and h = 1n − c†c. In this case,

(
a 0

b d

)†

=

(
(1− hf(d†b)∗v−1d†b)σ γ

−ρba†u−1 ρ(1l − ba†u−1(ba†)∗eg)

)
, (4.16)

where ρ = v−1d†(1l − bc†), σ = (1k − c†b)a†u−1 and

γ = c† + hf(d†b)∗ρ(1l − ba†u−1(ba†)∗eg) + σ(ba†)∗eg. (4.17)
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Proof. We can apply Theorem 4.4 with a(1,2,3) = a†, d(1,3) = d†, and c(1,3) = c† to

obtain that T (1,3) exists iff u = 1m+(ba†)∗egba† is invertible and, using that d†e = 0,

a {1, 3}-inverse of T is of the form

T (1,3) =

(
1n 0

−d†b 1l

)(
σ σ(ba†)∗eg + fc†

0 d†

)
= Q̃X,

where σ = (1−c†b)a†u−1. Similarly, we apply Theorem 4.5 to derive that T (1,4) exists

iff v = 1l + d†bhf(d†b)∗ is invertible, and a {1, 4}-inverse of T is of the form

T (1,4) =

(
a† hf(d†b)∗ρ+ c†e

0 ρ

)(
1m 0

−ba† 1k

)
= Y P̃

where ρ = v−1d†(1l − bc†).

We now compute T † = T (1,4)TT (1,3) = Y P̃T Q̃X . One sees that

P̃ T Q̃ =

(
a 0

bf − dd†b d

)
.

Using that ρ(bf − dd†b) = −v−1d†b(a†a+ c†c) and ρd = v−1d†d, we have

Y P̃T Q̃ =

(
(1− hf(d†b)∗v−1d†b)(a†a+ c†c) hf(d†b)∗v−1d†d

−v−1d†b(a†a+ c†c) v−1d†d

)
.

Using (a†a+ c†c)σ = σ we obtain

T † = Y P̃T Q̃X =

(
(1 − hf(d†b)∗v−1d†b)σ γ

−v−1d†bσ −v−1d†bσ(ba†)∗eg + ρ

)
,

where γ = (1 + hf(d†b)∗v−1d†b)(σ(ba†)∗eg + c†) + hf(d†b)∗v−1d†.

Finally, the formula in this theorem is proved by taking into account that v−1d†bσ

= ρba†u−1.

We recall that a ring R with involution has the Gelfand-Naimark property (GN-

property) if 1 + x∗x is invertible for all x ∈ R.

We can rewrite u and v in Theorem 4.7 as u = 1m + (egba†)∗(egba†) and v =

1l + d†bhf(d†bhf)∗. On account of this, we obtain the next corollary.

Corollary 4.8. Let R be a ring with involution such that it has the GN-property.

Consider T =

(
a 0

b d

)
with a, b, d ∈ R. Let e, f , and c as in (4.15). If a†, d† and c†

exists then T † exists, and it is given by (4.16)–(4.17).
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We find, after some computations, that our formula (4.16)–(4.17) is the same as

the expression given by (10)–(19) in [14, Section 2.2] for the Moore-Penrose inverse

of a 2 × 2 lower triangular matrix. Here, we conclude that Corollary 4.8 generalizes

the main result of [13, Section 2.2] to more general conditions that those assumed

therein.

Corollary 4.9. Let T =

(
a 0

b d

)
be such that a† exists and d is an invertible

matrix of order k×k. Then T † exists if and only if v = 1k+d−1bf(d−1b)∗ is invertible.

In this case

(
a 0

b d

)†

=

(
(1n − f(d−1b)∗v−1d−1b)a† f(d−1b)∗v−1d−1

−v−1d−1ba† v−1d−1

)
,

Proof. Follows from previous theorem with d† = d−1. Then e = 0, c = 0, g = 1k,

and h = 1n and (4.16) reduces to the formula in this corollary.

For the special case of a companion matrix of the form

(
0 a

1k b

)
=

(
a 0

b 1k

)(
0 1

1k 0

)
= TU,

where a ∈ R is Moore-Penrose invertible and b ∈ Mk×1(R), using that (TU)† =

U∗T † we obtain from previous corollary that (TU)† exists iff v = 1k + b(1 − a†a)b∗

is invertible. In this case,

(TU)† =

(
−v−1ba† v−1

(1− fb∗v−1b)a† fb∗v−1

)
,

which is the result in [19, Theorem 2.1].
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