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Abstract. A property of the Marchenko-Pastur measure related to total positivity is presented.

The theoretical results are applied to the accurate computation of the roots of the corresponding

orthogonal polynomials, an important issue in the construction of Gaussian quadrature formulas.
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1. Introduction. Several important properties of Pascal matrices, a relevant

example of totally positive matrices, have been included in [5]. In the field of numer-

ical linear algebra, it is known that, if we have an accurate bidiagonal decomposition

of a totally positive matrix, the results of Koev [16, 17] show that many computations

(linear system solving, least squares computation, eigenvalue and singular value com-

putation) can be performed with high relative accuracy. From now on, given a totally

positive matrix A, we will denote by BD(A) the matrix containing all the nontrivial

entries of the bidiagonal decomposition of A [17].

This bidiagonal decomposition is related to the complete Neville elimination of

the matrix A, which (when no row exchanges are needed, as it will happen in our case)

consists of computing the Neville elimination of A and also of AT . In the symmetric

case, since AT = A only the Neville elimination of A is needed for obtaining the

BD(A). A detailed explanation can be seen in [17, 22].

In this context, a remarkable property of a Pascal matrix (the fact that its cor-

responding BD(A) is the matrix with all the entries equal to 1, i.e., BD(A) equals

ones(n,n)) was used by Koev in [17] to perform accurate computations with Pascal

matrices. This fact has recently been analyzed in detail and applied to computing
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with high relative accuracy in [1].

On the other hand, in many applications (for example orthogonal polynomial

computation [10]) the involved matrices have tridiagonal structure, and the total

positivity properties (and related properties) of this type of matrices have recently

been studied in [4](see also [26, 7]).

So, similarly to the Pascal case, the first goal of this work has an aesthetic appeal:

to find the tridiagonal matrix whose BD(A) is the tridiagonal matrix with diagonal,

sub-diagonal and super-diagonal entries equal to 1, and discover the significance of

that matrix in applications. This task is done in Section 2, where we find that this

matrix is the Jacobi matrix of the Marchenko-Pastur measure with parameter c = 1.

Let us notice that all our Jacobi matrices are not only tridiagonal, but also sym-

metric. For a tridiagonal symmetric matrix A, the Neville elimination for triangular-

izing A is the same as Gaussian elimination (without pivoting), and so its bidiagonal

decomposition is A = LDLT (where D is a diagonal matrix and L is a lower bidi-

agonal matrix with diagonal entries equal to 1). Therefore the matrix BD(A) is also

tridiagonal and symmetric, and has as diagonal entries the diagonal entries of D and

as sub-diagonal and super-diagonal entries the sub-diagonal entries of L.

In Section 3, the general case of parameter c ∈ (0,∞) is analyzed. The

Marchenko-Pastur law plays a very important role in random matrix theory in connec-

tion with the empirical spectral distribution of sample covariance matrices of large

size [21, 2, 6]. An application of this theory to signal processing can be found in

[24]. The Marchenko-Pastur law is also used in free probability theory, being the free

analogue of the Poisson measure [14, 3].

Naturally associated to a measure is the problem of numerical computation of

integrals with respect to that measure. An important class of quadrature formulas

are Gaussian quadrature formulas, whose nodes are the zeros of the corresponding

orthogonal polynomials. Section 4 is devoted to this applied aspect of our work

and includes numerical experiments illustrating the usefulness of the total positivity

properties.

2. The Marchenko-Pastur law of parameter c = 1. If we start by consid-

ering several tridiagonal BD(A) (for different orders n) with all the diagonal, sub-

diagonal and super-diagonal entries equal to 1, and we compute the eigenvalues of

A by using the algorithm TNEigenvalues of Koev [16], it can be seen that those

eigenvalues are always contained in the open interval (0, 4).

A measure whose corresponding orthogonal polynomials have all their roots in

(0, 4) is the Marchenko-Pastur law, so our goal is to prove that our conjecture is right:

for a given order n, the Jacobi matrix J of the monic orthogonal polynomials with
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respect to the Marchenko-Pastur measure has as BD(J) the tridiagonal matrix of

order n whose diagonal, sub-diagonal and super-diagonal entries are all equal to 1.

Let us denote by pk(x) (for k = 0, 1, 2, . . .) the monic orthogonal polynomials

with respect to the measure dλ defined on the real interval [a, b]. Then pk(x) satisfy

a three-term recurrence relation:

p0(x) = 1,

p1(x) = x− α0,

pk+1(x) = (x− αk)pk(x) − βkpk−1(x), k = 1, 2, . . . ,

with βk > 0.

The Jacobi matrix associated with the measure dλ is

J∞ =

















α0

√
β1 0√

β1 α1

√
β2√

β2 α2

√
β3

. . .
. . .

. . .

0

















.(2.1)

The recursion coefficients αk and βk can be computed by using

αk =
∆

′

k+1

∆k+1
− ∆

′

k

∆k

, k = 0, 1, 2, . . . ; βk =
∆k+1∆k−1

∆2
k

, k = 1, 2, . . .(2.2)

where

∆0 = 1, ∆n =

∣

∣

∣

∣

∣
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∣

∣
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∣
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∣

∣

∣

∣

∣

∣

∣

∣

, n = 2, 3, . . . ,(2.4)

and µi =
∫ b

a
xidλ is the i-th moment with respect to the measure dλ [10].

The Marchenko-Pastur distribution (with parameter 1) is the probability measure

on the interval [0, 4] with density:

f(x) =
1

2πx

√

x(4 − x).
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Its moments are the Catalan numbers [15]:

cn =

(

2n

n

)

1

n+ 1
, n = 0, 1, . . .

Theorem 2.1. Let n ∈ N. The Jacobi matrix J of order n + 1 of the monic

orthogonal polynomials with respect to the Marchenko-Pastur measure is

J =

















1 1 0

1 2 1
. . .

. . .
. . .

1 2 1

0 1 2

















.

Proof. As the moments with respect to the Marchenko-Pastur measure are the

Catalan numbers, and the determinants of the Hankel matrices whose entries are the

Catalan numbers are equal to 1 [19], we obtain that ∆k = 1 for k = 1, 2, . . . , n + 1

(see (2.3)).

Using the formula in page 21 of [11] with αj = j for j = 0, . . . , n−1 and αn = n+1,

we get that ∆
′

n+1 = 2n + 1, and therefore ∆
′

k = 2k − 1 for k = 2, 3, . . . , n + 1 (see

(2.4)). Let us point out here that this formula can also be found in Theorem 3 of

[19], but in this case the roles of i and j in the first product of the formula must be

interchanged.

Taking these results and formulas (2.2), (2.3) and (2.4) into account, we derive

that α0 = 1, αk = 2 for k = 1, 2, . . . , n, and βk = 1 for k = 1, 2, . . . , n, and in

consequence, by (2.1), the Jacobi matrix J of order n + 1 of the monic orthogonal

polynomials with respect to the Marchenko-Pastur measure is the one included in the

statement of this theorem.

Theorem 2.2. Let J be the Jacobi matrix of order n of the monic orthogonal

polynomials with respect to the Marchenko-Pastur measure. Then, the matrix BD(J)

containing its bidiagonal decomposition is the tridiagonal matrix of order n whose

diagonal, sub-diagonal and super-diagonal entries are all equal to 1.

Proof. By applying the theoretical results recalled in Section 2 of [22], it is easily

seen that the Neville elimination of J (which, as indicated in the Introduction, in the

symmetric tridiagonal case is the same as Gaussian elimination) can be performed

without row and column exchanges. Therefore, carrying out the Gaussian elimination

it is seen the all the nontrivial entries of L and D in J = LDLT are equal to 1.

Consequently, the matrix BD(J) is the tridiagonal matrix of order n whose diagonal,

sub-diagonal and super-diagonal entries are all equal to 1.
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Remark 2.3. The results of [17] and [9] and the fact that BD(J) is a tridiagonal

matrix with all its diagonal, sub-diagonal and super-diagonal entries positive imply

J is a totally positive matrix. Note that J is not a strictly totally positive matrix,

but a totally nonnegative matrix in the terminology of [17]. Although, according to

a result of page 100 of [26] (see also Section 2 of [4]), the fact that J is positive

definite (as derived from the proof of Theorem 2.2) and it has all its off-diagonal

entries nonnegative implies J is totally positive, our emphasis on the construction of

BD(J) is important for the applications (see Section 4).

3. The general case of parameter c ∈ (0,∞). Following the presentation in

[2], we recall the basic result concerning the Marchenko-Pastur law.

The eigenvalues s
(n)
j (for j = 1, . . . , n) of the sample covariance matrix 1

n
XnX

T
n ,

where Xn is a p×n matrix whose entries are independent and identically distributed

with mean 0 and variance 1, and p
n
→ c when n → ∞, satisfy

1

p
#{s(n)j : s

(n)
j < x} → F (x),

almost surely, where F ′(x) = f(x) with

f(x) =

{

1
2πxc

√

(x− a)(b − x), a < x < b,

0, otherwise,

where 0 < c ≤ 1, a = (
√
c−1)2 and b = (

√
c+1)2. When c > 1, there is an additional

Dirac measure at x = 0 of mass 1− 1
c
.

The Marchenko-Pastur law with parameter c is the probability measure on the

interval [a, b] = [(
√
c− 1)2, (

√
c+ 1)2] which has the above density function f(x).

A useful presentation which illustrates the above result by using the Matlab

function randn(p,n), and histograms (which fill the area under the curve f(x)) of

the eigenvalues of the sample covariance matrix is given in [6].

The kth moment of the Marchenko-Pastur law is

µk(c) =

k
∑

r=1

1

r

(

k

r − 1

)(

k − 1

r − 1

)

cr−1, k = 1, 2, . . .

while for k = 0 we have µ0 = 1 for 0 < c ≤ 1 and µ0 = 1
c
for c > 1 [15].

The fact that µ0 = 1
c
for c > 1 explains the role of the Dirac measure at x = 0.

For example, if c = 2 half of the eigenvalues are zero (and so the mass is equal to

1− 1
2 ) and the area under the curve f(x) is equal to µ0 = 1

2 .
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As we see, the moment µk is a polynomial in c whose coefficients are the Narayana

numbers ([25], sequence A001263):

T (k, r) =
1

r

(

k

r − 1

)(

k − 1

r − 1

)

.

Example 3.1. As we have said above, for c = 1 the moments are the Catalan

numbers ([25], sequence A000108):

1, 1, 2, 5, 14, 42, 132, 429, . . .

Example 3.2. For c = 2 the moments are the little Schröder numbers ([25],

sequence A001003) (as we have seen, the first one must be changed from 1 to 1
2 , since

µ0 = 1
2 ) [27]:

1

2
, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, . . .

The Jacobi matrix in this general case follows from the three-term recurrence

relation for the monic orthogonal polynomials associated to the Marchenko-Pastur

measure given in Section 6 of [13]. However, it must be observed that in [13] no

distinction is made for the cases 0 < c ≤ 1 (in that case α0 = µ1

µ0

= 1) and c > 1 (now

we have α0 = µ1

µ0

= c). Taking this into account we have the result below:

Theorem 3.3. Let n ∈ N. The Jacobi matrix Jl of order n of the monic

orthogonal polynomials with respect to the Marchenko-Pastur measure with parameter

0 < c ≤ 1 and the Jacobi matrix Jg of order n of the monic orthogonal polynomials

with respect to the Marchenko-Pastur measure with parameter c > 1 are:

Jl =

















1
√
c 0√

c 1 + c
√
c

.

.

.

.

.

.

.

.

.

√
c 1 + c

√
c

0
√
c 1 + c

















, Jg =

















c
√
c 0√

c 1 + c
√
c

.

.

.

.

.

.

.

.

.

√
c 1 + c

√
c

0
√
c 1 + c

















.

Finally, the next theorem shows the matrices representing the bidiagonal decom-

position of Jl and Jg. Since both matrices BD(Jl) and BD(Jg) are tridiagonal matrices

with all their diagonal, sub-diagonal and super-diagonal entries positive we have that

both Jl and Jg are totally positive matrices.

Theorem 3.4. Let Jl be the Jacobi matrix of order n of the monic orthogonal

polynomials with respect to the Marchenko-Pastur measure with parameter 0 < c ≤ 1
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and Jg be the Jacobi matrix of order n of the monic orthogonal polynomials with

respect to the Marchenko-Pastur measure with parameter c > 1. Then, the matrices

containing their bidiagonal decompositions are:

BD(Jl) =

















1
√
c 0√

c 1
√
c

.

.

.

.

.

.

.

.

.

√
c 1

√
c

0
√
c 1

















, BD(Jg) =



















c 1√
c

0
1√
c

c 1√
c

.

.

.

.

.

.

.

.

.

1√
c

c 1√
c

0 1√
c

c



















.

Proof. Analogously to the proof of Theorem 2.2, the result is easily seen by

performing the Neville elimination (which in this case is the same as Gaussian elimi-

nation) on the matrices Jl and Jg.

The fact that the Jacobi matrices we are considering are totally positive allows us

to compute their eigenvalues with high relative accuracy by using the algorithms of

Koev [16, 17, 18] starting from their bidiagonal decompositions, which we have given

explicitly in Theorems 2.2 and 3.4.

In addition, using the results of [12] we see that all the Jacobi matrices we are

considering are oscillatory, and so the eigenvectors of those matrices also possess

additional theoretical properties, such as the fact that any eigenvector corresponding

to the jth largest eigenvalue has exactly j − 1 sign changes among its components

(see Chapter II of [8]).

4. Orthogonal polynomials and Gauss quadrature rules. The three-term

recurrence relation of the monic orthogonal polynomials corresponding to the Jacobi

matrices in Theorem 3.3 follows:

p0(x) = 1,

p1(x) = x− 1,

pk+1(x) = (x− (1 + c))pk(x) − cpk−1(x), k = 1, 2, . . .

(4.1)

in the case c ≤ 1, and

p0(x) = 1,

p1(x) = x− c,

pk+1(x) = (x− (1 + c))pk(x) − cpk−1(x), k = 1, 2, . . .

(4.2)

in the case c > 1.

A careful reading of Section 6 of [13] (see also Section 4 of [20]) shows that, if

{Un(t)}n are the Chebyshev polynomials of the second kind (in [−1, 1]), the following
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relationship between the orthogonal polynomials corresponding to the Marchenko-

Pastur measure and the polynomials Un

(

x−c−1
2
√
c

)

(which are the Chebyshev polyno-

mials of the second kind shifted to the interval [(
√
c− 1)2, (

√
c+ 1)2]) holds:

pn(x) = (
√
c)nUn

(

x− c− 1

2
√
c

)

+ (
√
c)n−1Un−1

(

x− c− 1

2
√
c

)

(4.3)

in the case c > 1.

This relation can be proved by using the recurrence relation (4.2) and the recur-

rence relation for the Chebyshev polynomials of the second kind:

U0(t) = 1,

U1(t) = 2t,

Un+1(t) = 2tUn(t)− Un−1(t), n = 1, 2, . . .

Analogously, by using (4.1), we can obtain the corresponding relationship for the case

c ≤ 1 (not given in [13, 20]):

pn(x) = (
√
c)nUn

(

x− c− 1

2
√
c

)

+ (
√
c)n+1Un−1

(

x− c− 1

2
√
c

)

.(4.4)

Taking c = 1 in (4.4), we get

pn(x) = Un

(x

2
− 1

)

+ Un−1

(x

2
− 1

)

.

Now, let us consider the Chebyshev polynomials of the fourth kind (in [-1,1]), given

by the following recurrence relation:

W0(t) = 1,

W1(t) = 2t+ 1,

Wn+1(t) = 2tWn(t)−Wn−1(t), n = 1, 2, . . .

From the recurrence relations it is easily seen (see Chapter 1 of [23]) that

Wn(t) = Un(t) + Un−1(t).

Consequently, the following relation between the orthogonal polynomials correspond-

ing to the Marchenko-Pastur measure for c = 1 and the Chebyshev polynomials of

the fourth kind shifted to [0, 4] follows:

pn(x) = Wn

(x

2
− 1

)

.

It is also known (see Section 2.2 of [23]) that the roots of Wn(t) are (in decreasing

order)

tk = cos
2kπ

2n+ 1
, k = 1, . . . , n,
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and so the roots of pn(x) are

xk = 2

(

1 + cos
2kπ

2n+ 1

)

, k = 1, . . . , n.(4.5)

If one needs to compute numerically the integral of a continuous function f with

respect to the Marchenko-Pasturmeasure, a usual choice is to construct Gauss quadra-

ture formulas. As it is well known [10], the nodes of those formulas are the zeros of the

corresponding orthogonal polynomials. More precisely, the nodes of a n-point Gauss

quadrature formula are the roots of the orthogonal polynomial of degree n, and those

roots are the eigenvalues of the corresponding Jacobi matrix of order n.

The numerical experiments included in this section illustrate the relevance of

the total positivity of the Jacobi matrix for computing its eigenvalues with high

relative accuracy. As seen in [22], this property is more important when computing

with matrices with high condition numbers. This is, for instance, the case of the

Marchenko-Pastur distribution with c = 1, where there are positive eigenvalues very

close to zero.

Example 4.1. Let J1 be the Jacobi matrix of the orthogonal polynomials of

the Marchenko-Pastur distribution with c = 1. We will compute the eigenvalues of

the three matrices J1 of orders 10, 100 and 500 by means of our approach, which

computes the eigenvalues from BD(J1) using the algorithm TNEigenvalues [16], by

using the command eig from Matlab and by using formula (4.5) in Matlab. The

algorithm TNEigenvalues computes accurate eigenvalues of a totally positive matrix

by using its bidiagonal factorization, and its implementation in Matlab can be taken

from [18].

It is important to observe that, as we have seen, the (exact) matrix BD(J1) is

explicitly known, and so it is not necessary to compute it starting from J1. This is also

true for the general case and it is a crucial fact to guarantee high relative accuracy

in the computation of the eigenvalues, since in general the elimination process to

compute the bidiagonal decomposition can introduce inaccuracies.

The relative errors obtained in these computations (err1, err2 and err3 respec-

tively) are presented in Table 4.1. The condition numbers of the matrices are also

included in Table 4.1.

As traditional algorithms for computing eigenvalues of ill-conditioned totally pos-

itive matrices only compute the largest eigenvalues with guaranteed relative accuracy,

and the tiny eigenvalues may be computed with no relative accuracy at all (see [16]),

only the relative errors obtained in the computations of the smallest eigenvalue of the

matrices J1 are showed in Table 1.
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The relative error of each computed eigenvalue is obtained by using the eigen-

values calculated in Matlab by means of eig by using variable precision arithmetic

(vpa).

n κ2(J1) err1 err2 err3

10 1.8e+2 4.3e-17 1.4e-15 1.9e-15

100 1.6e+4 3.6e-16 1.8e-12 3.2e-13

500 4.1e+5 7.6e-16 5.6e-11 1.0e-11
Table 4.1

Relative errors in Example 4.1.

The results appearing in Table 4.1 indicate that, while the relative accuracy with

which the command eig fromMatlab computes the smallest eigenvalue of the matrix

J1 decreases as the condition number κ2(J1) of these matrices increases, our approach

computes the smallest eigenvalues of the three matrices with high relative accuracy.

Let us observe that in the case of n = 500, while the relative error obtained in the

computation of the smallest eigenvalue by means of eig from Matlab is 5.6e − 11

(which is related to the fact that κ2(J1) = 4.1e+5), the relative error obtained when

using our approach is 7.6e− 16

As for the use of formula (4.5), when it is used in floating point arithmetic it

provides a perfect example of cancellation: for k close to n and n large, cos 2kπ
2n+1 is

very close to −1, and so several significant digits are lost.

Now we include two numerical experiments illustrating the good behaviour of our

approach when computing the eigenvalues of the Jacobi matrix corresponding to the

Marchenko-Pastur measure in the cases c ≤ 1 and c > 1.

Example 4.2. Let J0.97 be the Jacobi matrix of the orthogonal polynomials of

the Marchenko-Pastur distribution with c = 0.97. We will compute the eigenvalues of

the matrices J0.97 of orders 10, 100 and 500 by means our approach and by using the

command eig from Matlab. The condition numbers of the three matrices J0.97 and

the relative errors resulting in the computations of their smallest eigenvalues (err1
and err2 respectively) are presented in Table 4.2.

n κ2(J0.97) err1 err2

10 1.5e+2 1.4e-16 1.1e-14

100 5.7e+3 7.8e-16 4.7e-13

500 1.5e+4 3.2e-15 3.5e-13
Table 4.2

Relative errors in Example 4.2.
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Let us observe that, as in the previous example, while the relative accuracy with

which the command eig from Matlab computes the smallest eigenvalue of the Jacobi

matrix J0.97 decreases as the condition number κ2(J0.97) of these matrices increases,

our approach computes the smallest eigenvalues of the three matrices with high rela-

tive accuracy.

Example 4.3. Let J1.02 be the Jacobi matrix of the orthogonal polynomials of

the Marchenko-Pastur distribution with c = 1.02. As in Example 4.2, we will compute

the eigenvalues of the matrices J1.02 of orders 10, 100 and 500 by means our approach

and by using the command eig from Matlab. The condition numbers of the three

matrices J1.02 and the relative errors resulting in the computations of their smallest

eigenvalues (err1 and err2 respectively) are presented in Table 4.3.

n κ2(J1.02) err1 err2

10 1.6e+2 4.6e-16 2.1e-15

100 7.9e+3 8.1e-16 1.6e-13

500 3.2e+4 5.5e-17 9.2e-13
Table 4.3

Relative errors in Example 4.3.

The results included in this table show that our approach and the command eig

from Matlab behave as in the other two examples included in this section. While the

relative accuracy with which the command eig from Matlab computes the smallest

eigenvalue of the Jacobi matrix J1.02 decreases as the condition number κ2(J1.02) of

these matrices increases, our approach computes the smallest eigenvalues of the three

matrices with high relative accuracy.
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