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THE SYMMETRIC LINEAR MATRIX EQUATION∗

ANDRÉ C. M. RAN† AND MARTINE C. B. REURINGS†

Abstract. In this paper sufficient conditions are derived for the existence of unique and positive
definite solutions of the matrix equations X−A∗

1XA1− . . .−A∗
mXAm = Q and X+A∗

1XA1+ . . .+
A∗

mXAm = Q. In the case there is a unique solution which is positive definite an explicit expression
for this solution is given.
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1. Introduction. In this paper we will study the existence of solutions of the
linear matrix equations

X −A∗
1XA1 − . . .−A∗

mXAm = Q(1.1)

and

X + A∗
1XA1 + . . .+A∗

mXAm = Q,(1.2)

where Q,A1, . . . , Am are arbitrary n × n matrices. We are particularly interested
in (unique) positive definite solutions. The study of these equations is motivated
by nonlinear matrix equations, which are of the same form as the algebraic Riccati
equation. See for example the nonlinear matrix equation which appears in Chapter 7
of [10]. Solutions of these type of nonlinear matrix equations can be found by using
Newton’s method. In every step of Newton’s method, an equation of the form (1.1)
or (1.2) has to be solved.

We shall use the following notations: M(n) denotes the set of all n×n matrices,
H(n) ⊂ M(n) the set of all n× n Hermitian matrices and P(n) ⊂ H(n) is the set of
all n × n positive definite matrices. Instead of X ∈ P(n) we will also write X > 0.
Further, X ≥ 0 means that X is positive semidefinite. As a different notation for
X −Y ≥ 0 (X −Y > 0) we will use X ≥ Y (X > Y ). The norm we use in this paper
is the spectral norm, i.e., ‖A‖ = √

λ+(A∗A) where λ+(A∗A) is the largest eigenvalue
of A∗A. The n× n identity matrix will be written as In. Finally, in this paper stable
always means stable with respect to the unit circle.

2. The equation X−A∗
1XA1 − . . .−A∗

mXAm = Q. We shall start this sec-
tion by recalling some results concerning the Stein equation, which is a special case
of (1.1). Observe that if m = 1 equation (1.1) becomes

X −A∗
1XA1 = Q,
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which is the Stein equation, provided that Q > 0. It is well-known that this equation
has a unique solution if and only if A1 is stable. Moreover, this unique solution is
positive definite. In addition, it is known that the stability of A1 (and hence the
unique solvability of the Stein equation) follows if there is a Q̃ ∈ P(n) for which

Q̃−A∗
1Q̃A1 > 0.(2.1)

This and more about the Stein equation can be found in Section 13.2 of [7]. Another
well-known fact is that in the case A1 is stable, the unique solution of the Stein
equation is given by

X =
∞∑

i=0

A∗i
1 QAi

1 ;(2.2)

see for example formula (5.3.6) in [6].
In the general case we can prove that a condition on A1, . . . , Am, similar to the

stability condition (2.1), is sufficient for the existence of a unique solution, which is
positive definite. Our proof is based on the notion of the Kronecker product of two
matrices.

Recall that the Kronecker product of two matrices A,B ∈ M(n), denoted as
A⊗B, is defined to be the matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
an1B an2B · · · annB


 ∈ M(n2),

where aij is the (i, j)−entry of A. Further, for a matrix A = [a1 . . . an], ai ∈ C
n, i =

1, . . . , n, vec(A) is defined as the vector

vec(A) =




a1

a2

...
an


 ∈ C

n2
.

¿From Theorem 1 and Corollary 2 on page 414 in [7] we know that the following
theorem holds true.

Theorem 2.1. A matrix X ∈ M(n) is a solution of equation (1.1) if and only if
x = vec(X) is a solution of Kx = q, with K = In2 − ∑m

j=1 A
T
j ⊗A∗

j and q = vec(Q).
Consequently, equation (1.1) has a unique solution for any Q ∈ M(n) if and only if
the matrix K is nonsingular.

Kronecker products were also used in [5], [9] and [11] to solve (not necessarily
symmetric) linear matrix equations. The authors of these three papers remark that,
in general, nothing is known about the invertibility of the matrix K. In [5], the
equation AX +XB = C is discussed in detail. In this special case it is possible to
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express the eigenvalues of K in terms of the eigenvalues of A and B, and this is one
method that is considered to derive a condition for the invertibility of K. In [11] the
equationKx = q is converted to a dimension-reduced vector form, which is convenient
for machine computations.

In case m = 1 the invertibility of K is guaranteed if A1 is stable, i.e., if there is
a Q̃ ∈ P(n) such that (2.1) holds. We can generalize this result.

Theorem 2.2. Assume there exists a positive definite n× n matrix Q̃ such that
Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0. Then the matrix

K = In2 −
m∑

j=1

AT
j ⊗A∗

j

is invertible. So in this case equation (1.1) has a unique solution X̄ for any Q ∈ M(n).
Moreover, this unique solution is given by

X̄ = Q+
∞∑

i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1 ;(2.3)

hence X̄ ∈ P(n) if Q ∈ P(n).
Proof. First assume that In − ∑m

j=1 A
∗
jAj > 0, i.e., the assumption holds with

Q̃ = In. We will show that this implies that
∑m

j=1 A
T
j ⊗A∗

j is stable. To do so, let λ
be an eigenvalue of

∑m
j=1 A

T
j ⊗A∗

j and x a corresponding eigenvector, i.e.,

(
m∑

j=1

AT
j ⊗A∗

j )x = λx.

This implies that X with x = vec(X) is a solution of

A∗
1XA1 + · · ·+A∗

mXAm = λX.

This equation can be rewritten as

λX = A∗X̂A,(2.4)

where A and X̂ are the block matrices

A =




A1

A2

...
Am


 , X̂ =




X 0 · · · 0

0 X
. . .

...
...

. . . . . . 0
0 . . . 0 X


 ∈ M(n2).(2.5)

Note that X and X̂ have the same eigenvalues, up to multiplicity, so ‖X‖ = ‖X̂‖.
Further, ‖A‖2 = λ+(A∗A) = ‖A∗A‖. Hence, taking norms at both sides of equation
(2.4) gives that

|λ|‖X‖ = ‖A∗X̂A‖ ≤ ‖A‖2‖X̂‖ = ‖A∗A‖‖X‖,
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so |λ| ≤ ‖A∗A‖ < 1, because of the assumption A∗A =
∑m

j=1 A
∗
jAj < In. This proves

that
∑m

j=1 A
T
j ⊗A∗

j is indeed stable.
Next let Q̃ > 0 be arbitrary and note that

Q̃−
m∑

j=1

A∗
j Q̃Aj > 0 ⇐⇒ In −

m∑
j=1

(Q̃− 1
2A∗

j Q̃
1
2 )(Q̃

1
2AjQ̃

− 1
2 ) > 0.

In the first part of the proof we have shown that it follows from the inequality on
the right that the matrix

∑m
j=1(Q̃

− 1
2TAT

j Q̃
1
2 T )⊗ (Q̃− 1

2A∗
j Q̃

1
2 ) is stable. Using Corol-

lary 1(a) and Corollary 2 on page 408 in [7] we see that

m∑
j=1

(Q̃− 1
2 TAT

j Q̃
1
2T )⊗ (Q̃− 1

2A∗
j Q̃

1
2 ) =

m∑
j=1

(Q̃− 1
2T ⊗ Q̃− 1

2 )(AT
j ⊗A∗

j )(Q̃
1
2T ⊗ Q̃

1
2 )

= (Q̃
1
2T ⊗ Q̃

1
2 )−1(

m∑
j=1

AT
j ⊗A∗

j )(Q̃
1
2T ⊗ Q̃

1
2 ),

which implies that
∑m

j=1 A
T
j ⊗A∗

j is a stable matrix. So the existence of a Q̃ > 0 such
that Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0 is indeed sufficient for the stability of

∑m
j=1 A

T
j ⊗A∗

j .

¿From the stability of
∑m

j=1 A
T
j ⊗ A∗

j it follows that there exists an H ∈ P(n2)
such that

H − (
m∑

j=1

AT∗
j ⊗Aj)H(

m∑
j=1

AT
j ⊗A∗

j ) > 0,

which is equivalent to

(H− 1
2 (

m∑
j=1

AT∗
j ⊗Aj)H

1
2 )(H

1
2 (

m∑
j=1

AT
j ⊗A∗

j )H
− 1

2 ) < In2 .(2.6)

Now let ‖ · ‖H be the norm defined by ‖X‖H = ‖H 1
2XH−1

2 ‖, then

‖
m∑

j=1

AT
j ⊗A∗

j‖2
H = ‖H 1

2 (
m∑

j=1

AT
j ⊗A∗

j )H
− 1

2 ‖2

= ‖(H− 1
2 (

m∑
j=1

AT∗
j ⊗Aj)H

1
2 )(H

1
2 (

m∑
j=1

AT
j ⊗A∗

j )H
− 1

2 )‖

and this is smaller than 1 because of (2.6). With Theorem 8.1 in [2] it then follows
that K is invertible. Recall from Theorem 2.1 that this implies that (1.1) has a unique
solution for any Q. Moreover, Theorem 8.1 in [2] gives us that the inverse of K is
given by

K−1 =
∞∑

i=0

(
m∑

j=1

AT
j ⊗A∗

j )
i = In2 +

∞∑
i=1

(
m∑

j=1

AT
j ⊗A∗

j )
i.
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With induction it can easily be proven that

(
m∑

j=1

AT
j ⊗A∗

j )
i =

m∑
j1,...,ji=1

(AT
j1 ⊗A∗

j1 ) · · · (AT
ji
⊗A∗

ji
)

=
m∑

j1,...,ji=1

(AT
j1 · · ·AT

ji
)⊗ (A∗

j1 · · ·A∗
ji
),

so

K−1 = In2 +
∞∑

i=1

m∑
j1,...,ji=1

(AT
j1 · · ·AT

ji
)⊗ (A∗

j1 · · ·A∗
ji
).

This implies that the unique solution X̄ of (1.1) satisfies

vec(X̄) = K−1vec(Q) = vec(Q) + (
∞∑

i=1

m∑
j1,...,ji=1

(AT
j1 · · ·AT

ji
)⊗ (A∗

j1 · · ·A∗
ji
))vec(Q)

and hence

X̄ = Q+
∞∑

i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1 .

Thus X̄ is indeed positive definite if Q is positive definite.
Remark 2.3. Note that in case m = 1 the condition in this theorem becomes

(2.1), and (2.3) is exactly the expression for the unique solution of the Stein equation
given in (2.2).

In [1] and [8] solutions of a matrix equation are considered as fixed points of some
map G. Also, in the case of equation (1.1) we are interested in fixed points of the map

G+(X) = Q+
m∑

j=1

A∗
jXAj.

Although in [1] m is equal to 1, the results in that paper can be easily generalized
to the case that m ∈ N. In particular, Theorem 5.1 in [1] also holds for the map G+.
Combining this theorem and Theorem 2.2 gives us the following result.

Corollary 2.4. Let Q ∈ P(n) and assume there is a positive definite solution
X̃0 of the inequality

X − A∗
1XA1 − · · · −A∗

mXAm ≥ Q.(2.7)

Then (1.1) has a unique solution. Moreover, this unique solution is positive definite
and the sequence {Gk

+(Q)}∞k=0 increases to this unique solution, while the sequence
{Gk

+(X̃0)}∞k=0 decreases to this unique solution.
Note that the condition in Theorem 2.2 is weaker than condition (2.7). We will

now show that this corollary also gives us expression (2.3) for the unique solution.

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 93-107, May 2002



ELA
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Well then, let X̄ be the unique positive definite solution of (1.1). Then it follows from
Corollary 2.4 that

X̄ = lim
k→∞

Gk
+(Q),

so it is very useful to derive an expression for Gk
+(Q) first.

Lemma 2.5. For k = 0, 1, 2, . . . the following holds true:

Gk
+(Q) = Q+

k∑
i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1 .(2.8)

Proof. We will prove this by induction. For k = 0 and k = 1 it is evident. Now
assume that it is true for k = l, then we have to prove that it also holds for k = l+1.
Well then,

Gl+1
+ (Q) = G+(Gl

+(Q)) = G+(Q+
l∑

i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1)

= Q+
m∑

j=1

A∗
jQAj +

m∑
j=1

l∑
i=1

m∑
j1,...,ji=1

A∗
jA

∗
j1 · · ·A∗

ji
QAji · · ·Aj1Aj

= Q+
m∑

j=1

A∗
jQAj +

l∑
i=1

m∑
j1,...,ji+1=1

A∗
j1 · · ·A∗

ji+1
QAji+1 · · ·Aj1

= Q+
m∑

j=1

A∗
jQAj +

l+1∑
i=2

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1

= Q+
l+1∑
i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1 ,

so (2.8) also holds for k = l+ 1, which we had to show.
It follows directly from this lemma that indeed

lim
k→∞

Gk
+(Q) = Q+

∞∑
i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1 ;(2.9)

hence X̄ satisfies (2.3). Note that (2.9) can be used to find an approximation of the
unique positive definite solution of (1.1) in numerical examples.

3. The equation X+A∗
1XA1 + . . .+A∗

mXAm = Q. In this section we will
study the existence of (unique) positive definite solutions of equation (1.2). We can
prove the following proposition analogously to Theorem 2.2.
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Proposition 3.1. Assume there exists a positive definite n × n matrix Q̃ such
that Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0. Then the matrix

L = In2 +
m∑

j=1

AT
j ⊗A∗

j

is invertible. So in this case equation (1.2) has a unique solution X̄ for any Q ∈ M(n).
Moreover, this unique solution is given by

X̄ = Q+
∞∑

i=1

m∑
j1,...,ji=1

(−1)iA∗
j1 · · ·A∗

ji
QAji · · ·Aj1 .(3.1)

In this case it doesn’t follow that X̄ is positive definite if Q is positive definite. Hence
we need an additional condition, if we want X̄ to be positive definite.

Let the map G− be defined by

G−(X) = Q−
m∑

j=1

A∗
jXAj .

This map will play the same role as G+ did in the previous section, i.e., the solu-
tions of (1.2) are exactly the fixed points of G−. The following lemma can be proven
analogously to Corollary 2.1 in [8].

Lemma 3.2. Let Q ∈ P(n) and assume that Q−∑m
j=1 A

∗
jQAj > 0. Then equation

(1.2) has a solution in the set [Q− ∑m
j=1 A

∗
jQAj , Q] and all its positive semidefinite

solutions are contained in this set.
Combining Proposition 2.2 and Lemma 3.2 gives the first part of the main result

of this section.
Theorem 3.3. Let Q ∈ P(n) and assume that Q−∑m

j=1 A
∗
jQAj > 0. Then (1.2)

has a unique solution which is positive definite. Moreover, the sequence {Gk
−(Q)}∞k=0

converges to this unique solution.
Proof. We only have to prove the convergence of {Gk

−(Q)}∞k=0 to the unique
solution. With induction it can be proven that

Gk
−(Q) = Q+

∞∑
i=1

m∑
j1,...,ji=1

(−1)iA∗
j1 · · ·A∗

ji
QAji · · ·Aj1 .

So the limit of Gk−(Q) for k to infinity is equal to (3.1) and according to Proposition 3.1
this is the unique positive definite solution of (1.2).

The following example shows that the condition that there exists a Q̃ > 0 such
that Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0 cannot be omitted in Theorem 2.2 and Proposition 3.1.

Example 3.4. Let m = 2 and

Q =
[
2 0
0 2

]
, A1 =

[
1
2

1
2

1
2 − 1

2

]
, A2 =

[
− 1

2
1
2

1
2

1
2

]
.
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Then Q − ∑m
j=1 A

∗
jQAj = 0. It can be easily checked that for every a ∈ (−1, 1) the

matrix

X̄ =
[

1 ai
−ai 1

]

is a positive definite solution of (1.2). So it is a consequence of Theorem 3.3 that
there does not exist positive matrices Q̃ such that Q̃ − ∑2

j=1 A
∗
j Q̃Aj > 0. This can

also be seen directly. Indeed, let Q̃ > 0 be given by

Q̃ =

[
q11 q12

q̄12 q22

]

so that

Q̃−
2∑

j=1

A∗
j Q̃Aj =

[
1
2q11 − 1

2q22
3
2q12 − 1

2 q̄12
3
2 q̄12 − 1

2q12
1
2q22 − 1

2q11

]
.

The eigenvalues of this matrix are ±
√
(1
2q11 − 1

2q22)
2 + | 32 q̄12 − 1

2q12|2, so this matrix
cannot be positive definite.

Because there does not exist a Q̃ > 0 such that Q̃ − ∑2
j=1 A

∗
j Q̃Aj > 0, there

cannot exist an X̄ > 0 such that X̄ − ∑2
j=1 A

∗
j X̄Aj = Q > 0, so in this case (1.1)

does not have any positive definite solution.

4. Two Related Equations. Recall that the matrices K and L are invertible
if there exists a positive definite Q̃ such that Q̃−∑m

j=1 A
∗
j Q̃Aj > 0. In practice it can

be hard to find such Q̃. A first attempt may be to try Q̃ = Q or Q̃ = In. There are
matrices A1, . . . , Am such that Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0 is not satisfied for one of these

choices of Q̃, but such that Q̃− ∑m
j=1 AjQ̃A∗

j > 0 is satisfied for one of these Q̃.
Example 4.1. Let the matrices A1 and A2 be given by

A1 =
[ −0.1652 −0.4786

−0.2499 0.6463

]
, A2 =

[ −0.0180 0.2205
−0.0874 0.6405

]
.

Then the eigenvalues of A∗
1A1 + A∗

2A2 are 0.0780 and 1.1253 and the eigenvalues of
A1A

∗
1 + A2A

∗
2 are 0.2799 and 0.9234. So we have A∗

1A1 + A∗
2A2 �< I2 and A1A

∗
1 +

A2A
∗
2 < I2.
Note that if there exists a Q̃ > 0 such that Q̃ − ∑m

j=1 AjQ̃A∗
j > 0, then the

matrices

K∗ = In2 −
m∑

j=1

A∗T
j ⊗Aj ,

L∗ = In2 +
m∑

j=1

A∗T
j ⊗Aj
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are invertible. Hence the equations

X − A1XA∗
1 − · · · −AmXA∗

m = Q,(4.1)

X +A1XA∗
1 + · · ·+AmXA∗

m = Q

both have a unique solution. Moreover, the unique solution of (4.1) is positive definite.
Because the invertibility of K∗ and L∗ is equivalent to the invertibility of K and L,
it follows that also (1.1) and (1.2) have a unique solution. The unique solution of
(1.1) is even positive definite. Indeed, recall from the proof of Theorem 2.2 that the
existence of a Q̃ ∈ P(n) such that Q̃−∑m

j=1 AjQ̃A∗
j > 0 implies that

∑m
j=1 A

∗T
j ⊗Aj

is stable, which is equivalent to stability of
∑m

j=1 A
T
j ⊗A∗

j . Hence, following the proof
of Theorem 2.2, the unique solution of (1.1) is positive definite. Interchanging the
roles of Aj and A∗

j completes the proof of the following theorem.
Theorem 4.2. Let Q be positive definite. Equation (1.1) has a unique solution

which is positive definite if and only if equation (4.1) has a unique solution which is
positive definite.

Using this theorem we can prove that not only the invertibility of K and L is
equivalent to the invertibility of K∗ and L∗, but also that the sufficient condition for
the invertibility of K and L (see Theorem 2.2 and Proposition 3.1) is equivalent to
this sufficient condition applied to K∗ and L∗.

Corollary 4.3. There exists a Q̃ ∈ P(n) such that Q̃ − ∑m
j=1 A

∗
j Q̃Aj > 0 if

and only if there exists a Q̄ ∈ P(n) such that Q̄− ∑m
j=1 AjQ̄A∗

j > 0.
Proof. Assume that Q̃ − ∑m

j=1 A
∗
j Q̃Aj > 0 for a Q̃ > 0. With Theorem 2.2 we

know that in this case (1.1) has a unique solution, which is positive definite, for any
Q ∈ P(n). Then it follows from the previous theorem that also equation (4.1) has a
unique solution which is positive definite, say X̄. But then X̄−∑m

j=1 AjX̄A∗
j = Q > 0,

which proves one implication of the theorem. The other implication is proven by
reversing the roles of Aj and A∗

j , j = 1, . . . ,m.

5. Positive Cones and Positive Operators. In this section we will prove a
slightly weaker result than Theorem 2.2. The proof is based on the theory of positive
cones and linear operators mapping a cone into itself; see for example Section I.4 in
[3] and Chapter 1 and 2 in [4]. Before giving the proof, we will give an overview of
the definitions and results in [3] and [4], which we need in this section.

Definition 5.1. Given a real Banach space B, a positive cone in B is a nonempty
subset C of B that satisfies the following properties:

(i) x+ y ∈ C, whenever x, y ∈ C,
(ii) λx ∈ C, whenever λ ∈ [0,∞) and x ∈ C,
(iii) the zero vector is the only element x ∈ C for which x and −x belong to C.
Definition 5.2. A cone C is called solid if it has a nonempty interior. It is

called reproducing if every element of B is the difference of two elements of C.
It is easy to see that every solid cone is reproducing.
Definition 5.3. A linear operator K on B is called a positive operator in the

lattice sense if it maps the positive cone C into itself. Given u0 ∈ C\{0}, we call K
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u0−positive, if for every x ∈ C\{0} there exist m ∈ N and α, β ∈ (0,∞) such that
αu0 ≤ Km(x) ≤ βu0.

The following result about the spectral radius of any positive operator is Theo-
rem I.4.1 in [3].

Theorem 5.4. Let K be a power compact positive operator (i.e., Km compact
for some m ∈ N) on a Banach space B with a reproducing cone C. Then either the
spectral radius of K vanishes or the spectral radius of K is a positive eigenvalue with
at least one corresponding eigenvector in C.

The proof of Theorem 2.2 which will be given in this section involves Theorem I.4.4
in [3], for the special case c = 1. For completeness we state this theorem below

Theorem 5.5. Let B be a (real or complex ) Banach space with reproducing cone
C and let K be a u0−positive operator on B with spectral radius ρ(K). Consider the
equation x−K(x) = y, where y ∈ C. Then the following statements hold true:

(i) For ρ(K) < 1, there is a unique solution x ∈ C for every y ∈ C, which is given
by the absolutely convergent series

x =
∞∑

k=0

Kk(y).

(ii) For ρ(K) = 1 and y ∈ C there is no solution x ∈ C unless y = 0. In that
case all the solutions in C are positive multiples of the positive eigenvector
corresponding to the eigenvalue ρ(K).

(iii) For ρ(K) > 1 and y ∈ C there do not exist any solutions x ∈ C unless y = 0.
In this case x = 0 is the only solution in C.

Now let B = H(n), C = P(n) ∪ {0} and

K(X) =
m∑

j=1

A∗
jXAj .

It is obvious that H(n) is indeed a real Banach space and that P(n) ∪ {0} is indeed
a positive cone. Moreover, its interior is equal to P(n), so it is not empty. Hence
P(n) ∪ {0} is even a reproducing cone. Now let A and X̂ be as in (2.5). Then K can
be written as

K(X) = AX̂A.

If kerA = {0}, then K maps C into itself. Indeed, if X ∈ P(n), then X̂ ∈ P(mn),
which implies, together with kerA = {0}, that K(X) ∈ P(mn). The condition kerA =
{0} is also sufficient for the In−positivity of K, as the following lemma shows.

Lemma 5.6. Let A be an mn×n matrix. If kerA = {0}, then K is In−positive.
Proof. Recall that kerA = {0} implies that A∗X̂A > 0 for X > 0. Now let

α = λ+(A∗X̂A) and β = λ−(A∗X̂A). Then α, β > 0 and αIn ≤ K(X) ≤ βIn. This
proves the lemma.

So our choices of B, C and K satisfy the conditions of Theorem 5.5, if we assume
that kerA = {0}. Hence we can use this theorem to derive conditions for the existence
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of a unique solution in C of the equation X − K(X) = Q,Q ∈ C, which is exactly
equation (1.1).

Theorem 5.7. Let Q ∈ C and A be an mn×n matrix such that kerA = {0} and
such that there exists Q̃ ∈ P(n) satisfying Q̃ − ∑m

j=1 A
∗
j Q̃Aj > 0. Then (1.1) has a

unique solution X̄ ∈ C for every Q ∈ C. Moreover,

X̄ =
∞∑

k=0

Kk(Q) = Q+
∞∑

i=1

m∑
j1,...,ji=1

A∗
j1 · · ·A∗

ji
QAji · · ·Aj1 .(5.1)

Proof. Note that the matrix Q̃ is a positive definite solution of X − K(X) = P
for some P ∈ P(n). So it follows from Theorem 5.5(i) and (ii) that ρ(K) < 1. Hence,
with part (ii) of that theorem, the theorem follows immediately.

Remark 5.8. Note that X̄ = 0 is the unique solution of (1.1) if and only if
Q = 0. Hence it follows that equation (1.1) has a unique solution in P(n) for all
Q ∈ P(n), under the conditions of the theorem.

Recall that in Section 2 the matrix A did not need to satisfy kerA = {0}. We
will now show that Theorem 5.7 also holds for arbitrary mn×n matrices A. First we
will reduce (1.1) to the special case that Q = In.

Lemma 5.9. Let Q ∈ P(n) and A be an mn×n matrix. Then X̄ is a solution of
(1.1) if and only if Ȳ = Q− 1

2 X̄Q− 1
2 is a solution of

Y − Ã∗
1Y Ã1 − · · · − Ã∗

mY Ãm = In,(5.2)

where Ãj = Q
1
2AjQ

− 1
2 , j = 1, . . . ,m.

That this lemma is true, can be easily seen, so we will not give the proof.
Remark 5.10. It is obvious that (1.1) has a unique positive definite solution if

and only if (5.2) has a unique positive definite solution. Further, if Q̃ ∈ P(n) satisfies
Q̃− ∑∞

j=1 A
∗
j Q̃Aj > 0, then Q̄ = Q− 1

2 Q̃Q− 1
2 satisfies Q̄− ∑∞

j=1 Ã
∗
j Q̄Ãj > 0.

Now assume that A �= 0 and kerA �= {0}. A decomposition of C
n is given by

C
n = (kerA)⊥ ⊕ kerA.

Let d be the dimension of kerA. Because x ∈ kerA if and only if x ∈ kerAj , j =
1, . . . ,m, we can write the matrices Aj , j = 1, . . . ,m, with respect to this decompo-
sition as follows:

Aj =

[
A

(j)
1 0

A
(j)
2 0

]
,

where A(j)
1 is an (n−d)× (n−d) matrix. Further, a positive definite solution of (1.1)

with Q = In is necessarily of the form

X =
[
X1 0
0 Id

]
, X1 ∈ P(n− d),
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So equation (1.1) with Q = In reduces to

X1 −
m∑

j=1

A
(j)∗
1 X1A

(j)
1 = Id +

m∑
j=1

A
(j)∗
2 A

(j)
2 .(5.3)

Note that X is a solution of (1.1) if and only if X1 is a solution of (5.3).
Lemma 5.11. Let Q = In and A be an mn×n matrix such that kerA �= {0}. Then

(1.1) has a unique positive definite solution if and only if (5.3) has a unique positive
definite solution. Moreover, if there exists a Q̃ ∈ P(n) such that Q̃−∑m

j=1 A
∗
j Q̃Aj > 0,

then there exists a Q̃1 ∈ P(n− d) such that Q̃1 −
∑m

j=1 A
(j)∗
1 Q̃1A

(j)
1 > 0.

Proof. We only have to prove the last part. Well then, assume that Q̃ > 0 satisfies
Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0. Write Q̃ with respect to the decomposition of C

n :

Q̃ =

[
Q̃11 Q̃12

Q̃∗
12 Q̃22

]
, where Q̃11 is an (n− d)× (n− d) matrix.

Note that [
Q̃11 Q̃12

Q̃∗
12 Q̃22

]
= S∗

[
Q̃11 − Q̃12Q̃

−1
22 Q̃

∗
12 0

0 Q̃22

]
S,

where

S =

[
In−d 0

Q̃−1
22 Q̃

∗
12 Id

]
.

Because S is invertible, it follows that Q̃− ∑m
j=1 A

∗
j Q̃Aj > 0 if and only if

S−∗Q̃S−1 −
m∑

j=1

(S−∗A∗
jS

∗)(S−∗Q̃S−1)(SAjS
−1) > 0.(5.4)

¿From the equality

SAjS
−1 =

[
A

(j)
1 0

Q̃−1
22 Q̃

∗
12A

(j)
1 + A

(j)
2 0

]

it follows that (5.4) can be written as
[

Q̃1 0

0 Q̃22

]
− ∑m

j=1

[
A

(j)∗
1 Ã

(j)∗
2

0 0

] [
Q̃1 0

0 Q̃22

][
A

(j)
j 0

Ã
(j)
j 0

]
=

=

[
Q̃1 0

0 Q̃22

]
− ∑m

j=1

[
A

(j)∗
1 Q̃1A

(j)
1 + Ã

(j)∗
2 Q̃22Ã

(j)
2 0

0 0

]
> 0,

(5.5)
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where Q̃1 = Q̃11− Q̃12Q̃
−1
22 and Ã

(j)
2 = Q̃−1

22 Q̃
∗
12A

(j)
1 +A

(j)
2 . It is well-known that (5.5)

is satisfied if and only if{
Q̃1 −

∑m
j=1(A

(j)∗
1 Q̃1A

(j)
1 + Ã

(j)∗
2 Q̃22Ã

(j)
2 ) > 0,

Q̃22 > 0.

This implies that

Q̃1 −
m∑

j=1

A
(j)∗
1 Q̃1A

(j)
1 >

m∑
j=1

Ã
(j)∗
2 Q̃22Ã

(j)
2 ≥ 0,

which proves the lemma.
Let A1 be the matrix given by

A1 =




A
(1)
1

A
(2)
1

...

A
(m)
1


 .

If A1 = 0, then it is obvious that (5.3) has a unique solution. If kerA1 = {0}, then the
existence of a unique positive definite solution follows from Theorem 5.7. Otherwise,
we reduce (5.3) first to an equation of the form (5.2), but of lower dimensions, and
then to one of the form (5.3), also of lower dimensions. The reduction process will
end in a finite number of steps and it will result in the equation

X(red) −
m∑

j=1

A
(red)
j X(red)A

(red)
j = Q(red),(5.6)

with Q(red) > 0 and A(red) = 0 or kerA(red) = {0}, where

A(red) =




A
(red)
1

A
(red)
2

...

A
(red)
m


 .

Subsequently applying Lemma 5.9, Remark 5.10 and Lemma 5.11 proves the following
corollary.

Corollary 5.12. Let Q ∈ P(n) and A �= 0 be an mn × n matrix such that
kerA �= {0}. Then (1.1) has a unique positive definite solution if and only if (5.6)
has a unique positive definite solution. Moreover, Q(red) > 0 and if there exists a
Q̃ > 0 such that Q̃ − ∑m

j=1 A
∗
j Q̃Aj > 0, then there exists a Q̃(red) > 0 such that

Q̃(red) − ∑m
j=1 A

(red)∗
j Q̃(red)A

(red)
j > 0.
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Now we are able to prove the main result of this section.
Theorem 5.13. Let Q ∈ P(n) and A an mn × n matrix such that there exists

a Q̃ ∈ P(n) such that Q̃ − ∑m
j=1 A

∗
j Q̃Aj > 0. Then (1.1) has a unique solution in

P(n).
Proof. If kerA = {0}, then this is just the first part of Theorem 5.7. If

kerA �= {0}, then we can reduce equation (1.1) to equation (5.6) with A(red) = 0
or kerA(red) = {0}. In case A(red) = 0, it immediately follows that X(red) = Q(red)

is the unique positive definite solution of (5.6). With Corollary 5.12 it then follows
that also (1.1) has a unique positive definite solution. In case kerA(red) = {0} we can
apply Theorem 5.7, because we know from Corollary 5.12 that the conditions of this
theorem are satisfied. So (5.6) has a unique positive definite solution and thus also
equation (1.1).

Remark 5.14. In this case we can also show that the unique solution is given
by (5.1). Because the unique positive definite solution of (1.1) satisfies the inequality
in Corollary 2.4, we can apply this theorem. This gives us that the unique solution is
indeed given by (5.1).

Remark 5.15. Note the subtle difference between Theorem 2.2 and Theo-
rem 5.13. Although the hypotheses in both theorems are the same, Theorem 2.2
gives us the existence of a unique solution which turns out to be positive definite,
whereas Theorem 5.13 gives us the existence of a unique positive definite solution.
Hence Theorem 2.2 is a stronger result.

At first sight, the method based on Kronecker products and the method used in
this section might be very different. However, the existence of a Q̃ > 0 such that
Q̃− ∑m

j=1 A
∗
j Q̃Aj > 0 plays an important role in both cases . It is sufficient for the

stability of
∑m

j=1 A
T
j ⊗A∗

j and for ρ(K) < 1. It is easy to prove that these properties
are equivalent.

Lemma 5.16. The spectrum of K is equal to the spectrum of
∑m

j=1 A
T
j ⊗A∗

j . So
ρ(K) < 1 if and only if

∑m
j=1 A

T
j ⊗A∗

j is stable.
Remark 5.17. From this lemma it follows that in this case we can also use

Theorem 5.5 to prove Proposition 3.1. Indeed, the existence of a Q̃ > 0 such that
Q̃ − ∑m

j=1 A
∗
j Q̃Aj > 0 implies that ρ(K) < 1. Hence the matrix

∑m
j=1 A

T
j ⊗ A∗

j is
stable, which implies that L is invertible.
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