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A NORM INEQUALITY FOR PAIRS OF COMMUTING

POSITIVE SEMIDEFINITE MATRICES∗

KOENRAAD M.R. AUDENAERT†

Abstract. For i = 1, . . . , k, let Ai and Bi be positive semidefinite matrices such that, for each

i, Ai commutes with Bi. It is shown that, for any unitarily invariant norm,
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The k = 2 case was recently conjectured by Hayajneh and Kittaneh and proven by them for the

trace norm and the Hilbert-Schmidt norm. A simple application of this norm inequality answers a

question of Bourin in the affirmative.
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1. Preliminaries. In this paper, we denote the vectors of eigenvalues and sin-

gular values of a matrix A by λ(A) and σ(A), respectively. We adhere to the con-

vention to sort singular values, and eigenvalues as well whenever they are real, in

non-increasing order. In general, for a real vector x, we will write x↓ for the vector

with the same components as x but sorted in non-increasing order.

For real n-dimensional vectors x and y, we say that x is weakly majorised by y,

denoted x ≺w y, if and only if for k = 1, . . . , n,
∑k

i=1 x
↓
i ≤

∑k
i=1 y

↓
i . We say that

x is majorised by y, denoted x ≺ y, if and only if x ≺w y and
∑n

i=1 xi =
∑n

i=1 yi.

If, moreover, x and y are non-negative, we say that x is weakly log-majorised by y,

denoted x ≺w,log y, if and only if for k = 1, . . . , n,
∏k

i=1 x
↓
i ≤

∏k
i=1 y

↓
i .

According to Weyl’s Majorant Theorem ([1] Theorem II.3.6, or [4], Theorem 2.4),

the vector of singular values of any matrix log-majorises the vector of the absolute

values of its eigenvalues: |λ(A)| ≺log σ(A). As x ≺w,log y implies xr ≺w yr for any

r > 0, Weyl’s Majorant Theorem can in slightly weaker form be stated as

|λ(A)|r ≺w σr(A), for all r > 0.(1.1)
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The sum of the k largest singular values of a matrix defines a norm, known as

the k-th Ky Fan norm. The convexity of the Ky Fan norms can be expressed as a

majorisation relation: for any p such that 0 ≤ p ≤ 1,

σ(pA+ (1 − p)B) ≺w pσ(A) + (1− p)σ(B).

When A and B are positive semidefinite, their singular values coincide with their

eigenvalues and we have

λ(pA+ (1 − p)B) ≺ pλ(A) + (1 − p)λ(B).(1.2)

For positive semidefinite matrices A and B, the eigenvalues of AB are real and

non-negative. Furthermore λ(AB) ≺log λ(A) ◦ λ(B) ([4] eq. (2.4)). Hence, we also

have

λ(AB) ≺w λ(A) ◦ λ(B).(1.3)

2. A majorisation relation for singular values. We start with a rather

technical result concerning a majorisation relation for singular values. For any matrix

A, we denote by diag(A) the matrix obtained from A by setting all its off-diagonal

elements equal to zero.

Lemma 2.1. Let S be an n×m complex matrix, and let L and M be diagonal,

positive semidefinite m×m matrices. Then

σ(SL diag(S∗S)MS∗) ≺w σ((S(LM)1/2S∗)2) ≺w σ(SLS∗SMS∗).(2.1)

Proof. Let us begin with the first majorisation inequality. Since L, M , and

diag(S∗S) are diagonal, they commute, and we can write

SL diag(S∗S)MS∗ = S(LM)1/2 diag(S∗S)(LM)1/2S∗.

This is a positive semidefinite matrix, hence its singular values are equal to its eigen-

values. The same is true for (S(LM)1/2S∗)2. Let us introduce X = S(LM)1/4. Then

we have to show that

λ(X diag(X∗X)X∗) ≺ λ(XX∗XX∗).

In terms of the matrix T = X∗X ≥ 0, this is equivalent to

λ(T diag(T )) ≺ λ(T 2).
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Now note that there exist some number m of unitary matrices Uj such that diag(T ) =
∑m

j=1(UjTU
∗
j )/m. Exploiting inequalities (1.2) and (1.3) in turn, we obtain

λ(T diag(T )) = λ(T 1/2 diag(T )T 1/2)

= λ



T 1/2
m
∑

j=1

1

m
(UjTU

∗
j ) T 1/2





≺

m
∑

j=1

1

m
λ(T 1/2UjTU

∗
j T

1/2)

=

m
∑

j=1

1

m
λ(TUjTU

∗
j )

≺w

m
∑

j=1

1

m
λ(T )λ(UjTU

∗
j )

=

m
∑

j=1

1

m
λ2(T ) = λ(T 2),

which proves the first inequality of (2.1).

For the second inequality, note that, since (LM)1/2 and S∗S are both positive

semidefinite, their product has real, non-negative eigenvalues. Thus,

λ2((LM)1/2S∗S) = |λ(L1/2S∗SM1/2)|2 ≺w σ2(L1/2S∗SM1/2),

by Weyl’s Majorant Theorem (eq. (1.1) with r = 2). This implies that

σ((S(LM)1/2S∗)2) = λ((LM)1/2S∗S(LM)1/2S∗S)

= λ2((LM)1/2S∗S)

≺w σ2(L1/2S∗SM1/2)

= λ2((M1/2S∗SLS∗SM1/2)1/2)

= λ(M1/2S∗SLS∗SM1/2)

= λ(SLS∗SMS∗)

= |λ(SLS∗SMS∗)|

≺w σ(SLS∗SMS∗),

where in the last line we again exploit Weyl’s Majorant Theorem (eq. (1.1) with

r = 1). This proves the second inequality of (2.1).

3. Main result. We can now state and prove the main result of this paper.

Theorem 3.1. For i = 1, . . . , k, let Ai and Bi be positive semidefinite d × d

matrices such that, for each i, Ai commutes with Bi. Then for all unitarily invariant
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norms,
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Proof. Let Ai and Bi have eigenvalue decompositions

Ai = UiLiU
∗
i , Bi = UiMiU

∗
i ,

where the Ui are unitary matrices, and Li and Mi are positive semidefinite diagonal

matrices. Let

L =
k
⊕

i=1

Li, M =
k
⊕

i=1

Mi, S = (U1|U2| · · · |Uk).

Then

k
∑

i=1

Ai = SLS∗,
k
∑

i=1

Bi = SMS∗,
k
∑

i=1

AiBi = SLMS∗.

In addition, the diagonal elements of S∗S are 1 since all columns of S are normalised.

Hence, diag(S∗S) = I. By Lemma 2.1, we then have

σ
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which is equivalent to (3.1).

The case k = 2 is an inequality recently conjectured by Hayajneh and Kittaneh

(Conjecture 1.2 in [3]) and proven by them for the trace norm and the Hilbert-Schmidt

norm.

A simple consequence of Theorem 3.1 is that for any set of k positive semidefinite

matrices Ai, all positive functions f and g, and all unitarily invariant norms,
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Setting k = 2, f(x) = xp and g(x) = xq yields the inequality

|||Ap+q +Bp+q||| ≤ |||(Ap +Bp)(Aq +Bq)|||,(3.3)

which was conjectured by Bourin [2].
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