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Abstract. This paper gives necessary and sufficient conditions for the existence of a common

solution, and two expressions for the general common solution of the equation pair a1xb1 = c1,

a2xb2 = c2, via a simpler equation p1xp2 + q1yq2=c, when each element belongs to an associative

ring with unit. The paper also considers the same problem in the setting of a strongly ∗-reducing ring.

Solutions of the generalized Sylvester equation are also presented. Both the solvability conditions

and the expression for the general solution are given in terms of inner inverses. The paper uses the

results obtained in the ring setting to give equivalent results for operators between Banach spaces,

thus also recovering some of the well known matrix results.
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1. Introduction. The necessary and sufficient conditions for the existence of a

common solution, and the general common solution of the equation pair A1XB1 = C1,

A2XB2 = C2, were given for matrices over the complex field by Mitra in [5]. Van der

Woude derived a set of necessary and sufficient conditions in [10], and Mitra [6] gave

an expression for the general common solution, for the same problem over a general

field. The system was more recently considered by Navarra et al. for matrices over

the complex field [7]. Wang considered the same problem for matrices over regular

rings with identity in [13].

Matrix equation AXB+CY D = E was studied over an arbitrary principal ideal

domain in [1]. Wang presented the solvability conditions and the general solution for

matrices over regular rings in [13] and this solution was revised by Wang et al. in

[12]. More recently, Wang and He have studied a more general matrix equation in

[11].

In this paper, we study necessary and sufficient conditions for the existence of

a common solution of the ring equation pair a1xb1 = c1, a2xb2 = c2 and derive

two distinct expressions for the general common solution. The results are given in
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terms of generalized inverses, the ring is not necessarily regular and when possible

explicit expressions for inner inverses of certain elements are given. The results of

Section 3 and Section 5 are new in the setting of an associative ring with a unit.

One of the expressions for the general common solution is given in the setting of

strongly ∗-reducing rings. This is done in Section 4. Theorem 4.2, Corollary 4.3 and

Corollary 4.4 present solutions to the title equation which are new even in the case

of matrices over a field.

In Section 5, we apply some of the results obtained to the solution of the equation

axb + cyd = e (which we call the generalized Sylvester equation). We highlight the

relationship between this last equation, one of its simpler versions, and the title

equations.

In Sections 6 and 7, we extend the results obtained earlier for rings to bounded

linear operators between Banach or Hilbert spaces. This is achieved by embedding

the ‘rectangular’ operators, via operator matrices, into the ring of operators acting

on the direct sum of Banach spaces. Theorems 6.1 and 7.1 are new in the setting of

bounded linear operators.

2. Preliminaries. Let R represent an associative ring. For x ∈ R, an inner

inverse of x is an element y such that xyx = x; we denote an inner inverse of x by

x−. An element is said regular if it possesses an inner inverse. In the case of a matrix

M ∈ Rn×m, M is said to be regular if there exists an element B ∈ Rm×n such that

M = MBM .

Theorem 2.1. ([2], Theorem 3.1) Let a, b, c ∈ R with a, b regular. Then equation

axb = c (2.1)

is consistent in R if and only if c = aa−cb−b. If c = aa−cbb−b, then the general

solution of (2.1) is given by

x = a−cb− + u− a−aubb−, (2.2)

where u ∈ R is arbitrary.

The following theorem can be found in [9] for matrices over the complex field.

Theorem 2.2. Let A ∈ Rm×n, B ∈ Rk×l, C ∈ Rm×l and A,B be regular

matrices over R. Then the matrix equation AXB = C is consistent if and only if

AA−CB−B = C. If AA−CB−B = C, then the general solution of the equation is

given by

X = A−CB− + U −A−AUBB−,

where U ∈ Rn×k.
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Proof. We embed each matrix A,B,C into the ring of square matrices over R of

size N = m+ n+ k + l:

A :=









0 A 0 0

0 0 0 0

0 0 0 0

0 0 0 0









, B :=









0 0 0 0

0 0 0 0

0 0 0 B

0 0 0 0









, C :=









0 0 0 C

0 0 0 0

0 0 0 0

0 0 0 0









.

Each of A,B,C is regular with inner inverses A−, B−, C−, obtained by a suitable

embedding of A−, B−, C− into RN×N given by

(A−)2,1 = A−, (B−)4,3 = B−, (C−)4,1 = C−,

with all other block entries equal to zero. It is not difficult to check that the equation

AXB = C is consistent if and only if the equation AXB = C is consistent with some

X ∈ RN×N , while X2,3 = X . A direct calculation shows that AA
−
CB

−
B = C

if and only if AA−CB−B = C. Applying Theorem 2.1, we obtain the statement

concerning the consistency of AXB = C.

The general solution of AXB = C is given by the (2, 3) entry of the general

solution X of AXB = C which involves an arbitrary block matrix U ∈ RN×N :

X = (X)2,3 = (A−
CB

− +U −A
−
AUBB

−)2,3 = A−CB− + U −A−AUBB−

with U = (U)2,3 ∈ Rn,k. This follows from Theorem 2.1 since matrices A−
CB

− and

A
−
AUBB

− have all entries except (2, 3) equal to zero; the (2,3) entries are equal

to A−CB− and A−A(U)2,3BB−, respectively.

The following two lemmas can be obtained as a consequence of [8, Theorem 4] or

[2, Lemma 2.2].

Lemma 2.3. Let u and v be regular elements of a ring R. Then s = v(1− u−u)

is regular if and only if

[

u

v

]

is regular. In this case,

[

u

v

]−

=
[

u− − (1− u−u)s−vu− (1 − u−u)s−
]

. (2.3)

Lemma 2.4. Let u and v be regular elements of R. Then
[

u v
]

is regular if and

only if t = (1− uu−)v is regular. In this case,

[

u v
]−

=

[

u− − u−vt−(1 − uu−)

t−(1− uu−)

]

.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 66-79, February 2015



ELA

Common Solutions of Linear Equations in a Ring, With Applications 69

A direct verification yields the following lemma.

Lemma 2.5. Let u, v, s = v(1 − u−u) and t = (1− uu−)v be regular elements of

R. Then

g = (1− ss−)vu− and f = u−v(1− t−t)

are regular with inner inverses f− = v−u and g− = uv−. Elements gu and (1−ss−)v

are also regular with inner inverses (gu)− = u−g− and ((1− ss−)v)− = v−.

The following result will be needed for the discussion of the Sylvester equation.

Lemma 2.6. Let p1, p2, q1, q2, c ∈ R, where p1, q2 are idempotents, p2, q1 regular,

and p1q1 = 0 = p2q2. Then the equation

p1xp2 + q1yq2 = c (2.4)

is solvable if and only if

q1q
−
1 cq2 = c− p1cp

−
2 p2. (2.5)

The general solution of (2.4) is given by

[

x

y

]

=

[

cp−2 + z1 − p1z1p2p
−
2

q−1 c+ z2 − q−1 q1z2q2

]

, z1, z2 ∈ R. (2.6)

Proof. Let d = c − q1yq2 for some y ∈ R. Consider the equation p1xp2 = d.

By Theorem 2.1 and the assumption p1q1 = 0, this equation is solvable if and only

if d = p1cp
−
2 p2, that is, q1yq2 = c − p1cp

−
2 p2. By Theorem 2.1 and the assumption

p2q2 = 0, such y exists if and only if (2.5) holds. The last equation gives rise to a

particular solution to (2.4),
[

x y
]

=
[

cp−2 q−1 c
]

. The result follows when we observe

that the general solution to (2.4) is of the form
[

x y
]

=
[

xp yp
]

+
[

x0 y0
]

, where

the first matrix on the right denotes a particular solutions to the equation and the

second denotes the solution to the same equation when c = 0.

3. Common solutions of equations a1xb1 = c1 and a2xb2 = c2. In this

section, we make a blanket assumption that a1, a2, b1, b2, c1, c2 are elements of the

ring R with a1, a2, b1, b2 regular. We consider the common solutions of the equation

pair

a1xb1 = c1 and a2xb2 = c2. (3.1)

In what follows, we let

A :=

[

a1

a2

]

, B :=
[

b1 b2
]

, C = Cv,w :=

[

c1 v

w c2

]
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for some v, w ∈ R. We assume that A, B, or equivalently

s := a2(1− a−1 a1) and t := (1 − b1b
−
1 )b2,

are regular, and set

f := b−1 b2(1− t−t) and g := (1 − ss−)a2a
−
1 .

We note that by Lemma 2.5 f, g are regular, f− = b−2 b1, g− = a1a
−
2 , and

gg− = (1− ss−)a2a
−
2 , f−f = b−2 b2(1 − t−t). (3.2)

The following matrices will be useful in future calculations:

AA− =

[

a1a
−
1 0

g ss−

]

and B−B =

[

b−1 b1 f

0 t−t

]

.

Common solvability of the title equation pair is equivalent to the solvability of

AxB = C, that is,

[

a1

a2

]

x
[

b1 b2
]

=

[

a1xb1 a1xb2

a2xb1 a2xb2

]

=

[

c1 v

w c2

]

(3.3)

for some v, w.

We note that (3.3) is consistent if and only if AA−CB−B = C. This last equations

is satisfied if and only if

[

c1 v

w c2

]

=

[

a1a
−
1 c1b

−
1 b1 a1a

−
1 (c1f + vt−t)

(gc1 + ss−w)b−1 b1 (gc1 + ss−w)f + (gv + ss−c2)t
−t

]

. (3.4)

The above notation is retained in the rest of this section. The following theorem

replaces v, w occuring in (3.4) with alternative parameters m,n.

Theorem 3.1. Let c1 = a1a
−
1 c1b

−
1 b1. Then equation (3.3), equivalently (3.1), is

consistent if and only if there exist m,n such that

ss−nf + gmt−t = c2 − gc1f − ss−c2t
−t. (3.5)

Proof. Note that under the hypothesis on c1, and from a1a
−
1 c1f = c1f , and

gc1b
−
1 b1 = gc1, to satisfy (3.4) we require that v, w satisfy v = c1f + a1a

−
1 vt

−t

and w = gc1 + ss−wb−1 b1. These equalities hold if and only if v, w are of the form

v = c1f + a1a
−
1 mt−t, and w = gc1 + ss−nb−1 b1, m,n ∈ R. To see this, we can
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substitute such v, w into the respective equations and check that the equalities hold.

Conversely, when the equalities hold we can set m = v and n = w.

The remaining condition on c2 of Equation (3.4), rewritten using the new expres-

sions for v, w, gives (3.5).

Theorem 3.2. Let a1a
−
1 c1b

−
1 b1 = c1 and a2a

−
2 c2b

−
2 b2 = c2. Then equations (3.1)

have a common solution if and only if

(1− ss−)(c2 − gc1f)(1− t−t) = 0. (3.6)

Proof. We note that by Lemma 2.5, f, g of equation (3.5) are regular. Setting

p1 := ss−, p2 := f , q1 := g, q2 := t−t, we can verify that p1q1 = 0 and p2q2 = 0, for

idempotents p1, q2. Hence, we can apply Lemma 2.6 with c = c2 − gc1f − ss−c2t
−t.

For the choice f− = b−2 b1 and g− = a1a
−
2 we can verify that t−tf−f = 0 = gg−ss−.

It follows that (3.5) is solvable if and only if

gg−c2t
−t = (c2 − gc1f)− ss−c2t

−t− ss−c2f
−f.

Applying (3.2) and the identity a2a
−
2 c2b

−
2 b2 = c2, we simplify this equation to

(c2 − gc1f)− c2t
−t− ss−c2(1− t−t) = 0.

Equation (3.6) then follows when we note that ss−g = 0 = ft−t.

A special case of Theorem 3.2 recovers the following standard result which can

be found for example in [2, Theorem 3.11].

Corollary 3.3. Let a, b be regular elements of the ring R. Then equations

ax = c and xb = d have a common solution if and only if aa−c = c, db−b = d and

ad = cb.

Our aim was to solve (3.3) for some x with no prior condition on v, w. When the

equation is solvable for some x, and therefore for some choice of v, w, it is solvable for

possibly multiple choices of v, w (unless the pair ai, bi are invertible). Each solution x

generates a pair vx, wx. From the discussion in the proof of Theorem 3.1, when (3.3)

is solvable, Lemma 2.6 gives the general solutions m,n and hence v, w:

v = c1f + g−(1 − ss−)c2t
−t+ (a1a

−
1 − g−g)z2t

−t,

w = gc1 + ss−c2(1− t−t)f− + ss−z1(b
−
1 b1 − ff−),

(3.7)

z1, z2 ∈ R and f−, g− as given on the line preceding (3.2).

The preceding discussion gives us a way of deriving the general solution of (3.1).

A common solution x of equations (3.1) is a solution to (3.3) for a particular choice
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v, w (namely v = a1xb2 and w = a2xb1). Conversely, a solution of (3.3) given by

x = A−Cv,wB
− + z −A−AzBB− is a solution of (3.1).

Theorem 3.4. If the equations in (3.1) have a common solution, then their

general common solution is given by

x = [a−1 c1 − (1− a−1 a1)s
−(a2a

−
1 c1 − w)]b−1 [1− b2t

−(1 − b1b
−
1 )]

+ [(1 − (1− a−1 a1)s
−a2)a

−
1 v + (1− a−1 a1)s

−c2]t
−(1− b1b

−
1 )

+ z − (a−1 a1 + (1− a−1 a1)s
−s)z(b1b

−
1 + tt−(1− b1b

−
1 )),

(3.8)

with v, w given by (3.7), and z1, z2 and z arbitrary elements of R.

Proof. The general solution of (3.1) is given by the general solution of AxB = C,

x = A−CB− + z −A−AzBB−, with v, w as in (3.7) and z arbitrary. Expanding the

last equation gives (3.8).

Theorem 3.2 and Theorem 3.4 are new in the case of an associative ring with a

unit. These are also given in a similar form for matrices over a regular ring in [13,

Theorem 2.4]. The method of this paper is distinct from that of [13]. Moreover,

the ring is not assumed regular and explicit inner inverses are provided for certain

elements that appear in the expressions for the general solution, and all the results

are presented in terms of inner rather than reflexive inner inverses.

4. General solution in ∗-reducing rings. In this section, R denotes a ring

with involution ∗. A ring R is said to have the Gelfand-Naimark property if 1 + a∗a

is invertible for each a ∈ R. An element a ∈ R is said ∗-cancellable if for every x ∈ R,

a∗ax = 0 implies ax = 0 and xaa∗ = 0 implies xa = 0. If a∗a = 0 implies a = 0, then

R is said ∗-reducing. Elements of a ∗-reducing ring are ∗-cancellable. The matrix

ring Rn×n is ∗-reducing if for every n ∈ N,
∑n

i=1
a∗i ai = 0 implies ai = 0 for each i.

A ring R satisfying this property is called a strongly ∗-reducing ring. For such rings,

the set Rn×m is also ∗-reducing.

For the definition of the Moore-Penrose inverse in a ring with involution and for

some of its properties, see [4]. The Moore-Penrose inverse of a ∈ R will be denoted

by a†. Moore-Penrose invertibility of a ∈ R is equivalent to a being ∗-cancellable and

both a∗a and aa∗ being regular. The following lemma is given in [2, Lemma 2.8];

alternatively see [4] or [3, Proposition 1]. Lemma 4.1 is valid for rectangular matrices

over R.

Lemma 4.1. Let a ∈ R be ∗-cancellable. If a∗a is regular , then a is regular with

an inner inverse of a given by

a− = (a∗a)−a∗.
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If aa∗ is regular, a+ = a∗(aa∗)− is also an inner inverse of a. If a∗a is Moore-Penrose

invertible, then so is a with a† = (a∗a)†a∗ = a∗(aa∗)†.

In this section, we assume that R is strongly ∗-reducing and let

e := a∗1a1 + a∗2a2 and l := b1b
∗
1 + b2b

∗
2

each be regular. Then by Lemma 4.1, we can choose inner inverses of A and B

A+ :=
[

e+a∗1 e+a∗2
]

and B+ :=

[

b∗1l
+

b∗2l
+

]

. (4.1)

In this case, we have A+A = e+e and BB+ = ll+ and the following theorem.

Theorem 4.2. Let conditions of Theorem 3.2 be satisfied and let moreover R be

a strongly ∗-reducing ring. Let e, l be regular. Then the general common solution of

the title equations is given by

x = (a∗1a1 + a∗2a2)
+[a∗1c1b

∗
1 + a∗2c2b

∗
2 + a∗2wb

∗
1 + a∗1vb

∗
2](b1b

∗
1 + b2b

∗
2)

+

+ z − (a∗1a1 + a∗2a2)
+(a∗1a1 + a∗2a2)z(b1b

∗
1 + b2b

∗
2)(b1b

∗
1 + b2b

∗
2)

+,
(4.2)

with z ∈ R and v, w as in (3.7).

Proof. As proof of Theorem 3.4 with inner inverses of A,B as given in (4.1).

Corollary 4.3. Let a, b ∈ R be regular and let aa−c = c, db−b = d and ad = cb.

Then the general common solution of ax = c, xb = d is given by

x = (1 + a∗a)−[a∗c+ db∗ + a−c+ (1− a−a)db− + a∗cbb∗](1 + bb∗)−

+ (1 + a∗a)−(1 − a−a)z(1− bb−)(1 + bb∗)−,

with z ∈ R.

Corollary 4.4. Let a, b ∈ R be regular and let aa−c = c, db−b = d and ad = cb

and moreover, let R have the Gelfand-Naimark property. Then the general common

solution of ax = c, xb = d is given by

x = (1 + a∗a)−1[a∗c+ db∗ + a−c+ (1 − a−a)db− + a∗cbb∗](1 + bb∗)−1

+ (1 − a−a)z(1− bb−),
(4.3)

with z ∈ R.

Proof. Follows from Corollary 4.3 when we observe that (1 + a∗a)(1 − a−a) =

(1− a−a) and (1 − bb−)(1 + bb∗) = (1− bb−).

Remark 4.5. As far as the author is aware, Equation (4.3) gives a new explicit

representation of the solution of ax = c, xb = d, even in the case of matrices over a

field.
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An application of Theorem 3.4, or equivalently Theorem 4.2 yields the general

hermitian solution of the ring equation axb = c. The general hermitian solution of

axb = c is given by 1

2
(x + x∗) where x is the common solution of the equation pair

axb = c and b∗xa∗ = c∗.

5. Applications to the equation axb + cyd = e. In this section, we consider

the general Sylvester equation

axb+ cyd = e, (5.1)

with a, b, c, d fixed regular elements, and unknowns x, y. Equation (5.1) is solvable if

and only if aa−(e − cyd)b−b + cyd = e, for some y; or equivalently if and only if the

following pair of equations have a common solution y:

(1− aa−)cyd = (1 − aa−)e and cyd(1− b−b) = e(1− b−b). (5.2)

Remark 5.1. From Section 3, we know that the solvability of a system of two

equations of this type, hence of (5.1) reduces to the simpler Sylvester equation of the

type (2.4).

To apply Theorem 3.2 it is necessary to assume that the elements

a1 = (1− aa−)c; b2 = d(1− b−b); s = c(1 − a−1 a1) (5.3)

are regular. Following the notation of the previous section, we set

f = d−d(1 − b−b) and g = (1− ss−)c((1− aa−)c)−, (5.4)

and recall that f and g are regular, and that t = 0. The solvability conditions and

the general solution of (5.1) are then as follows.

Theorem 5.2. Let a, b, c, d, and a1, b2, s be regular. Then (5.1) is solvable if and

only if

(1− ss−)[e(1− b−b)− g(1− aa−)ef ] = 0,

(1− aa−)c((1 − aa−)c)−(1− aa−)ed−d = (1 − aa−)e

cc−e(1− b−b)(d(1 − b−b))−d(1− b−b) = e(1− b−b),

where f and g are as in (5.4).

Proof. Follows from the above discussion and Theorem 3.2.

An application of Theorem 3.4 gives the general solution y of (5.2) and hence of

equation (5.1). The general solution for x is then expressed in terms of the general
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solution y.

Theorem 5.3. Let a, b, c, d and a1, b2, s be regular. Then the general solution of

the consistent equation (5.1) is given by

y = [a−1 (1− aa−)e− (1− a−1 a1)s
−(ca−1 (1− aa−)e− w)]d−

+ z − [a−1 a1 + (1− a−1 a1)s
−s]zdd−,

x = a−(e − cyd)b− + u− a−aubb−,

where

w = g(1− aa−)e + ss−e(1− b−b)f− + ss−p(d−d− ff−), z, u, p ∈ R.

Proof. Apply Equation (3.8), noting that here t = 0 and setting t− = 0.

Remark 5.4. Theorem 5.2 and Theorem 5.3 are essentially as given in [13],

without the assumption that the ring is regular. In the case of a ∗-reducing ring, we

can apply (4.2) to obtain an alternative solution of (5.1).

6. Applications to common solutions of operator equations A1XB1 = C1

and A2XB2 = C2.

Theorem 6.1. Let E,F,G,D,N,M be Banach spaces. Let A1 ∈ B(F,E), A2 ∈

B(F,N), B1 ∈ B(D,G), B2 ∈ B(M,G) and

T := (IG −B1B
−
1 )B2 and S := A2(IF −A−

1 A1)

be all regular. Moreover, let A1A
−
1 C1B

−
1 B1 = C1 and A2A

−
2 C2B

−
2 B2 = C2. Then

the equations

A1XB1 = C1 and A2XB2 = C2 (6.1)

have a common solution if and only if

(IN − SS−)C2(IM − T−T ) = (IN − SS−)A2A
−
1 C1B

−
1 B2(IM − T−T ). (6.2)

In this case, the general common solution is given by

X= (A−
1 C1 − (IF −A−

1 A1)S
−(A2A

−
1 C1 −W ))B−

1 (IG −B2T
−(IG −B1B

−
1 ))

+ ((IF − (IF −A−
1 A1)S

−A2)A
−
1 V + (IF −A−

1 A1)S
−C2)T

−(IG −B1B
−
1 )

+ Z − (A−
1 A1 + (IF −A−

1 A1)S
−S)Z(B1B

−
1 + TT−(IG −B1B

−
1 )), (6.3)
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where

V = C1B
−
1 B2(IM − T−T ) +A1A

−
2 (IN − SS−)C2T

−T +A1A
−
1 QT−T

−A1A
−
2 (IN − SS−)A2A

−
1 QT−T, (6.4)

W = (IN − SS−)A2A
−
1 C1 + SS−C2(IM − T−T )B−

2 B1 + SS−PB−
1 B1

− SS−PB−
1 B2(IM − T−T )B−

2 B1, (6.5)

with P , Q, Z arbitrary elements of B(D,N), B(M,E) and B(G,F ), respectively.

Proof. We embed each of Ai, Bi, Ci into the ring of square operator matrices

acting on the sum of Banach spaces. The embedding of an operator A acting from

the space in the iA-th position to the space in the jA-th position of K := E ⊕ F ⊕

G⊕D ⊕N ⊕M is the 6× 6 operator matrix A ∈ B(K) determined by

A = (A)i,j =

{

A if (i, j) = (jA, iA),

0 otherwise.

If the operator A is regular, the operator matrix A is regular. Using the above

described embedding, we define A1,B1,C1,A2,B2,C2 ∈ B(K) as the 6×6 operator

matrices satisfying

(A1)1,2 = A1, (A2)5,2 = A2, (B1)3,4 = B1, (B2)3,6 = B2,

(C1)1,4 = C1, (C2)5,6 = C2,

with all other entries equal to 0.

We apply the results from the previous section, observing that (6.1) have a com-

mon solution if and only if the equations

A1Y B1 = C1 and A2Y B2 = C2 (6.6)

in the ring B(K) have a common solution Y .

To apply Theorem 3.2 and Theorem 3.4 we choose inner inversesA−
i , B

−
i ofAi, Bi,

and then define Ai,Bi by embedding them into B(K) to satisfy

(A−
1 )2,1 = A−

1 , (A−
2 )2,5 = A−

2 , (B−
1 )4,3 = B−

1 , (B−
2 )6,3 = B−

2 ,

with all other entries equal to 0. The general solution of (6.1) is then given by the

(2,3)-entry of the matrix Y , where Y is the general solution of (6.6).

The following corollary recovers a well known result; see for example [2, Theorem

4.5].

Corollary 6.2. Let E,F,G,M be Banach spaces. Let A ∈ B(F,E) and B ∈

B(M,G) be regular and let C ∈ B(G,E), D ∈ B(M,F ). Then the equations AX = C
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and XB = C have a common solution X ∈ B(G,F ) if and only if AA−C = C,

DB−B = D and AD = CB. In this case, the general common solution is given by

X = A−C + (I −A−A)DB− + (I −A−A)P (I −BB−), (6.7)

with P ∈ B(G,F ) arbitrary.

Proof. The result follows on application of Theorem 6.1. We have S = (I−A−A)

and T = 0 both regular and we choose S− = S and T− = 0. From (6.2), equations

AX = C andXB = D have a common solution if and only if AA−C = C, DB−B = D

and A−AD = A−CB. If AA−C = C, DB−B = D, then A−AD = A−CB if and

only if with AD = CB. Equation (6.7) then follows from (6.3).

Corollary 6.3. Let A1, A2, B1, B2 be matrices over R of appropriate sizes and

let

A1A
−
1 C1B

−
1 B1 = C1, and A2A

−
2 C2B

−
2 B2 = C2.

Let T = (I −B1B
−
1 )B2 and S = A2(I −A−

1 A1). Then equations

A1XB1 = C1 and A2XB2 = C2

have a common solution if and only if

(I − SS−)C2(I − T−T ) = (I − SS−)A2A
−
1 C1B

−
1 B2(I − T−T ).

In this case, the general common solution is given by (6.3).

Proof. The proof of Theorem 6.1 was algebraic and can be applied here with each

matrix considered as an operator between appropriate spaces.

7. Applications to the operator equation AXB + CY D = E. In [13,

Theorem 3.1], the general common solution of matrix equations over regular rings

A1XB1 = C1, A2XB2 = C2 is used to derive the general solution for the Sylvester

equation AXB + CY D = E for matrices over regular rings. The solution derived

by Wang in [13] is missing some important terms and was revised by Wang et al. in

[12]. We will give a complete solution below for bounded linear operators over Banach

spaces. The result is valid for matrices over rings, since the proof is algebraic and

each matrix can be seen as an operator between appropriate spaces. Let

A1 := (I −AA−)C and B2 := D(I −B−B). (7.1)

Then we have the following.

Theorem 7.1. Let A ∈ B(F,M), B ∈ B(G,K), D ∈ B(G,N) and C ∈ B(H,M)

be all regular. Let A1, B2 as defined in (7.1) be regular. Let also S := C(I − A−
1 A1)
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be regular. Then the equation AXB + CY D = E is solvable for some X ∈ B(K,F )

and Y ∈ B(N,H) if and only if

A1A
−
1 (I −AA−)ED−D = (I −AA−)E,

CC−E(I −B−B)B−
2 = E(I −B−B), and

(I − SS−)[E − CA−
1 (I −AA−)ED−D](I −B−B) = 0.

In this case, the general solution of the equation is given by

Y = (A−
1 (I −AA−)E − (I −A−

1 A1)S
−CA−

1 (I −AA−)E −W )D−

+ Z − (A−
1 A1 + (I −A−

1 A1)S
−S)ZDD−,

X = A−(E − CY D)B− + U −A−AUBB−,

where

W = (I − SS−)CA−
1 (I −AA−)E + SS−(E + PD−D)(I −B−B)B−

2 D

and P,U, Z are arbitrary operators in B(G,M), B(G,F ), and B(N,H), respectively.

Proof. The operator equation is solvable if and only if AXB = E −CY D, hence

if and only if (I − AA−)CY D = (I − AA−)E and CY D(I −B−B) = E(I − B−B).

The result then follows directly from Theorem 6.1 noting that T = 0 and setting

T− = 0.
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