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EXTENSION OF BESSEL SEQUENCES TO OBLIQUE DUAL FRAME

SEQUENCES AND THE MINIMAL PROJECTION∗

YOO YOUNG KOO† AND JAE KUN LIM‡

Abstract. An extension of two Bessel sequences to oblique dual frame sequences and its ap-

plications to shift-invariant spaces are considered. The best-known situation where this kind of

extension is necessary is the construction of a pair of biorthogonal multiresolution analyses, where

two generating sets whose shifts are only assumed to be Bessel sequences are given. This extension

naturally leads to consideration of the ‘minimal projection’ extending two closed subspaces. The

existence or non-existence of the minimal projection is discussed.
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1. Introduction. Throughout this article, H denotes a separable Hilbert space

over R or C, and I and J countable index sets. Li and Sun showed that any Bessel

sequence can be extended to be a tight frame forH [18] and found the minimal number

of elements to be added to form a frame (the relevant definitions can be found in later

sections). Later, Bownik et al. and Christensen et al. showed that a pair of Gabor

or shift-invariant Bessel sequences in L2(Rd) can be extended to be a pair of Gabor

or shift-invariant alternate dual frames for L2(Rd) [6, 10]. In this article, we show

that any two Bessel sequences can be extended to be a pair of oblique dual frame

sequences and give the minimal number of elements to be added to form oblique dual

frame sequences. This result generalizes some of the existing ones in the literature

([10, Proposition 2.1], [18, Theorem 3.1]). The extension of two shift-invariant Bessel

sequences of L2(Rd) is also considered. Unlike the frame extension, our extension

naturally leads us to consideration of the ‘minimal projection’ extending the given

Bessel sequences. Arguably, the best-known situation where this kind of extension is

necessary is the construction of a pair of biorthogonal frame multiresolution analyses

([5, 15]) starting from two sets of generators such that their shifts are only assumed

to be Bessel sequences (see Section 4 for the details). We discuss the existence or

non-existence of the minimal projection.
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2. Notations and preliminary results. A sequence X := {xj}j∈J ⊂ H is a

Bessel sequence if there is non-negative β such that
∑

j∈J

|〈h, xj〉|2 ≤ β||h||2

for each h ∈ H; it is a frame for H if there are positive α and β such that

α||h||2 ≤
∑

j∈J

|〈h, xj〉|2 ≤ β||h||2

for each h ∈ H; it is a Riesz basis of H if X is complete in H and there are positive

α and β such that

α
∑

j∈J

|a(j)|2 ≤
∥∥∥
∑

j∈J

a(j)xj

∥∥∥
2

≤ β
∑

j∈J

|a(j)|2

for each a ∈ ℓ2(J). Finally, X is a frame (or Riesz) sequence if it is a frame for (or

a Riesz basis of) its closed linear span. These bounds α and β are not unique, but

there are optimal bounds. We let αX and βX denote the optimal Bessel/frame/Riesz

bounds of X . If αX = βX for a frame X , then X is said to be a tight frame. In

particular, if αX = βX = 1, then X is called a Parseval frame. We state only the

very basic facts on these sequences that are directly needed in our discussion, and

refer to existing literature for further information [7, 12, 14]. For a Bessel sequence

X , we define its synthesis operator TX by

TX : ℓ2(J) → H, TXa :=
∑

j∈J

a(j)xj ,

which is well-known to be bounded. Its adjoint, called the analysis operator of X , is

T ∗
X : H → ℓ2(J), T ∗

Xh = (〈h, xj〉)j∈J
.

Recall that X is a frame sequence if and only if TX is bounded and has closed range;

X is a frame for H if and only if TX is bounded and onto. The frame operator of a

Bessel sequence X is defined to be SX := TXT ∗
X ∈ B(H).

In this article, we are especially concerned with the union of two (vector or scalar)

sequences. This sometimes (especially in the abstract setting without any structure)

causes minor notational problems. Suppose that we are given two sequences X :=

{xi}i∈I and Y := {yj}j∈J in H. If the index sets I and J are disjoint, then we define

their union by

X ∪ Y := {zk : zk = xi or yj} ,

which is indexed by I∪ J. Since we only deal with Bessel sequences, there will not be

any rearrangement problem. If I and J are not disjoint, we introduce another index
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set K, which is disjoint from I and whose cardinality is J, and we re-index Y by using

K. Then we can define the union of X and Y . In this way, we may freely assume that

I and J are disjoint whenever this assumption is necessary. Moreover, if we are given

two sequences X and Y indexed by the same index set J, then we define the formal

index set J̃ := {j̃ : j ∈ J} which is disjoint with J and we re-index Y by J̃. Then the

union of X and Y is indexed by J ∪ J̃. Now, suppose that we are given two Bessel

sequence X := {xi : i ∈ I} and Y := {yj : j ∈ J} in H, where I and J are disjoint.

The synthesis operator of X ∪ Y is

TX∪Y : ℓ2(I ∪ J) → H, TX∪Y a =
∑

i∈I

a(i)xi +
∑

j∈J

a(j)yj ,

and its analysis operator is

T ∗
X∪Y : H → ℓ2(I ∪ J), T ∗

X∪Y f = T ∗
Xf ∪ T ∗

Y f,

where the last term is the union of two scalar sequences. Note that, by definition,

‖T ∗
X∪Y f‖

2
= ‖T ∗

Xf‖2 + ‖T ∗
Y f‖

2
.

Moreover,

SX∪Y = SX + SY . (2.1)

More generally, if F and G are sequences in H indexed by I andX and Y are sequences

inH index by J, then themixed frame operator (or mixed dual Gramian), TF∪GT
∗
X∪Y :

H → H, of F ∪X and G ∪ Y is, by definition,

TF∪XT ∗
G∪Y = TFT

∗
G + TXT ∗

Y . (2.2)

An operator P ∈ B(H) is a projection (or oblique projection) if P 2 = P . We write

A ≤ H if A is a closed subspace of H and A < H if A is a proper closed subspace

of H. Suppose that A,B ≤ H. Recall that A and B are said to be complementary

spaces if A + B = H and A and B have trivial intersection. In this case, we write

H = A ∔ B. If P is a projection, then ranP and kerP are complementary spaces.

Conversely, if A and B are complementary spaces, then there is a projection PA,B

such that ranPA,B = A and kerPA,B = B ([8, Section II.3]). We let PA := PA,A⊥

denote the orthogonal projection onto A.

Suppose that U and V are two closed subspaces of H. We define ([20, Eqs. (28)

and (38)])

S(U ,V) :=
{

sup
{

‖PVu‖
‖u‖ : u ∈ U \ {0}

}
if U 6= {0},

0 if U = {0},

R(U ,V) :=
{

inf
{

‖PVu‖
‖u‖ : u ∈ U \ {0}

}
if U 6= {0},

1 if U = {0}.
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Note that, for u ∈ U , ||PVu|| ≥ R(U ,V)||u||. A bounded operator T is said to be

bounded below if there is ε > 0 such that ||Tx|| ≥ ε||x|| for each x. Recall that T is

bounded below if and only if T ∗ is onto. We recall that the following conditions are

equivalent:

• R(U ,V) > and R(V ,U) > 0;

• R(U ,V) = R(V ,U) > 0;

• U and V⊥ are complementary spaces;

• PV : U → V is bounded below and onto.

If any of the above conditions is satisfied, we say that U and V satisfy the angle

condition. We also recall that S(U ,V) < 1 if and only if U + V is closed and U and V
have trivial intersection. See [2, 11, 13, 17, 19, 20] for further results on S(U ,V) and
R(U ,V).

Now, suppose that X and Y are Bessel sequences indexed by J. We say that they

are oblique dual frame sequences [9, 13] if X and Y are frame sequences and

x =
∑

j∈J

〈x, yj〉xj = (TXT ∗
Y |spanX)x, ∀x ∈ spanX.

In this case, ranTX and ranTY satisfy the angle condition, and so do ranT ∗
X and

ranT ∗
Y . We say that X and Y are oblique dual frame sequences with respect to U and

V if they are oblique dual frame sequences and ranTX = U and ranTY = V . The

following is [16, Proposition 2.8] (see also [1]).

Lemma 2.1 ([16]). Suppose that X and Y are Bessel sequences. Then the fol-

lowing conditions are equivalent:

• X and Y are oblique dual frame sequences;

• X and Y are frame sequences and TXT ∗
Y = PspanX,(spanY )⊥ ;

• X is a frame sequence and TXT ∗
Y TX = TX and T ∗

Y TXT ∗
Y = T ∗

Y .

And the following is Theorem 1.4 of [13].

Lemma 2.2 ([13]). If U and V are closed subspaces satisfying the angle condition

and X is a frame for U , then there is Y such that X and Y are oblique dual frame

sequences with respect to U and V.

For k ∈ Zd, define the shift-operator Tk : L2(Rd) → L2(Rd) by (Tkf)(x) :=

f(x − k). A closed subspace U of H is a shift-invariant space if U is invariant under

Tk for each k ∈ Zd. If F ⊂ L2(Rd), then we let

E(F ) :=
{
Tkf : f ∈ F, k ∈ Z

d
}
,

and call it the collection of the shifts of F . In the theory of shift-invariant spaces, it

is often convenient to permit the elements of F to be repeated. That is, E({f, f}) 6=
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E({f}) even though their closed spans are equal. We finally recall that, by the Bownik

decomposition [4, Theorem 3.3], for any shift-invariant space U , there is a countable

Ξ ⊂ L2(Rd) such that E(Ξ) is a Parseval frame for U . See [4] for the basic facts on

the theory of shift-invariant spaces. The following is Theorem 1.5 of [13].

Lemma 2.3 ([13]). Suppose that U and V are shift-invariant spaces of L2(Rd)

satisfying the angle condition and that E(Φ) is a frame for U for some countable

Φ ⊂ L2(Rd). Then there is Ψ ⊂ L2(Rd) whose cardinality is that of Φ such that E(Φ)

and E(Ψ) are oblique dual frame sequences with respect to U and V.

3. Extension of two Bessel sequences to oblique dual frame sequences.

We show that two Bessel sequences can always be extended to be two oblique dual

frame sequences. This extends some of the results in [6, 10, 18]. Suppose that we are

given two Bessel sequences F and G in H. Then U := H and V := H satisfy the angle

condition with F ⊂ U and G ⊂ V .

Theorem 3.1. Let F and G be Bessel sequences in H indexed by I. Suppose

there are closed subspaces U ⊃ F and V ⊃ G satisfying the angle condition. Then

there are Bessel sequences X and Y indexed by J such that F ∪ X and G ∪ Y are

oblique dual frame sequences with respect to U and V.

Proof. Define

T := PU ,V⊥ − TFT
∗
G ∈ B(H). (3.1)

Let X be any frame for U . Then, by Lemmas 2.2 and 2.1, there is a frame B for V
such that

TXT ∗
B = PU ,V⊥ . (3.2)

Let

Y := T ∗(B), (3.3)

which is easily seen to be a Bessel sequence. In particular, TY = T ∗TB. Hence,

T ∗
Y = T ∗

BT . Note that

ranTY ⊂ ranT ∗ = ran
(
PV,U⊥ − TGT

∗
F

)
⊂ V + ranTG ⊂ V . (3.4)

Since ranT ⊂ U , T = PU ,V⊥T = TXT ∗
BT . Therefore,

PU ,V⊥ = TFT
∗
G + T = TFT

∗
G + (TXT ∗

B)T = TFT
∗
G + TX (T ∗

BT )

= TFT
∗
G + TXT ∗

Y = TF∪XT ∗
G∪Y , (3.5)
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where the last equality holds by (2.2). In particular, U = ranPU ,V⊥ ⊂ ranTF∪X .

Since F ∪X ⊂ U , ranTF∪X ⊂ U . Therefore ranTF∪X = U . This shows that F ∪X

is a frame for U . On the other hand, by taking the adjoint of both sides of (3.5), we

have PV,U⊥ = TG∪Y T
∗
F∪X . In particular, V = ranPV,U⊥ ⊂ ranTG∪Y . Note that, by

(3.4), we have

ranTG∪Y ⊂ ranTG + ranTY ⊂ V + V = V .

Therefore ranTG∪Y = V . This shows that G∪Y is a frame for V . It remains to show

that F ∪X and G ∪ Y are oblique duals of each other. (3.5) implies that

(TF∪XT ∗
G∪Y )TF∪X = PU ,V⊥TF∪X = TF∪X .

Since ranTG ⊂ V , kerT ∗
G = (ranTG)

⊥ ⊃ V⊥. If h ∈ V⊥ ⊂ kerT ∗
G, then

T ∗
G∪Y h = T ∗

Gh ∪ T ∗
Y h = 0ℓ2(I) ∪ T ∗

BTh = 0ℓ2(I) ∪
(
T ∗
B

(
PU ,V⊥ − TFT

∗
G

)
h
)

= 0ℓ2(I) ∪
(
T ∗
BPU ,V⊥h− TFT

∗
Gh

)
= 0ℓ2(I) ∪ 0ℓ2(J) = 0ℓ2(I∪J).

Hence, V⊥ ⊂ kerT ∗
G∪Y . Since ran(I − PU ,V⊥) = kerPU ,V⊥ = V⊥, it follows that

T ∗
G∪Y (I − PU ,V⊥) = 0. Therefore,

T ∗
G∪Y (TF∪XT ∗

G∪Y ) = T ∗
G∪Y PU ,V⊥ = T ∗

G∪Y PU ,V⊥ + T ∗
G∪Y

(
I − PU ,V⊥

)
= T ∗

G∪Y .

Hence, F ∪X and G ∪ Y are oblique dual frame sequences by Lemma 2.1.

Note that in the construction in Theorem 3.1 we can take X to be any frame for

U . We now consider the minimal cardinality of X and Y .

Theorem 3.2. Suppose that F and G are Bessel sequences in H indexed by I.

Suppose there are closed subspaces U ⊃ F and V ⊃ G satisfying the angle condition.

If there are Bessel sequences X and Y indexed by J such that F ∪X and G ∪ Y are

oblique dual frame sequences with respect to U and V, then

dim ran
(
PU ,V⊥ − TFT

∗
G

)
≤ cardX(= card J). (3.6)

Moreover, the equality in (3.6) can be achieved.

Proof. Since TXT ∗
Y = PU ,V⊥ − TFT

∗
G if F ∪X and G ∪ Y are oblique dual frame

sequences with respect to U and V , we have

dim ran
(
PU ,V⊥ − TFT

∗
G

)
≤ dim ranTXT ∗

Y ≤ dim ranTX ≤ cardX = card J.

Hence, (3.6) holds. We now show that the equality in (3.6) can be achieved. Suppose

first that the left-hand side of (3.6) is ∞. Then, there are X and Y such that F ∪X

and G∪Y are oblique dual frame sequences with respect to U and V by Theorem 3.1.

Now, (3.6) implies that cardX = ∞. Suppose, on the other hand, that

N := dim ran
(
PU ,V⊥ − TFT

∗
G

)
< ∞.
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Let T := PU ,V⊥ − TFT
∗
G ∈ B(H). Since T has finite dimensional range, it has closed

range. Choose an orthonormal basis X := {x1, x2, . . . , xN} of ranT ⊂ U . Define

Y := {y1, y2, . . . , yN}, where yj := T ∗xj . Since ranT ∗ ⊂ V , Y ⊂ V . Moreover, for

any h ∈ H,

TXT ∗
Y h =

N∑

j=1

〈h, T ∗xj〉xj =

N∑

j=1

〈Th, xj〉xj = Th.

Hence, (3.5) holds. The same argument after (3.5) in Theorem 3.1 shows that F ∪X

and G ∪ Y are oblique dual frame sequences with respect to U and V .

Note that X in the proof of Theorem 3.2 is not a frame for U if ran(PU ,V⊥−TFT
∗
G)

is a proper subspace of U .

The proof of the following lemma is well-known and straightforward.

Lemma 3.3. Suppose that Φ and Ψ are countable subsets of L2(Rd) with the same

cardinality. Then, for each k ∈ Zd, Tk commutes with TE(Φ)T
∗
E(Ψ).

We show that two Bessel sequences of shifts in L2(Rd) can be extended to be

oblique dual frame sequences of shifts.

Corollary 3.4. Let Φ and Ψ be countable subsets of L2(Rd) with the same

cardinality. Suppose that U(⊃ Φ) and V(⊃ Ψ) are shift-invariant spaces of L2(Rd)

satisfying the angle condition and that E(Φ) and E(Ψ) are Bessel sequences. Then

there are countable Φ̃, Ψ̃ ⊂ L2(Rd) with the same cardinality such that E(Φ) ∪ E(Φ̃)

and E(Ψ) ∪ E(Ψ̃) are oblique dual frame sequences with respect to U and V.

Proof. There is X := E(Ξ) such that E(Ξ) is a Parseval frame for U . By Lemma

2.3, there is Θ whose cardinality is that of Ξ such that X and B := E(Θ) are oblique

dual frame sequences with respect to U and V . Lemma 3.3 and (3.2) imply that T in

(3.1) commutes with shifts. Then Y in (3.3) consists of shifts. The proof is complete

by following the argument after (3.3) in the proof of Theorem 3.1.

Recall that an invariant space of T is a reducing space of T if it is also invariant

by T ∗. Hence, a shift-invariant space is a reducing space of Tk for each k ∈ Zd, which

implies that its orthogonal complement is also a shift-invariant space. We now show

that a complementary space of a shift-invariant space is not necessarily shift-invariant.

We use the following form of the Fourier transform: for f ∈ L1(Rd) ∩ L2(Rd),

f̂(ξ) :=

∫

Rd

f(x)e−2πiξ·x dx.

It is extended to be a unitary operator on L2(Rd) by the Plancherel theorem.

Proposition 3.5. There is a shift-invariant space U ≤ L2(Rd) such that one of

the complementary spaces of U is not shift-invariant.
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Proof. Suppose it is not the case. Then, any projection P whose range is shift-

invariant necessarily commutes with Tk for each k ∈ Zd. Suppose that U is a shift-

invariant space. Recall that, for any A ∈ B(U⊥,U), the following operator matrix

with respect to the decomposition L2(Rd) = U ⊕ U⊥

[
IU A

0 0

]

defines a projection P whose range is U . Clearly, the matrix representation of Tk with

respect to the same decomposition is

[
Tk 0

0 Tk

]

since U⊥ is also shift-invariant. Since P and Tk commute, so do A and Tk. It suffices

to construct a shift-invariant space U of L2(R) and A ∈ B(U⊥,U) such that A and

Tk do not commute for some k ∈ Z. For j ∈ Z, let

ϕj := (χT+j)
∨ ,

where ∨ denotes the inverse Fourier transform and T := [−1/2, 1/2). Define

U := S ({ϕj : j ∈ 2Z}) .

It is easy to see that

U⊥ = S ({ϕj : j ∈ 2Z+ 1}) .

Note that E({ϕj : j ∈ Z}) and E({ϕj : j ∈ 2Z+ 1}) are orthonormal bases of U and

U⊥, respectively. Define a linear map A : U⊥ → U by extending linearly the following

map:





ATkϕ2j+1 := Tkϕ2j , j ∈ Z \ {0}, k ∈ Z,

ATkϕ1 := Tkϕ0, k ∈ Z \ {0, 1},
Aϕ1 := T1ϕ0,

AT1ϕ1 := ϕ0.

This is a unitary map by definition. On the other hand,

T1Aϕ1 = T1T1ϕ0 = T2ϕ0 6= ϕ0 = AT1ϕ1.

Hence, A and T1 do not commute.

4. The minimal projection problem. We first address the motivation of this

problem. Let D ∈ B(L2(Rd)) be the unitary dyadic dilation operator such that

(Df)(x) := 2d/2f(2x). Suppose we are given two finite sequences Φ and Φ̃ such that

E(Φ) is a frame for V0 and E(Φ̃) is a frame for Ṽ0. Suppose also that

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 51-65, January 2015



ELA

Extension of Bessel Sequences 59

• E(Φ) and E(Φ̃) are oblique dual frame sequences,

• V0 ⊂ D(V0) and Ṽ0 ⊂ D(Ṽ0),

• ∩n∈ZD
n(V0) = {0} = ∩n∈ZD

n(Ṽ0),

• ∪n∈ZD
n(V0) and ∪n∈ZD

n(Ṽ0) are dense in L2(Rd).

Then, we say that {Dn(V0)}n∈Z and {Dn(Ṽ0)}n∈Z are a pair of biorthogonal frame

multiresolution analyses [5, 15]. If we are given a pair, then, with luck, we may

construct a pair of oblique dual wavelet frames. Now, suppose we are given two finite

sequences A and B of L2(Rd) such that E(A) and E(B) are Bessel sequences. If U
and V are two finitely generated shift-invariant spaces satisfying the angle condition

such that A ⊂ U and B ⊂ V , then by Corollary 3.4, we can construct V0 = U and

Ṽ0 = V satisfying the first condition of a pair of biorthogonal frame multiresolution

analyses. The last two conditions are not hard to satisfy [3, Theorems 4.3 and 4.9].

(The second one is not that easy. It is related with the ‘refinement equation’.) For

computational purposes, we hope that the lengths of U and V (that is, the minimal

cardinality of generating sequences) are as small as possible. So if we are given

another such finitely generated shift-invariant spaces A and B such that A ⊂ A ⊂ U
and B ⊂ B ⊂ V , then we prefer the pair A and B to the pair U and V . Now, consider
the projections P := PA,B⊥ and Q := PU ,V⊥ . Then we have A = ranP ⊂ ranQ = U
and B = ranP ∗ ⊂ ranQ∗ = V . So we may ask whether there are minimal such pair

of spaces. This leads us to consider the minimal projection problem (Problem 4.1)

For two projections P and Q in B(H), define P ≺ Q if ranP ⊂ ranQ and

ranP ∗ ⊂ ranQ∗. Consider a projection P which is not an orthogonal projection.

Then P ≺ IH and 1 = ‖IH‖ < ‖P‖ by [8, Proposition II.3.2]. Suppose that {e1, e2, e3}
is an orthonormal subset of H. Let U := span{e1, e2}, V := span{e1, 2−1/2(e2 + e3)}
and W := span{e1}. It is routine to see that U ∔ V⊥ = H. Hence, P := PU ,V⊥

is a projection such that PW ≺ P . In this case, 1 = ‖PW‖ < ‖P‖. So there are

projections such that P ≺ Q with ||P || < ||Q|| and there are projections R ≺ S with

||S|| < ||R||.

Problem 4.1. Let A and B be two closed subspaces of H. Find a projection P

(temporarily called theminimal projection extending A and B) satisfying the following
conditions:

(1) A ⊂ ranP ;

(2) B ⊂ ranP ∗;

(3) If Q is another projection satisfying (1) and (2), then P ≺ Q.

Trivially, the minimal projection is unique if it exists. On the other hand, the

maximal projection is trivial since it is always IH. If A = B, the the minimal projec-

tion is PA. Anyway, if we define C := span (A∪B), then PC is a projection satisfying

(1) and (2).
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We show that, in many cases, there does not exist the minimal projection. Which

means that often there is no ‘minimal’ solution of the extension problem. The follow-

ing lemma is a restatement of [13, Lemma 2.2].

Lemma 4.2 ([13]). Let C < H with an orthonormal basis {cj : j ∈ J} and f ∈ C⊥

with ||f || = 1. We assume that 1 ∈ J. Define

C1 := span

({
1√
2
(c1 + f)

}⋃
{ck : k 6= 1}

)
.

Then R(C, C1) = R(C1, C) ≥ 2−1/2 > 0.

Trivially, C ∩ C1 < C1. Now, let A,B ≤ H. If both R(A,B) and R(B,A) are

positive, then PA,B⊥ is a projection. It is trivially the minimal projection extending

A and B. The remaining cases to be considered are: only one is 0; both are 0.

Moreover, if one of A or B is H, then IH is the minimal projection. We now consider

the first non-trivial case.

Theorem 4.3. Suppose that H is a separable Hilbert space, B < H and

0 = R(B,A) < R(A,B). (4.1)

Suppose also that A+ B < H. Then the minimal projection extending A and B does

not exist.

Proof. If A = H then R(B,A) = R(B,H) = 1. Hence, A < H. We have, by [2,

Lemma 3.2],

B = PB(A) ⊕ (B ⊖A) and C := B ⊖A 6= {0}. (4.2)

Moreover, PB : A → B is bounded below by R(A,B) (in particular, PB(A) is closed)

but is not onto by [2, Lemma 3.2].

We first show that there is a projection extending A and B. Let U := A ⊕ C.
Consider

PB : U (= A⊕ C) → B (= PB(A)⊕ C). (4.3)

For u = a+ b ∈ A⊕ C,

PB(u) = PB(a+ b) = PBa+ PBb = PBa+ b.

(4.2) implies that the map (4.3) is onto. On the other hand,

‖PB(a+ b)‖2 = ‖PBa+ b‖2 = ‖PBa‖2 + ‖b‖2 (by (4.2))

≥ R(A,B)2 ‖a‖2 + ‖b‖2 ≥ R(A,B)2
(
‖a‖2 + ‖b‖2

)

= R(A,B)2 ‖a+ b‖2 .
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Hence, the map in (4.3) is bounded below. Therefore U and B satisfy the angle

condition. This shows that PU ,B⊥ is a projection extending A and B.

Since A+ B < H, there is f with unit norm that is orthogonal to both A and

B. Let {cj}j∈J be an orthonormal basis of C. Define C1 as in Lemma 4.2 and let

U1 := A ⊕ C1. Recall that PC : C1 → C is bounded below and onto. Consider the

following map:

PB : A⊕ C1 (= U1) → PB(A)⊕ C (= B). (4.4)

Let d ∈ C1 and {PBai}i∈I be an orthonormal basis of PB(A), where ai ∈ A. Recall

that {2−1/2(c1 + f)} ∪ {cj}j∈J,j 6=1 is an orthonormal basis of C1. Hence,

d =

〈
d,

1√
2
(c1 + f)

〉
1√
2
(c1 + f) +

∑

j∈J,j 6=1

〈d, cj〉 cj .

Since f ⊥ B and cj ∈ B for each j ∈ J, PBd ∈ C ⊥ A. Hence, 〈d, PBai〉 = 〈PBd, ai〉 = 0

for each i ∈ I. Therefore, PBd = PCd for any d ∈ C1. In particular, for a+d ∈ A⊕C1,
PB(a+ d) = PBa+ PCd ∈ PB(A) ⊕ C. It is now routine to see that the map in (4.4)

is bounded below and onto since the maps PB : A → PB(A) and PC : C1 → C are

bounded below and onto. Therefore, PU1,B⊥ is another projection extending A and B.
If Q is the minimal projection extending A and B, then A ⊂ ranQ and B ⊂ ranQ∗

and Q ≺ PU ,B⊥ and Q ≺ PU1,B⊥ . Hence,

A ⊂ ranQ ⊂ U ∩ U1 = A⊕ (C ∩ C1) < A⊕ C1 = U1 and

B ⊂ ranQ∗ ⊂ B.

In particular, kerQ = B⊥, and hence, a closed subspace of A ⊕ (C ∩ C1) and B⊥ are

complementary spaces. If they are complementary spaces, then the map

PB : A⊕ (C ∩ C1) → PB ⊕ C (= B) (4.5)

is onto. Since the map (4.4) is bijective and C ∩ C1 is a proper closed subspace of

C1, (4.5) is not onto. Therefore, the minimal projection extending A and B does not

exist.

Note that Theorem 4.3 includes the case that A < B < H. It does not exclude

the case that one (or both) of A or B is finite dimensional. We now show that (4.1)

does not imply that A+ B is closed.

Example 4.4. We construct two closed subspaces A and B of H satisfying (4.1)

such that A+ B is not closed and A+ B < H. Let

{xn}n∈N ∪ {yn}n∈N ∪ {zn}n∈N ∪ {w}
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be an orthonormal basis of H. For n ∈ N define

an :=

√
1− 1

n+ 1
xn +

√
1

n+ 1
yn.

Now, let

A := span {an}n∈N and B := span ({xn}n∈N ∪ {zn}n∈N) .

Since z1 is in B and orthogonal to A, R(B,A) = 0. On the other hand, for a ∈ A,

there is a square integrable sequence of scalars (αn)n∈N such that a =
∑

n∈N
αnan.

Then

PBa =
∑

m∈N

〈a, xm〉 xm +
∑

n∈N

〈a, zn〉 zn =
∑

m∈N

αm

(
1− 1√

m+ 1

)
xm.

Therefore,

‖PBa‖2 ≥ 1

2

∑

m∈N

|αm|2 =
1

2
‖a‖2 .

This shows that R(A,B) ≥ 2−1/2. Note that A ∩ B is trivial. Moreover,

‖PBan‖ = 1− 1

n+ 1
→ 1.

Hence, S(A,B) = 1. This shows that A+B is not closed. Moreover, w /∈ A+ B. Note
that PB(A) = span {xn}n∈N and B ⊖A = span {zn}n∈N. Therefore, (4.2) holds.

Example 4.5. We finally consider the following case:

0 = R(B,A) = R(A,B). (4.6)

Let Q := PA : B → A and R := PB : A → B. Note that Q and R are adjoints of

each other. If A ⊥ B, then they satisfy (4.6). Moreover, Q = 0 = R. It is easy to see

that PA⊕B is the minimal projection extending A and B.

Also, if A := span{e1, e2} and B := span{e1, e3}, where {e1, e2, e3, . . .} is an

orthonormal basis of H, then A and B satisfy (4.6). In this case, neither Q nor R

are ont-to-one. Moreover, ranQ is a proper subspace of A and ranR is a proper

subspace of B. Suppose that PÃ,B̃⊥ is a projection extending A and B. Since B ≤ B̃,
B̃⊥ ≤ B⊥ = span {e2, e4, e5, . . .}. Since A ⊂ Ã and Ã ∔ B̃⊥ = H, e3 ∈ Ã. Similarly,

e2 ∈ B̃. Hence, {e1, e2, e3} ⊂ Ã ∩ B̃. This shows that PC is the minimal projection

extending A and B, where C := span{e1, e2, e3}.

A less trivial example is the following one, which is a variation of [16, Lemma

2.3]. Let {an}n∈N ∪ {cn}n∈N be an orthonormal basis of H. Define

A := span {an : n ∈ N} and B := span {bn : n ∈ N}, where
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bn :=

√
1

n+ 1
an +

√
1− 1

n+ 1
cn, n ∈ N. (4.7)

Then,

PAbn =

√
1

n+ 1
an → 0 and PBan =

√
1

n+ 1
bn → 0.

Since neither Q nor R are bounded below, (4.6) is satisfied. Since Q and R are

adjoints of each other, neither Q nor R are onto. The above calculation shows that

ranQ is dense in A and ranR is dense in B. It is routine to see that both Q and R

are one-to-one. Now, for n ∈ N, define

An := span ({a1, a2, . . .} ∪ {bn, bn+1, . . .}) ⊃ A and

Bn := span ({b1, b2, . . .} ∪ {an, an+1, . . .}) ⊃ B.

Suppose we show that PAnB⊥
n
is a projection extending A and B for each n ∈ N. If S

is the minimal projection extending A and B, then

A ⊂ ranS ⊂
⋂

n∈N

An = A and B ⊂ ranS∗ ⊂
⋂

n∈N

Bn = B

This implies that H = A ∔ B⊥, which is a contradiction. So it suffices to show that

PAnB⊥
n

is a projection extending A and B for each n ∈ N. By (4.7) we see that the

closed linear span of

Xn := {a1, . . . , an−1} ∪ {an, an+1, . . .} ∪ {cn, cn+1, . . .}

is An. Actually, Xn is an orthonormal basis of An. On the other hand, (4.7) also

implies that the closed linear span of

Yn := {b1, . . . , bn−1} ∪ {an, an+1, . . .} ∪ {cn, cn+1, . . .}

is Bn. Let αn and βn be the optimal Riesz bounds of the finite Riesz sequence

{b1, . . . , bn−1}. We can directly see that Yn is a Riesz basis of Bn with the Riesz

bounds αYn
= min{1, αn} and βYn

:= max{1, βn}. We now show that the bounded

linear map

Q : Bn → An, x 7→ PAn
x, (4.8)

is bounded below and onto, which implies that H = An ∔ B⊥
n . Since Yn is a Riesz

basis of Bn, for a fixed x ∈ Bn, there are square integrable unique scalars β1, . . . , βn−1,

αn, αn+1, . . ., γn, γn+1, . . . such that

x =

n−1∑

j=1

βj bj +

∞∑

k=n

αk ak +

∞∑

l=n

γl cl.
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Moreover,

αYn
‖x‖2 ≤

n−1∑

j=1

|βj |2 +
∞∑

k=n

|αk|2 +
∞∑

l=n

|γl|2 ≤ βYn
‖x‖2 .

Since Xn is an orthonormal basis of An,

Qx =

n−1∑

j=1

βj√
j + 1

aj +

∞∑

k=n

αk ak +

∞∑

l=n

γl cl. (4.9)

Hence,

‖Qx‖2 =

n−1∑

j=1

|βj |2
j + 1

+

∞∑

k=n

|αk|2 +
∞∑

l=n

|γl|2 ≥ αYn

n
‖x‖2 .

This shows that (4.8) is bounded below. It is easy to see that(4.8) is onto by using

(4.9). Hence, there is no minimal projection in this case.

The above examples show that nothing general can be said about the case (4.6).

Hence, we need extra conditions to deny or guarantee the existence of the minimal

projection in this case.
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