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USING VARIANTS OF ZERO FORCING TO BOUND

THE INERTIA SET OF A GRAPH∗

STEVE BUTLER† , JASON GROUT‡ , AND H. TRACY HALL§

Abstract. Zero forcing is a combinatorial game played on a graph with a goal of changing the

color of every vertex at minimal cost. This leads to a parameter known as the zero forcing number

that can be used to give an upper bound for the maximum nullity of a matrix associated with the

graph. A variation on the zero forcing game is introduced that can be used to give an upper bound for

the maximum nullity of such a matrix when it is constrained to have exactly q negative eigenvalues.

This constrains the possible inertias that a matrix associated with a graph can achieve and gives

a method to construct lower bounds on the inertia set of a graph (which is the set of all possible pairs

(p, q) where p is the number of positive eigenvalues and q is the number of negative eigenvalues).
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1. Introduction. An important property of a Hermitian matrix is its (partial)

inertia (p, q), where p is the number of positive eigenvalues and q is the number

of negative eigenvalues. We explore how the positions of zero/nonzero entries in

a Hermitian matrix affect the inertia of the matrix. Given a simple graph G (i.e.,

undirected, no loops, no multiedges), we can associate withG a collection of Hermitian

matrices S(G) such that for each matrix, an off-diagonal entry is non-zero if and only

if the entry corresponds to an edge of G (there are no restrictions on the diagonal

entries). The graph G represents the pattern of zero/nonzero entries in the matrices

in S(G). The inertia set I(G) of G is the set of all inertias of matrices in S(G).

Clearly, p+q ≤ n for an n×n matrix. If (p, q) ∈ I(G), then (p′, q′) ∈ I(G) where

p′ ≥ p, q′ ≥ q, and p′ + q′ ≤ n [5]. Thus, the really interesting question is: what are

the possible minimal inertias? Since the nullity of an n × n Hermitian matrix with

inertia (p, q) is n−p−q, the maximum nullity of all matrices in S(G), denoted M(G),

gives the constraint that p+q ≥ n−M(G). However, calculating the maximum nullity
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M(G) (or the minimum rank parameter mr(G) = n−M(G), equivalently) is difficult

in general.

An upper bound for the maximum nullity of all graphs in S(G) is the zero forcing

number of the graph, denoted Z(G) (see [1, 2, 7]), which gives us the much easier to

compute constraint p+ q ≥ n− Z(G). The zero forcing number can be computed in

a combinatorial coloring game of the graph. In this paper, we generalize the game

that computes Z(G) to a new game that computes Zq(G), an upper bound for the

nullity of matrices in S(G) that have q negative eigenvalues. We will see that for

some graphs G, Zq(G) < Z(G) for some q, which improves our understanding of the

inertia set of G.

In Section 2, we will give a short review of both zero forcing and a variant known

as positive semidefinite zero forcing, which we will generalize in Section 3 with our new

zero forcing parameter Zq(G). We then will introduce Ẑq(G) in Section 4 which will

give a further improvement for determining the inertia set of a graph. In Section 5, we

will show how to use these new parameters to gain information about I(G). Finally,

in Section 7, we give an algorithm for computing Zq(G).

We will use the following notation throughout this paper: for a subset of vertices

W ⊆ V , let G[W ] be the induced subgraph of G on the vertices W .

2. Review of zero forcing and semidefinite zero forcing. The zero forcing

number of a graph is computed using the combinatorial coloring zero forcing game,

which is played on a graph by a single player called Black. The game starts with all

vertices colored white, and the goal is to color all vertices black while spending as few

tokens as possible. There are two operations Black can perform: spending a token to

color a vertex black, and applying a color change rule. The color change rule, given

a graph with black and white vertices, is to select a white vertex v that is the unique

white neighbor of a black vertex u, and change v from white to black. The vertex v

is said to be forced by u.

Zero Forcing Game – All the vertices of the graph G are initially

colored white and there is one player, known as Black, who has to-

kens. Black will repeatedly apply one of the following two operations

until all vertices are colored black:

1. For one token, Black can change any vertex from white to black.

2. At no cost, Black can apply the color change rule on the entire

graph.

The minimum number of tokens that Black must use in a given strategy to change

all of the vertices from white to black is the zero forcing number Z(G). Given any

sequence of operations in this game, Black can always reorder the moves so that all of
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the token-spending happens before any color change rules are applied. In this setting,

the set of vertices that Black initially spends his tokens on are known as a zero forcing

set and Z(G) is then the minimal size of a zero forcing set. This is the way that zero

forcing is usually defined and introduced (i.e., as a set rather than a strategy in a

game).

The motivation behind the definition of the color change rule comes from looking

at vectors in the null space of a matrix. Suppose x is in the null space for a matrix

A ∈ S(G), i.e., we have Ax = 0, and that x is 0 for each vertex currently colored

black. The color change rule is the observation that some additional entries of x

might also be forced to be 0. Suppose vertex i is black and its only white neighbor

is vertex j; then (Ax)i = aijxj = 0. But since aij 6= 0 (i.e., the edge ij exists in G),

then we must have xj = 0. We mark this additional piece of information by coloring

vertex j black.

By the color change rule, it follows that any vector in the null space of A ∈ S(G)

which is 0 on a zero forcing set of G is the 0 vector. On the other hand, by considering

the dimensions of various subspaces we have the following.

Observation 2.1. If the nullity of a matrix is more than k, then for any k

specified entries, there is a nonzero vector x in the null space which will vanish at

those specified entries.

Proposition 2.2 (AIM [1]). For any A ∈ S(G), the nullity is bounded above by

the size of any zero forcing set, in particular by Z(G).

Proof. Suppose not, then by the above observation there would exist a nonzero

vector in the null space which is 0 on all the vertices corresponding to a minimally-

sized zero forcing set. But this is impossible since the only vector in the null space

which is 0 on a zero forcing set is 0.

Another observation we will use later is that if there exists a null vector x with

support on the white vertices, then the color change rule will not change the color of

any vertex in the support of x.

A modification of zero forcing was considered when the matrices in S(G) were

further restricted to require that the matrices be positive semidefinite. Since this

imposes additional relationships on entries in the matrix it is possible to modify the

game to give Black more options to force vertices to be black.

Semidefinite Zero Forcing Game – All the vertices of the graph

G are initially colored white and there is one player, known as Black,

who has tokens. Black will repeatedly apply one of the following

three options until all vertices are colored black:
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1. For one token, Black can change any vertex from white to black.

2. At no cost, Black can apply the color change rule on the entire

graph.

3. Let the vertices currently colored black be denoted by B, and

W1,W2, . . . ,Wk be the vertex sets of the connected components

of G[V \ B]. At no cost, Black can apply the color change rule

on G[B ∪Wi] for some 1 ≤ i ≤ k.

The new option given by this game is the opportunity to apply the color change

rule on a smaller part of the graph, i.e., we may be allowed to ignore some of the white

neighbors of a black vertex, so that the “unique white neighbor” of a black vertex in

the subgraph can be forced to black. The minimal number of tokens that Black must

use to change all of the vertices from white to black in this game is denoted Z+(G).

As before, Black can elect to initially only spend tokens and then apply either of the

forcing options using the color change rule for the remainder of the game, and so

the literature discusses positive semidefinite forcing sets and not positive semidefinite

forcing strategies. In this setting, Z+(G) is the size of the smallest possible such set.

Theorem 2.3 (Barioli et al. [2]). The nullity of A ∈ S(G) when A is positive

semidefinite is at most Z+(G).

3. Zero forcing with q negative eigenvalues. The semidefinite zero forcing

number gives an indication of how to generalize zero forcing—we give Black the pos-

sibility of working with a smaller graph. This leads us to the general Zq-forcing game

which introduces a second player called White. The role of White is to limit the

choice of smaller graphs on which Black is allowed to play. In particular, the goal of

White is to maximize the number of tokens Black must spend to color the graph.

The minimal number of tokens that an optimal strategy for Black uses to change

all of the vertices from white to black, regardless of the play of White, is the zero

forcing number for matrices with q negative eigenvalues, denoted Zq(G).

Zq-Forcing Game – All the vertices of the graph G are initially

colored white and there are two players, known as Black (who has

tokens) and White. Black will repeatedly apply one of the following

three options until all vertices are colored black.

1. For one token, Black can change any vertex from white to black.

2. At no cost, Black can apply the color change rule on the entire

graph G.

3. Let the vertices currently colored black be denoted by B, and

W1, . . . ,Wk be the vertex sets of the connected components of

G[V \ B]. Black selects at least q + 1 of the Wi and announces

the selection to White. White then will select a nonempty sub-

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 1-18, January 2015



ELA

Zero Forcing for Inertia Sets 5

set of these components, say {Wi1 , . . . ,Wiℓ} (with ℓ ≥ 1) and

announces it back to Black. At no cost, Black can apply the

color change rule on G[B ∪Wi1 ∪ · · · ∪Wiℓ ].

Unlike zero forcing and positive semidefinite zero forcing, it may now be the case

that no optimal strategy for Black allows spending all the tokens up front. In other

words, there are graphs where Black will vary the choice of where to spend tokens

depending on the response of White. Instead of Zq-forcing sets, there are Zq-forcing

strategies.

Example 3.1. Consider the graph shown in Figure 3.1a on 9 vertices. We show

a Z1-forcing strategy for Black that uses 4 tokens to make all the vertices of the graph

black. First, Black spends two tokens to color vertices 5 and 8 black, which in the
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(b)
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3

4

(c)

Fig. 3.1: An example of a graph with Z1(G) = 4.

next round will force 1 and 9 at no cost. Black then picks a vertex from {2, 3, 4} and
a vertex from {6, 7} and declares the two vertices to White. Whatever is returned is

then forced and this continues until one of the two sets has been completely colored

black. In the worst case scenario for Black, White will have only returned the vertices

from {6, 7} in which case the graph is as shown in Figure 3.1c. At this point Black

can spend at most two tokens to get all but one of the remaining vertices to become

black and the last vertex will then be switched to black at no cost by the color change

rule.

On the other hand, if Black had chosen to initially spend four tokens before using

any free forcing, then at least two of {2, 3, 4, 5} or two of {6, 7, 8} would not be black.

White could now protect a pair of pendant vertices with a common neighbor and

Black would not be able to color the entire graph.

This example also shows that White should not always return all the subsets Black

has declared, even though intuitively it would seem that the more white vertices there

are, the more difficult it should be for Black to apply the color change rule. (The

important point is that the intuition holds only when the white components are “close”

in the graph.) Another example of computing Z1(G) on the Barioli-Fallat tree can

be found at the beginning of Section 4.
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We can view Zq(G) as a way of interpolating between positive semi-definite zero

forcing (in which we can restrict the forcing to a single component at a time) and

traditional zero forcing (in which the forcing process is always over the whole graph at

once). Since q is a measure of how much we are able to restrict the forcing to specific

components, then as q → ∞, Zq(G) approaches Z(G) for every graph G. Thus, we

can think of Z+(G) as Z0(G) and Z(G) as Z∞(G).

Proposition 3.2. For any graph G on n vertices, we have

Z+(G) = Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · · ≤ Zn(G) = Z(G).

Proof. For Z0, the third operation reduces to the semidefinite zero forcing oper-

ation because once Black has declared one component, White has no choice but to

return it.

Suppose that t and s are integers such that t ≤ s. Black can now use the strategy

for the Zs-forcing game that uses at most Zs(G) tokens in the Zt-forcing game and

force all the vertices to be black. It follows that Zt(G) ≤ Zs(G).

Finally, Black cannot invoke the third operation of the Zq game when there are

fewer than q + 1 connected components in G[V \ B], which is always the case when

q ≥ n (and in most graphs is always the case for several smaller values of q, as well).

We are now ready to state our main result.

Theorem 3.3. The nullity of A ∈ S(G) when A has exactly q negative eigenval-

ues is at most Zq(G).

The proof of Theorem 3.3 can be easily modified to establish the stronger result

for matrices with at most q negative eigenvalues. The proof will make use of isotropic

subspaces. An isotropic subspace of a square matrix is a vector subspace where x∗Ax =

0 for all x in the subspace.

Theorem 3.4 (Gohberg et al. [6, Theorem 1.5]). The maximum possible dimen-

sion of an isotropic subspace for an n×n Hermitian matrix A is n−p−q+min{p, q},
where p and q are the number (counting multiplicity) of positive and negative eigen-

values, respectively.

Corollary 3.5. For a Hermitian matrix A, let R be an isotropic subspace of

dimension more than min{p, q}, where p and q are the number (counting multiplicity)

of positive and negative eigenvalues, respectively. Then R contains a nonzero vector

in the null space.

Proof. Assume there is no nonzero null vector in R. A basis for the nullspace

of A has n − p − q vectors, and x∗Ax = 0 for each of these vectors. These vectors
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together with a basis for R form a basis for an isotropic subspace that has more than

n− p− q +min{p, q} vectors, in contradiction to Theorem 3.4.

Proof of Theorem 3.3. Let A ∈ S(G) be a matrix with q negative eigenvalues and

nullity m. We will use the matrix to produce a strategy for White in the Zq-forcing

game that will force Black to spend at least m tokens. This will establish m ≤ Zq(G).

The game proceeds as follows: When Black spends token number k to turn a

vertex black, White considers the subspace Xk consisting of all null vectors whose

support lies within the white vertices, and constructs a null vector x whose support

is the union of all supports occurring in Xk (such a vector exists by general position).

We now show that x can be used to protect the support of Xk.

Recall from the discussion following the color change rule in Section 2 that the

only time a vertex v changes from white to black is when, for any null vector x whose

support is a subset of the white vertices, the support of x is in fact a strict subset

because the entry corresponding to v has to be zero. When applying the color change

rule to the entire graph, Black cannot change the color for anything in the support

of x.

Now consider the option where Black applies rule (3) and announces several com-

ponents to White. Suppose that B are the vertices colored black and W1,W2, . . . ,Wk

are the vertices of the maximally connected components of G[V \B]. Then by appro-

priate relabeling, we can assume that

A =




A1 O O · · · O B∗
1

O A2 O · · · O B∗
2

O O A3 · · · O B∗
3

...
...

...
. . .

...
...

O O O · · · Ak B∗
k

B1 B2 B3 · · · Bk C




and x =




x1

x2

x3

...

xk

0




,

where Ai is the submatrix on G[Wi] and C is the submatrix on G[B]. For any index

i, since Ax = 0, then Aixi = 0. Let x̂i be equal to x on the ith component and zero

elsewhere.

If y =
∑

aix̂i is some linear combination of x̂i, we have

y∗Ay = y∗




...

aiAixi

...∑
aiBixi



=

[
· · · aixi · · · 0

]




...

0
...∑

aiBixi



= 0.

This shows that the vectors x̂1, x̂2, . . . , x̂k span an isotropic subspace of A. Black has
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selected at least q + 1 > min{p, q} of the Wi, and each Wi is associated with x̂i. Let

W be the set of vectors x̂i corresponding to the components Black has selected.

If any x̂i ∈W is zero, then White will return the corresponding single component

to Black since any forcing on that component will not change a vertex in the support

of x.

On the other hand, if none of the x̂i ∈ W are zero, then they are linearly in-

dependent and by Corollary 3.5 there is a nontrivial null vector z in the subspace

spanned by W , z =
∑

bix̂i. White returns all of the Wi components for which bi 6= 0.

Since z is a null vector with support contained in the white vertices handed back to

Black, Black cannot force a vertex in the support of z to black. On the white vertices

handed back, the support of z is the same as the support of x, so Black cannot force

any vertex in the support of x to black.

In both operations applying the color change rule, we see that Black cannot

change the color of a vertex in the support of Xk; the only way that Black can do so

is by spending a token. If token k + 1 is spent within the support of Xk, then Xk+1

is a subspace of Xk whose dimension is smaller by exactly one; otherwise Xk+1 is

identical to Xk. Since the dimension of X0 (the nullspace of A) is m and Black must

keep spending tokens until the dimension of Xk is zero, it follows that Black will be

forced to spend at least m tokens.

The proof shows that any matrix of nullity m gives White a strategy that forces

Black to spend at least m tokens, but not every strategy comes from a matrix. If

there is a strategy for White that outperforms every matrix-based strategy, the bound

will not be tight.

4. The parameter Ẑq(G). On all but one tree with 10 or fewer vertices, Zq(G)

is a tight bound for the maximum nullity of a matrix associated with the tree that

has q negative eigenvalues. The one exception is shown in Figure 4.1, also known as

the Barioli-Fallat Tree (see [4]).

0

1

23

4

5

6

7

8

9

Fig. 4.1: The Barioli-Fallat Tree T .
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For this tree, the maximum nullity for a matrix with 1 negative eigenvalue is 2 (a

method to compute the inertia set of any tree is given in [5]). However, Z1(T ) = 3.

This can be seen by noting that regardless of where Black spends the first two tokens

and does forcing, there will be a pair of pendant white vertices which share a common

neighbor. White can protect these two white pendant vertices—if Black declares two

components to White that contain both or none of these pendant vertices, then White

returns everything that Black declared, and if Black declares components that contain

exactly one of the pendant vertices, White returns only the component that does not

contain the protected pendant vertex. In this way, Black must spend at least one more

token to color one of the protected pendant vertices to force the graph. Conversely,

if Black spends on {3, 6, 9}, then the rest of the graph is easily forced.

Recently, an improvement for zero forcing, denoted Ẑ(G), was introduced by

Barioli et al. [3] which uses information about the diagonal. We can use the same

approach to improve Zq(G) to Ẑq(G), which gives the correct bounds for the Barioli-

Fallat tree and improved bounds for many other graphs.

The idea is to introduce auxiliary graphs Ĝ which are the same as G except each

vertex is either looped or unlooped. The color change rule is extended to a looped

color change rule: any vertex with exactly one white neighbor can force the neighbor

to change to black. A looped vertex is a neighbor to itself, so it can force itself from

white to black provided all other neighbors are black. An unlooped (black or white)

vertex is not a neighbor to itself, so if it has exactly one neighbor which is white then

it will force that neighbor to be black regardless of its own color.

With this new convention for applying the color change rule, we define

Ẑq(G) = max
Ĝ∈G

Zq(Ĝ),

where the maximum runs over the set of all possible auxiliary graphs G.

By adding loops and unloops, we are effectively specifying the zero/nonzero pat-

tern on the diagonal of associated matrices, i.e., putting loops at nonzero entries on

the diagonal and unloops at zero entries on the diagonal. Since we are taking the max-

imum over all possible diagonal zero/nonzero patterns, this is still an upper bound

for the nullity of matrices in S(G). In practice, we can use the symmetry of the graph

(i.e., the automorphism group) and careful analysis of when the looped color change

rule is applied to avoid having to consider all possible diagonal patterns.

We now show that Ẑ1(T ) is a tight bound for the Barioli-Fallat tree T . Suppose

that there was a loop at 2. Now consider the following strategy for Black. Black

spends at 6 and 8; forcing then changes 4 and 7 to black; Black now hands White

{5} and {9}; whatever is returned is forced and forcing on the entire graph gets us to

only the vertices 2 and 3 as white; 2 is looped so it now forces itself to black; forcing
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then gives 3. In this case, Black is able to color all the vertices black using only two

tokens. By symmetry the same strategy works if there is any loop at a leaf.

Now consider a strategy for Black when all of the leaves are unlooped. Without

spending, Black has that 1, 4, 7 are black by the unlooped leaves; Black hands White

{2} and {6} and whatever is returned is forced, without loss of generality let us

suppose that only {2} is returned; Black now hands White {6} and {8} and whatever

is returned is forced, without loss of generality let us suppose that only {6} is returned;
Black spends on 0 and 8; the remaining vertices are then forced.

All possibilities of being looped and unlooped fall into one of these two cases, and

in each case, Black only needed to spend at most 2, showing that Ẑ1(T ) = 2.

Since Black can ignore the information about the looped and unlooped vertices,

we have Ẑq(G) ≤ Zq(G), so Ẑq(G) is a better bound. For trees, the parameter

Ẑq(G) correctly gives the right maximum nullity for all but one tree with 16 or fewer

vertices. The one exception is a graph on 16 vertices shown in Figure 4.2, which is a

Barioli-Fallat tree with a pendant vertex added to each original pendant vertex.

Fig. 4.2: The extended Barioli-Fallat Tree.

5. Finding lower bounds for inertia sets. The motivation for Zq(G) was to

provide lower bounds for inertia sets. Recall that the inertia set of a graph, I(G), is

the set of all possible inertias (p, q) for matrices in S(G), where p is the number of

positive eigenvalues and q is the number of negative eigenvalues.

Observation 5.1. For a graph G on n vertices, (n− q − Zq(G)− 1, q) 6∈ I(G).

This follows since p = n− q−m where m is the nullity of the matrix, since Zq(G)

is an upper bound on the nullity we can conclude that p ≥ n − q − Zq(G). This

leads to the conclusion that if we have q negative eigenvalues then we cannot have

n− q−Zq(G)− 1 or fewer positive eigenvalues, i.e., these points are not in the inertia

set of the graph.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 1-18, January 2015



ELA

Zero Forcing for Inertia Sets 11

Since (p, q) is in the inertia set if and only if (q, p) is in the inertia set (i.e.,

A ∈ S(G) if and only if −A ∈ S(G)), then the above argument also shows that if we

have p positive eigenvalues then we cannot have n− p− Zp(G)− 1 or fewer negative

eigenvalues, i.e., these points are also not in the inertia set of the graph.

To eliminate points in the inertia set, we simply compute Zq(G) over a range

of values. As an example let us consider the Desargues graph on 20 vertices, shown

(with various sets marked) in Figure 5.1. We will consider variations of the games

discussed and what information we can gain about the inertia set. Each variation will

eliminate points from our possible inertia set. These improvements are summarized

in Figure 5.2, where each invariant is used to label the points that it progressively

eliminates. The filled circles represent the inertia set of the graph.

(a) (b) (c)

Fig. 5.1: Several forcing sets for various games on the Desargues graph.

(a) By Proposition 2.2, we have that the maximum nullity of a matrix associated with

the graph is bounded by Z(G). For the Desargues graph, Z(G) = 8 (a forcing set

is shown in Figure 5.1a). This shows that we must have p+ q ≥ 12.

(b) In addition to the above work, we can use the Z+ game. We have Z+(G) = 6

(a forcing set is shown in Figure 5.1b), so by Theorem 2.3 we conclude (12, 0),

(0, 12), (13, 0) and (0, 13) cannot be in the inertia set.

(c) We can work with Zq instead, but insist that Black must always spend tokens up

front before forcing. This restriction does not give Zq in general since the order

of moves matters in the Zq game. In the case of the Desargues graph, Black can

spend only 7 tokens to color the graph in the Z1 game (see Figure 5.1c), and this

is the best Black can do if spending moves are only allowed at the start of the

game. This shows that (11, 1) and (1, 11) are also not points in the inertia set.

(d) We can also play the (unrestricted) Zq game for all q to get

Z0(G) = Z1(G) = 6 < Z2(G) = 7 < Z3(G) = · · · = 8.

This shows that (12, 1), (1, 12), (10, 2) and (2, 10) are also not in the inertia set.
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Fig. 5.2: Inertia refinements for various games on the Desargues graph.

(e) Applying the Ẑq game, we have

Ẑ0(G) = · · · = Ẑ5(G) = 6 < Ẑ6(G) = · · · = 8.

This shows that (6, 6), (6, 7) and (7, 6) are the only possible points in the inertia

with p+ q ≤ 13.

We have now computed lower bounds for the inertia set, the best coming from

Ẑq. These bounds are tight. First, we can produce some specific matrices showing

that (6, 6) and (14, 0) are in the inertia set. For the inertia (6, 6), we construct a

0, 1,−1 matrix in S(G) by puttings 0s on the diagonal and 1s for the edges except for

five edges which receive −1: these five edges are every other spoke between the inner

and outer cycles. The eigenvalues for the resulting matrix are [−
√
5]6, [0]8, [

√
5]6

(where exponents denote multiplicity). Further if we add
√
5I, then the resulting

matrix has eigenvalues [0]6, [
√
5]8, [2

√
5]6, showing that (14, 0) is in the inertia set. A

longer calculation considering the Desargues graph as the bipartite double cover of

the Petersen graph can be used to produce matrices of all the remaining inertias (p, q)

with p+ q = 14 (see the Appendix).

6. Other uses of Zq and Ẑq. We note two ways to use Zq and Ẑq to obtain

more information about a graph G.
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Using Ẑq to determine zero/nonzero patterns. The diagonal of the matrix

that we constructed to show that (6, 6) was in the inertia set for the Desargues graph

was all 0s. Our computations on Ẑ6(G) indicate that for this graph, every matrix

with inertia (6, 6) must have 0s on the diagonal. In other words, in the computation of

Ẑ6(G), we actually compute a bound for each zero/non-zero pattern on the diagonal.

For this case, we saw that any matrix with a nonzero on the diagonal (i.e., at least

one vertex had a loop) had Ẑ6(G) ≤ 7, and so could not have inertia (6, 6). This

same approach can be used with other graphs to give restrictions for zero/non-zero

patterns of the diagonal for some points in the inertia set.

Disjoint union of graphs. If G is the disjoint union of G1 and G2 (notated as

G = G1 ⊔G2), then the inertia set for G is exactly the Minkowski sum of the inertia

sets of G1 and G2, i.e., {(x1 + x2, y1 + y2) | (x1, y1) ∈ I(G1), (x2, y2) ∈ I(G2)}, since
a matrix for G is just the block diagonal sum of a matrix for G1 and a matrix for G2.

Since Zq helps us exclude points from the inertia set, this suggests that we should

use Zq to compute sets of points that are not in the inertia set for G1 and G2 respec-

tively, knowing that the Minkowski sum will give us points not in the inertia set of

G. There is a computational advantage in computing Zq on the smaller graphs G1

and G2 rather than directly computing Zq(G).

In some cases, we will also get better information by using Zq(G1) and Zq(G2)

in this manner. For example, consider the graph T shown in Figure 6.1.

Fig. 6.1: A tree with Z0(T ) = 1, Z1(T ) = 2, and Z2(T ) = 3.

By taking the Minkowski sum of points excluded from the inertia by Zq(T ), we con-

clude that matrices for T ⊔ T with 2 negative eigenvalues have maximum nullity at

most 4. However Z2(T ⊔ T ) = 5, which is a worse bound.

In general, by similar reasoning, we have

max
s+t=q

(
Zs(G) + Zt(H)

)
≤ Zq(G ⊔H),

and the example above shows that we can have a strict inequality.

7. Algorithmic implementation for computing Zq. We finally turn to the

issue of efficiently computing Zq(G). The goal is to find the minimal cost (i.e., minimal

times option (1) is applied) necessary to force the entire graph to be colored black.
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Given a subset of vertices U ⊆ V which we assume is already colored black, we

determine the minimal cost, denoted cost(U), necessary to force the remaining vertices

black using the rules of the Zq game. The trivial cases are cost(V ) = 0 and cost(∅) =
Zq(G).

We work backwards from large U to small U . At each stage we consider each of

the three options available to Black and choose the option which minimizes cost. Since

forcing is always free, we continually carry out that option (this reduces the amount

of computation and storage). The procedure is shown in Algorithm 1, a variation

of which has been implemented in Sage [9], and is publicly available online [8]. In

the algorithm, we let F (G,B) be the set of vertices in G that can be colored black

by repeatedly applying the color change rule with the vertices in B initially colored

black.

input : A graph G = (V,E) and parameter q

output: The value Zq(G)

1 cost(V )← 0;

2 for i← |V | − 1 to 0 do

3 foreach U ⊆ V with |U | = i and F (G,U) = U do

4 b, c, cost(U)←∞;

5 let K be the sets of vertices of the connected components of G \ U ;

6 foreach J ⊆ K with |J | = q + 1 do

7 b′ ← −∞;

8 foreach I ⊆ J with I 6= ∅ do
9 b′ ← max

(
b′, cost(F (G,F (G[U ∪ I], U)))

)
;

10 end

11 b← min(b, b′);

12 end

13 foreach v ∈ V \ U do

14 c← min(c, cost
(
F (G,U ∪ {v})

)
+ 1);

15 end

16 cost(U)← min(b, c);

17 end

18 end

19 return cost(∅);
Algorithm 1: The procedure Z(G, q) to calculate the zero forcing numbers

The cost function generated by this algorithm can be used by Black to determine

a strategy for playing that uses at most Zq(G) tokens. At each stage, Black chooses

an option that will allow a win with the number of tokens available. Also, Black will

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 1-18, January 2015



ELA

Zero Forcing for Inertia Sets 15

be able to win by spending all the tokens up front if and only if there is some U ⊆ V

with |U | = Zq(G) and cost(U) = 0.
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Appendix A. The inertia set of the Desargues graph.

For completeness, we show here how to determine the remaining points on the

inertia set for the Desargues graph, D. This graph is the bipartite double cover of the

Petersen graph as can be seen by taking the labeling in Figure A.1 and associating

the vertices x and 10 + x. Further we observe that the complement of the Petersen

graph is the line graph of the complete graph on five vertices, L(K5).

Theorem A.1. The inertia set of the Desargues graph includes every inertia of

rank 14.

The construction passes by way of matrices in S(L(K5)) and their inertias and

sign patterns. The product of signs around a cycle is invariant under diagonal congru-

ence, which makes cycle products more interesting in many contexts than exact sign

patterns. There are many cycles in L(K5), and in particular many triangles, but 10 of
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Fig. A.1: A labeling of the Desargues graph.

these triangles, corresponding to the 10 triangles of K5, are locally maximal cliques,

not part of an induced K4. Those 10 triangles partition the 30 edges of L(K5), and

are the cycles whose product signs are of interest in this case. Call the 10 resulting

signs the special triangle signs of a matrix in S(L(K5)).

Lemma A.2. The following are equivalent:

1. There exists a matrix A ∈ S(D) with a 10×10 principal submatrix B which is

diagonal and invertible with r positive entries and s = 10−r negative entries,

and the inertia of A is (p, q).

2. There exists a matrix C ∈ S(L(K5)) with inertia (p − r, q − s) such that r

of the special triangle signs of C are negative and s = 10 − r of the special

triangle signs of C are positive.

The existence of the submatrix B is equivalent to A having all non-zero diagonal

entries on at least one side of the bipartition of D; there are no other independent

sets of size 10. Note that rankA = rankC + 10.

Proof. Forward direction. The matrix A is a Gram matrix of vectors with respect

to an indefinite form of inertia (p, q). Without loss of generality the first 10 diagonal

entries of A are nonzero, corresponding to 10 mutually orthogonal but non-isotropic

vectors. These vectors can be extended to a basis with respect to which the indefinite

form is diagonal. Factor A accordingly as M †FM where F is an invertible diagonal

matrix with p positive entries and q negative entries of block form

F =

[
F0 0

0 F1

]
,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 30, pp. 1-18, January 2015



ELA

Zero Forcing for Inertia Sets 17

where F0 is 10× 10 of the same sign pattern as B, and M takes the block form

M =

[
F2 Y

0 X

]

such that F2 is a 10× 10 invertible diagonal matrix.

We have

A =

[
F2F0F2 F2F0Y

Y †F0F2 Y †F0Y +X†F1X

]

belonging to S(D), which means firstly that Y †F0Y +X†F1X is diagonal and secondly

that F2F0Y , and thus Y , conforms to the pattern



0 ∗ 0 0 ∗
∗ 0 ∗ 0 0

0 ∗ 0 ∗ 0

0 0 ∗ 0 ∗
∗ 0 0 ∗ 0

∗ 0 0 0 0

0 ∗ 0 0 0

0 0 ∗ 0 0

0 0 0 ∗ 0

0 0 0 0 ∗
∗ 0 0 0 0

0 ∗ 0 0 0

0 0 ∗ 0 0

0 0 0 ∗ 0

0 0 0 0 ∗

0 0 ∗ ∗ 0

0 0 0 ∗ ∗
∗ 0 0 0 ∗
∗ ∗ 0 0 0

0 ∗ ∗ 0 0




.

The matrix Y is not necessarily symmetric but has the same pattern as the adjacency

matrix of the Petersen graph. Some pairs of distinct columns of Y are combinatorially

orthogonal; those pairs correspond once again to the adjacencies of the Petersen graph

The remaining pairs, corresponding to the adjacencies of L(K5), intersect in exactly

one non-zero entry. It follows that both Y †F0Y and X†F1X belong to S(L(K5)). The

inertia of C = X†F1X is the same as that of F1, namely (p− r, q − s). Every row of

Y contributes three pairs of nonzero entries to Y †F0Y , and their negatives to C, and

those three entries constitute a special triangle. If the three entries in a particular

row of Y are a, b, and c, and the corresponding diagonal entry of F0 is d, then the

special triangle product of C corresponding to that row of Y is (−abd)(−acd)(−bcd)
and the corresponding special triangle sign is opposite that of d. It follows that C

has r negative special triangle signs and s positive special triangle signs.

Reverse direction. The same correspondence holds, except that now the matrices

Y and A must be constructed starting with C. Let (t0, t1, t2) be the entries of a

special triangle product of C; we need to solve t0 = −abd, t1 = −acd, and t2 = −bcd
for a, b, c, and d. One solution is given by

a = −t0t1, b = −t0t2, c = −t1t2, d =
−1

t0t1t2
,
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which is sufficient to completely reconstruct A as claimed by the lemma, including

the fact that the sign of each diagonal entry d of F0 is opposite in sign to a particular

special triangle product t0t1t2.

We are now ready to give the proof of Theorem A.1.

Proof. Consider the family of matrices

X(t) =




0 1 1 1 1 0 1 −1 −1 1

1 1 0 0 −1 1 −1 1 −1 1

−1 1 −1 1 −1 1 0 −1 1 0

0 2t 0 0 3t 0 0 5t 7t 0


 , t > 0

and the corresponding family of matrices C(t) = X(t)†X(t). It was noticed in [5]

that the columns of the first three rows of X(t), which consist, up to negation, of

every {0, 1,−1}-vector in R
3 with at least two nonzero entries, have a Gram matrix

in S(L(K5)). The inertia of C(t) is (4, 0), and C(t) ∈ S(L(K5)) unless abt2 = 1 for

some {a, b} ⊂ {2, 3, 5, 7}. Four of the special triangle products of C(t) are always

negative, and the remaining six special triangle products, corresponding to subsets

{a, b} ⊂ {2, 3, 5, 7}, have the same sign as 1 − abt2. In particular, all ten special

triangle products are negative for t = 1, and six of them change to positive, one at

a time, as t decreases toward 0. By the lemma, it follows that every inertia between

(14, 0) and (8, 6) occurs for the Desargues graph. The remaining inertias of rank 14

come from symmetry and the existence of the inertia point (6, 6) (given in Section 5).
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