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ON THE SENSITIVITY ANALYSIS OF EIGENVALUES∗

RAFIKUL ALAM†

Abstract. Let λ be a simple eigenvalue of an n-by-n matrix A. Let y and x be left and right
eigenvectors of A corresponding to λ, respectively. Then, for the spectral norm, the condition number
cond(λ,A) := ‖x‖2 ‖y‖2/|y∗x| measures the sensitivity of λ to small perturbations in A and plays
an important role in the accuracy assessment of computed eigenvalues. R. A. Smith [Numer. Math.,
10(1967), pp.232-240] proved that cond(λ,A) = ‖x‖2‖y‖2/|y∗x| = ‖adj(λI − A)‖2/|p′(λ)|, where
adj(A) is the “adjugate” of A and p′(λ) is the derivative of p(z) := det(zI − A) at λ. We extend
Smith’s condition number to any matrix norm ‖ · ‖ and show that

cond(λ,A) =
‖yx∗‖∗

|y∗x|
=

‖adj(λI −A)∗‖∗

|p′(λ)|

measures the sensitivity of λ to small perturbations in A, where ‖ · ‖∗ is the dual norm of ‖ · ‖. The
matlab command roots computes roots of a polynomial p(x) by computing the eigenvalues of a
companion matrix Cp associated with p. We analyze the sensitivity of λ as a root of p(x) as well as
the sensitivity of λ as an eigenvalue of Cp and compare their condition numbers.
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1. Introduction. Computation of eigenvalues and eigenvectors of matrices is a
major task in Numerical Linear Alegbra and the sensitivity analysis of eigenvalues
plays an important role in the accuracy assessment of computed eigenvalues [14, 17, 6].
For example, the matlab command [U, D] = eig(A) provides a diagonal matrix
D ∈ Cn×n whose diagonal entries are computed eigenvalues and a matrix U ∈ Cn×n

whose columns are computed eigenvectors satisfying (A+∆A)U = UD for some ∆A
such that ‖∆A‖ is bounded by a constant multiple of the unit roundoff. Thus the
accuracy of the computed eigenvalues obtained by eig is strongly influenced by the
sensitivity of the eigenvalues of A to small perturbations in the matrix A.

Let Cn×n denote the set of n-by-n matrices with entries in C. Let A ∈ C
n×n and

λ be an eigenvalue of A, that is, rank(A− λI) < n. Then there exist nonzero vectors
x ∈ Cn and y ∈ Cn such that

Ax = λx and y∗A = λy∗,

where y∗ denotes the conjugate transpose of y. The vectors y and x are called left and
right eigenvectors of A corresponding to λ, respectively. We refer to (λ, y, x) as an
eigentriple of A. An eigenvalue λ is simple if it is a simple root of the characteristic
polynomial p(z) := det(zI−A). We refer to (λ, y, x) as a simple eigentriple of A when
λ is a simple eigenvalue of A. We denote the spectrum of A by eig(A).
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Let λ ∈ eig(A). The condition number of λ, denoted by cond(λ,A), is given by

cond(λ,A) := lim sup
‖∆A‖→0

dist(λ, eig(A+∆A))

‖∆A‖ ,

where dist(λ, eig(A +∆A)) := min{|λ − µ| : µ ∈ eig(A +∆A)} and ‖ · ‖ is a matrix
norm. For the spectral norm, it was shown by Wilkinson [14, 15, 16, 17] that if
(λ, y, x) is a simple eigentriple then

cond(λ,A) =
‖x‖2‖y‖2
|y∗x| (1.1)

and that, for a sufficiently small ‖∆A‖2, there is a simple eigenvalue λ̂ ∈ eig(A+∆A)

such that |λ̂−λ| ≤ cond(λ,A)‖∆A‖2 +O(‖∆A‖22). The condition number cond(λ,A)
was introduced by Wilkinson for accuracy assessment of approximate eigenvalues
computed by backward stable algorithms [14, 15]. See [12, 13] for the sensitivity
analysis of multiple eigenvalues.

Starting from the condition number (1.1), Smith [10] derived an eigenvector free
expression for cond(λ,A) which is given by

cond(λ,A) =
‖adj(A− λI)‖2

|p′(λ)| =
‖adj(A− λI)‖2∏

µ6=λ |λ− µ| , (1.2)

where adj(A− λI) is the “adjugate” of A− λI, p′(λ) is the derivative of the charac-
teristic polynomial p(z) := det(zI −A) at λ, and the product

∏
µ6=λ |λ−µ| = p′(λ) is

taken over all the eigenvalues of A except for λ.
It is well known [17] that an eigenvalue µ of A is multiple if and only if there exist

left and right eigenvectors u and v of A corresponding to µ such that u∗v = 0. Hence it
follows from (1.1) that a highly ill-conditioned eigenvalue of A, that is, an eigenvalue
with a large condition number, is expected to behave like a multiple eigenvalue when
A undergoes a small perturbation. On the other hand, it follows from (1.2) that a
simple eigenvalue belonging to a cluster of eigenvalues of A is expected to be highly
ill-conditioned and hence behave like a multiple eigenvalue when A undergoes a small
perturbation.

The main aim of this paper is to revisit sensitivity analysis of eigenvalues of
matrices and roots of polynomials. More specifically, our main contributions are as
follows.

• We extend (1.2) to any matrix norm. Smith derived the condition number (1.2)
from (1.1) for the spectral norm but the derivation is not amenable to generalization
to other matrix norms, see [10]. We take the reverse approach. First, we show that

cond(λ,A) =
‖adj(A− λI)∗‖∗

|p′(λ)| ,

where adj(A − λI)∗ is the conjugate transpose of adj(A − λI) and ‖ · ‖∗ is the dual
norm of a matrix norm ‖ · ‖. Our derivation is concise and is independent of (1.1)
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and does not depend on the choice of a particular matrix norm. In particular, for the
spectral norm, we deduce yet another version of cond(λ,A) in terms of the singular
values of A− λI. Indeed, we show that

cond(λ,A) =

∏n−1
j=1 σj(A− λI)

|p′(λ)| ,

where σj(A−λI), j = 1, . . . , n− 1, are the nonzero singular values of A−λI. Second,
for a simple eigentriple (λ, y, x) of A, we show that adj(λI − A) = p′(λ)xy∗/y∗x.
Hence we show that

cond(λ,A) =
‖adj(A− λI)∗‖∗

|p′(λ)| =
‖yx∗‖∗
|y∗x| .

Thus we show that the eigenvector free version of cond(λ,A) and the eigenvector
dependent version of cond(λ,A) are easy consequences of each other and that the
derivation is independent of the choice of a particular matrix norm.

• We analyze sensitivity of roots of a scalar polynomial p(x). The matlab com-
mand roots computes roots of a polynomial p(x) by computing the eigenvalues of a
companion matrix Cp associated with p. We therefore compare the sensitivity of λ as
a root of p(x) with the sensitivity of λ as an eigenvalue of Cp.

The rest of the paper is organized as follows. Section 2 presents sensitivity analysis
in an abstract setting and analyzes sensitivity of roots of scalar polynomials. Section 3
presents sensitivity analysis of eigenvalues of matrices. Section 4 provides a short
exposition of holomorphic perturbation of eigenvalues. Section 5 compares sensitivity
of λ as a root of a polynomial p(x) with the sensitivity of λ as an eigenvalue of a
companion matrix Cp associated with p.

2. Sensitivity analysis. Let V be a finite dimensional Hilbert space equipped
with an innerproduct 〈, 〉. If ‖ · ‖ : V → R is a norm then ‖ · ‖∗ : V → R defined by
‖x‖∗ := sup‖y‖=1{|〈x, y〉| : y ∈ V } is a norm on V and is called the dual norm of ‖ · ‖.
It follows that |〈x, y〉| ≤ ‖x‖ ‖y‖∗ for x ∈ V and y ∈ V.

For the special case when V = Cm, we consider the standard innerproduct
〈x, y〉 := y∗x, where y∗ is the conjugate transpose of y. Similarly, when V = Cm×n, we
consider the standard innerproduct 〈X, Y 〉 := Tr(Y ∗X). Then ‖X‖F :=

√
〈X, X〉

is the Frobenius norm on Cm×n. The spectral norm on Cn×n is given by ‖A‖2 :=
sup{‖Ax‖2 : ‖x‖2 = 1}, where ‖x‖2 :=

√
〈x, x〉.

Let U ⊂ V be open and λ : U → C. The directional derivative (also called the
Gateaux derivative) of λ at A ∈ U in the direction of H ∈ V is given by

δλ(A;H) := lim
t→0

λ(A+ tH)− λ(A)

t

when the limit exists. The derivative (also called the Frechet derivative) Dλ(A) of λ
at A ∈ U is a linear map Dλ(A) : V → C such that

lim
‖H‖→0

|λ(A +H)− λ(A) −Dλ(A)H |
‖H‖ = 0.
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If Dλ(A) exists then Dλ(A)H = δλ(A;H) for H ∈ V. Further, there is a unique vector
∇λ(A) ∈ V, called the gradient of λ at A, such that Dλ(A)H = 〈H, ∇λ(A)〉 for all
H ∈ V. Consequently, we have

‖Dλ(A)‖ = sup
‖H‖=1

|Dλ(A)H | = ‖∇λ(A)‖∗ = sup
‖H‖=1

|δλ(A;H)|. (2.1)

Suppose that λ is differentiable at A ∈ U. Then the sensitivity of λ(A) to small
perturbations in A is measured by the norm of the derivative Dλ(A). Thus the con-
dition number of λ at A is defined by

cond(λ,A) := ‖Dλ(A)‖ = ‖∇λ(A)‖∗. (2.2)

Note that the first order bound |λ(A +H) − λ(A)| . cond(λ,A)‖H‖ holds for suffi-
ciently small ‖H‖. If H ∈ V is such that 〈H, ∇λ(A)〉 = ‖∇λ(A)‖∗‖H‖ then the first
order bound is attained, that is, |λ(A+H)− λ(A)| = cond(λ,A)‖H‖. In such a case,
H is called a fast perturbation for λ(A).

Often the function λ is defined implicitly and the task is to compute λ(A) and
analyze the sensitivity of λ at A. This is specially the case for eigenvalue problems.
For implicitly defined functions, the implicit function theorem plays an important
role.

The Implicit Function Theorem: Let f : Cn × Cm → Cm and V(f) :=
{(x, y) ∈ Cn ×Cm : f(x, y) = 0}. Let (a, b) ∈ V(f). Suppose that f is holomorphic in
a neighbourhood of (a, b) and that

∂yf(a, b) :=




∂f1
∂y1

(a, b) · · · ∂f1
∂ym

(a, b)
... · · ·

...
∂fm
∂y1

(a, b) · · · ∂fm
∂ym

(a, b)




is nonsingular. Then there is an open set U ⊂ Cn containing a and an open set
W ⊂ Cm containing b and a holomorphic function g : U → W such that

{(x, g(x)) : x ∈ U} = V(f) ∩ (U ×W ).

This shows that g(a) = b and the graph of g is precisely the set of all (x, y) ∈ U ×W
such that f(x, y) = 0.

Let F : V × C → C be a smooth function. We denote the derivatives of F (X, z)
at (A, λ) with respect to X and z by ∂XF (A, λ) and ∂zF (A, λ), respectively. Then
for an implicitly defined function, we have the following result.

Theorem 2.1. Let F : V × C → C be a smooth function and (A, λA) ∈ V × C

be such that F (A, λA) = 0. Suppose that ∂zF (A, λA) 6= 0. Then there is an open set
U ⊂ V containing A and a smooth function λ : U → C such that λ(A) = λA and
F (X,λ(X)) = 0 for all X ∈ U. Moreover, for X ∈ U, we have

Dλ(X)H = −∂XF (X,λ(X))H/∂zF (X,λ(X)), for H ∈ V, (2.3)
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where ∂XF (X,λ(X)) and ∂zF (X,λ(X)) are derivatives of F (X, z) with respect to X
and z, respectively, evaluated at (X,λ(X)). Thus the sensitivity of λ at A is measured
by the condition number

cond(λA, A) :=
‖∂XF (A, λA)‖
|∂zF (A, λA)|

. (2.4)

Proof. Since ∂zF (A, λA) 6= 0, by the Implicit Function Theorem, the smooth
function λ : U → C exists satisfying the stated conditions. Again since F (X,λ(X)) =
0 for all X ∈ U, differentiating with respect to X, we have 0 = ∂XF (X,λ(X))H +
∂zF (X,λ(X))Dλ(X)H for H ∈ V. Hence evaluating the derivative at A and using
the fact that λ(A) = λA, the desired results follow.

Let Pm ⊂ C[x] be the subspace of polynomials of degree at most m. For p ∈
Pm, let [p] ∈ Cm+1 denote the coordinate of p with respect to the ordered basis
(1, x, . . . , xm) of Pm. Then for p(x) =

∑m
j=0 ajx

j we have [p] = [a0, a1, . . . , am]⊤.

Obviously the map Pm → Cm+1, p 7→ [p] is an isomorphism and 〈p, q〉m := [q]∗[p]
defines an innerproduct on Pm. If ‖ · ‖ is a norm on Cm+1 then ‖p‖ := ‖[p]‖ defines
a norm on Pm and ‖p‖∗ := sup{|〈q, p〉m| : ‖q‖ = 1} is the dual norm on Pm. For
p(x) :=

∑m
j=0 ajx

j , the conjugate polynomial p̄ is given by p̄(x) :=
∑m

j=0 ājx
j .

Theorem 2.2. Let p(x) :=
∑m

j=0 ajx
j and λ0 be a simple root of p(x). Then

there is an open set U ⊂ Pm containing p and a smooth function λ : U → C such that
λ(p) = λ0 and λ(s) is a simple root of s(x) for all s ∈ U. Further, for s ∈ U, we have

Dλ(s)h = − h(λ)

s′(λ)
= 〈h, −Λ̄m(s)/s̄(λ)〉m and ∇λ(s) = − Λ̄m(s)

s̄(λ)

for all h ∈ Pm, where s′(λ) is the derivative of s(x) evaluated at λ(s) and Λm(s) is a
polynomial given by Λm(s)(x) :=

∑m
j=0(λ(s))

jxj . The condition number cond(λ0, p)
of the root λ0 of p(x) is given by

cond(λ0, p) = ‖Dλ(p)‖ =
‖Λ̄m(p)‖∗
|p′(λ0)|

=
‖[1, λ0, . . . , λ

m
0 ]∗‖∗

|p′(λ0)|
.

In particular, if p(x) is monic then the sensitivity of λ0 relative to perturbations in
the coefficients a0, . . . , am−1 is measured by the condition number

condS(λ0, p) =
‖Λ̄m−1(p)‖∗

|p′(λ0)|
=

‖[1, λ0, . . . , λ
m−1
0 ]∗‖∗

|p′(λ0)|
.

Proof. Define F : Pm × C → C by F (s, z) = s(z). Then ∂zF (p, λ0) = p′(λ0) 6= 0
and ∂sF (s, z)h = h(z) for all h ∈ Pm. Hence Dλ(s),∇λ(s) and cond(λ0, p) follow from
Theorem 2.1. If p(x) is monic and the perturbations are restricted to a0, . . . , am−1

then p(x) is perturbed to p(x)+ b(x) with b(x) :=
∑m−1

j=0 bjx
. Hence the sensitivity of

λ0 is measured by the condition number condS(λ0, p) = sup {|Dλ(p)h| : h ∈ Pm−1} =

sup {|h(λ0)/p
′(λ0)| : h ∈ Pm−1} = ‖Λ̄m−1(p)‖∗

|p′(λ0)|
=

‖[1,λ0,...,λ
m−1

0
]∗‖∗

|p′(λ0)|

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 29, pp. 223-236, March 2016



ELA

228

Suppose that p ∈ Pm is a monic polynomial and λ0 is a simple root of p(x). Then
observe that |p′(λ0)| =

∏
µ6=λ0

|λ0 − µ| =: δp(λ0), where the product is taken over all
the roots µ of p(x) except for λ0. This shows that if δp(λ0) is small, that is, if λ0 is
not well separated from rest of the roots of p, then λ0 is expected to be sensitive to
small perturbations in p(x). By Theorem 2.2, we have

λ(p+∆p) = λ0 − 〈∆p, Λ̄m(p)〉m/p′(λ0) +O(‖∆p‖2)

for all ∆p ∈ Pm such that ‖∆p‖ is small. Note that λ(p) = λ0. Hence the first order
bound |λ(p +∆p)− λ(p)| . cond(λ0, p)‖∆p‖ holds. A polynomial ∆p∗ is said to be
a fast perturbation for λ(p) if

〈∆p, Λ̄m(p)〉m/p′(λ0) = ‖Λ̄m(p)‖∗‖∆p∗‖/δp(λ0).

In such a case, we have |λ(p+∆p∗)−λ(p)| = cond(λ0, p)‖∆p∗‖ showing that the first
order bound for |λ(p+∆p)− λ(p)| is attained at ∆p∗.

A fast perturbation can be constructed as follows. Let ‖ · ‖ be a norm on Cm and
x0 ∈ Cm be nonzero. Then it is well known that [18, 19]

∂‖x0‖ = {y ∈ C
m : 〈x0, y〉 = ‖x0‖ and ‖y‖∗ = 1}

is the subdifferential (subgradient) of the map x 7→ ‖x‖ at x0, where 〈x, y〉 := y∗x.
If ‖ · ‖ is differentiable at x0 then ∂‖x0‖ = {∇‖x0‖}. In such a case, we have
‖(∇‖x0‖)‖∗ = 1 and 〈x0, ∇‖x0‖〉 = ‖x0‖. For example, if ‖ · ‖ is strictly convex
then it is differentiable on Cm \{0}. For the special case of the Hölder p-norm on Cm,
it is easy to determine the subdifferential ∂‖x0‖, see [1, 18, 19].

Thus a fast perturbation for the root λ(p) = λ0 of p(x) is a scaled polynomial
in ∂‖Λ̄m(p)/p′(λ0)‖∗. Indeed, for p∗ ∈ ∂‖Λ̄m(p)/p′(λ0)‖∗ setting ∆p∗(x) := ǫ p∗(x),
we have 〈∆p∗, Λ̄m(p)〉m/p′(λ0) = ‖Λ̄m(p)‖∗‖∆p∗‖/δp(λ0) and hence the first order
bound |λ(p+∆p∗)− λ(p)| = cond(λ0, p)‖∆p∗‖ holds for sufficiently small ǫ > 0.

Generically, the condition number of a problem is inversely proportional to the
distance from the problem to the nearest ill-posed problem [7, 15, 16]. This is easily
verified for roots of polynomials. Suppose that p(x) is monic and has m distinct roots

λ1, . . . , λm. Let P̂m denote the set of polynomials in Pm having a multiple root. Set
dist(p, P̂m) := inf{‖p− s‖ : s ∈ P̂m}. Then we have

dist(p, P̂m) ≤ min
j

‖[λj , 1]
⊤‖ ‖[1, λj, . . . , λ

m
j ]∗‖∗

cond(λj , p)
.

Indeed, we have p(x) = p′(λj)(x − λj) + · · · + p(m)(λj)(x − λj)
m/m!. Now defining

∆p(x) := −p′(λj)(x−λj), it follows that (p+∆p)(x) = q(x)(x−λj)
2 has a double root

at λj . Since ‖∆p‖ = |p′(λj)| ‖[λj , 1]
⊤‖ = ‖[λj , 1]

⊤‖ ‖[1, λj, . . . , λ
m
j ]∗‖∗/cond(λj , p),

the desired result follows.

3. Sensitivity of eigenvalues. We now generalize Smith’s version of the con-
dition number of a simple eigenvalue of a matrix to the case of an arbitrary matrix
norm. Our derivation is based on derivatives of eigenvalues and is independent of
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Wilkinson’s version of the condition number. We proceed as follows. The adjugate of
a matrix A ∈ Cn×n, denoted by adj(A), is defined by

(adj(A))ji := (−1)i+j det(A(i, j)),

where A(i, j) is the matrix obtained from A by deleting the i-th row and the j-th
column of A. Let det : Cn×n → C denote the determinant map which takes a matrix
X to its determinant det(X). It is well known that A adj(A) = adj(A)A = det(A)I.
Also det is a differentiable function and the derivative Ddet(A) at A is given by the
Jacobi formula

Ddet(A)X = Tr(adj(A)X) = 〈X, adj(A)∗〉 for X ∈ C
n×n. (3.1)

Note that ∇ det(A) := adj(A)∗ is the gradient of det at A. Also note that adj(A) = 0
when rank(A) < n − 1 and that adj(A) 6= 0 when rank(A) ≥ n − 1. For the special
case when rank(A) = n− 1, the following elementary result holds.

Theorem 3.1. Let A ∈ Cn×n. Suppose that rank(A) = n−1. Then adj(A) = vu∗

for some nonzero vectors u and v such that Av = 0 and u∗A = 0. Consequently,
we have Ddet(A)H = Tr(adj(A)H) = u∗Hv for all H ∈ Cn×n and ∇ det(A) =
(adj(A))∗ = uv∗. In particular, if λ is a geometrically simple eigenvalue of A and
p(z) := det(zI − A) then p′(λ) = Tr(adj(λI − A)) = y∗x for some left eigenvector y
and right eigenvector x of A corresponding λ, where p′(λ) is the derivative of p at λ.

Proof. Let R(A) and N(A) denote the range space and the null space of A,
respectively. Set X := adj(A). Then XA = AX = det(A)I = 0. Now AX = 0 implies
that R(X) ⊂ N(A). This shows that X is a rank one matrix. Hence X is given by
X = vu∗ for some nonzero vectors u and v. Since R(X) = span(v) ⊂ N(A), we have
Av = 0. Similarly, XA = 0 ⇒ A∗X∗ = 0 ⇒ R(X∗) = span(u) ⊂ N(A∗), that is,
u∗A = 0. By the Jacobi’s formula (3.1), Ddet(A)H = Tr(adj(A)H) = u∗Hv for all
H ∈ Cn×n and hence ∇ det(A) = (adj(A))∗ = uv∗. Finally, by the chain rule, we have
p′(λ) = Tr(adj(λI −A)) = y∗x.

A well known result due to Wilkinson [17] states that λ is a multiple eigenvalue
of A if and only if there exist left and right eigenvectors u and v, respectively, of A
corresponding to λ such that u∗v = 0. This is immediate from Theorem 3.1 when λ is
geometrically simple, that is, rank(A−λI) = n−1. Indeed, in such a case, p′(λ) = y∗x
which shows that p′(λ) = 0 ⇔ y∗x = 0. In fact, a more general result holds.

Let A : C → Cn×n be meromorphic and regular, that is, det(A(z)) 6= 0 for some
z ∈ C. Let λ ∈ C. If rank(A(λ)) < n then λ is said to be an eigenvalue of A(z). If λ
is an eigenvalue of A(z) then there exist nonzero vectors x and y such that A(λ)x = 0
and y∗A(λ) = 0. The vectors x and y are called right and left eigenvectors of A(z)
corresponding to λ, respectively. If λ is a multiple root of p(z) := det(A(z)) then λ
is said to be a multiple eigenvalue of A(z).

Theorem 3.2. Let A : C → Cn×n be meromorphic and regular. Set p(z) :=
det(A(z)). Then we have p′(λ) = Tr(adj(A(λ))A′(λ)), where p′(λ) and A′(λ) are the
derivatives of p(z) and A(z) at λ, respectively. Further, λ is a multiple eigenvalue of
A(z) if and only if there exist left and right eigenvectors u and v, respectively, of A(z)
corresponding to λ such that u∗A′(λ)v = 0.
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Proof. By Jacobi formula and the chain rule, we have p′(λ) = Tr(adj(A(λ))A′(λ)).
Further, if rank(A(λ)) = n − 1 then by Theorem 3.1, we have adj(A(λ)) = vu∗ for
some left eigenvector u and right eigenvector v of A(z) corresponding to λ.

Suppose that λ is a multiple eigenvalue. Then p′(λ) = 0. If rank(A(λ)) = n − 1
then p′(λ) = Tr(adj(A(λ))A′(λ)) = u∗A′(λ)v = 0. On the other hand, if rank(A(λ)) <
n− 1 then, for any nonzero u such that u∗A(λ) = 0, the map

φ : N(A(λ)) → C, x 7→ u∗A′(λ)x

is a linear functional and hence φ(v) = 0 for some nonzero v ∈ N(A(λ)). Hence the
desired result follows.

Conversely, suppose that there exist left and right eigenvectors y and x such that
y∗A′(λ)x = 0. If rank(A(λ)) < n − 1 then adj(A(λ)) = 0. Consequently, we have
p′(λ) = Tr(adj(A(λ))A′(λ)) = 0 showing that λ is a multiple eigenvalue. On the
other hand, if rank(A(λ)) = n − 1 then p′(λ) = Tr(adj(A(λ))A′(λ)) = u∗A′(λ)v =
αβ̄ y∗A′(λ)x = 0, where v = αx and u = βy. This shows that λ is a multiple eigen-
value.

Now consider the map F : Cn×n × C → C given by F (X, s) := det(sI − X). If
λA is an eigenvalue of A then obviously (A, λA) is a solution of F (X, s) = 0. So, we
consider the algebraic variety V(F ) := {(X, s) ∈ C

n×n × C : F (X, s) = 0}. We say
that (A, λA) is a simple point of V(F ) if λA is a simple eigenvalue of A. We now
show that if (A, λA) is a simple point of V(F ) then there is an open set Ω containing
A such that V(F ) ∩ (Ω × C) is the graph of a smooth function Ω → C, X 7→ λ(X)
such that λ(A) = λA.

Recall that 〈X, Y 〉 := Tr(Y ∗X) for X,Y ∈ Cn×n is the standard innerproduct
on C

n×n and ‖Y ‖∗ = sup‖X‖=1 |〈X, Y 〉| is the dual norm of a norm ‖ · ‖ on C
n×n.

Theorem 3.3. Let A ∈ Cn×n and λA be a simple eigenvalue of A. Then there
is an open set Ω ⊂ Cn×n containing A and a smooth function λ : Ω → C such that
λ(A) = λA and λ(X) is a simple eigenvalue of X for all X ∈ Ω. Moreover, for X ∈ Ω,
we have

Dλ(X)H =
Tr(adj(λ(X)I −X)H)

∂s det ((λ(X)I −X)
and ∇λ(X) =

(
adj(λ(X)I −X)

∂s det (λ(X)I −X)

)∗

,

for all H ∈ Cn×n, where ∂s det(λ(X)I −X) is the partial derivative of det(sI −X)
with respect to s evaluated at (λ(X), X). Thus for any matrix norm, the sensitivity of
the eigenvalue λ(X) is measured by the condition number

cond(λ,X) :=
‖(adj(λ(X)I −X))∗‖∗
|∂s det (λ(X)I −X) | =

‖(adj(λ(X)I −X))∗‖∗
|Tr(adj (λ(X)I −X))| .

Proof. Consider the map F : Cn×n × C → C, (X, s) 7−→ det(sI − X) and the
variety V(F ) := {(X, s) ∈ Cn×n × C : F (X, s) = 0}. Obviously (A, λA) ∈ V(F ). The
derivative of F (X, s) with respect to s evaluated at (A, λA) is given by ∂sF (A, λA) =
p′(λA) 6= 0. Hence by the Implicit function theorem there is an open set Ω containing
A and a smooth function λ : Ω → C such that λ(A) = λA and V(F ) ∩ (Ω × C) =
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{(X,λ(X)) : X ∈ Ω}. In other words, X 7→ λ(X) is a smooth function on Ω such that
λ(A) = λA and F (X,λ(X)) = 0 for X ∈ Ω. Since V(F )∩ (Ω×C) = {(X,λ(X)) : X ∈
Ω} is the graph of X 7→ λ(X) for X ∈ Ω, it follows that λ(X) is a simple eigenvalue
of X for all X ∈ Ω. Indeed, if λ(X0) is a multiple eigenvalue of X0 for some X0 ∈ Ω
then the eigenvalue λA and an eigenvalue µA 6= λA of A must move and coalesce at
λ(X0) when X varies from A to X0. However, the intersection of two eigenvalue paths
(X,λ(X)) and (X,µ(X)) with µ(A) = µA at (X0, λ(X0)) would contradict the fact
that V(F ) ∩ (Ω× C) = {(X,λ(X)) : X ∈ Ω} is the graph of the map X 7→ λ(X) for
X ∈ Ω.

Since F (X,λ(X)) = 0 for X ∈ Ω, differentiating with respect to X, we have
Dλ(X)H = −∂XF (X,λ(X))H/∂sF (X,λ(X)) for H ∈ Cn×n, where ∂XF (X,λ(X))
and ∂sF (X,λ(X)) are derivatives of F (X, s) with respect to X and s, respectively,
evaluated at (X,λ(X)). By Jacobi formula, ∂XF (X,λ(X))H = −Tr(adj(λ(X)I −
X)H) and ∂sF (X,λ(X)) = Tr(adj(λ(X)I − X)). Hence the desired results follow
from Theorem 2.1.

Observe that the condition number in Theorem 3.3 generalizes Smith’s condition
number (1.2) to the case of an arbitrary norm on C

n×n when X = A. We now show
that Smith’s condition number of a simple eigenvalue is an immediate consequence of
Wilkinson’s condition number (1.1) and vice-versa. This follows from a representation
of adj(A) in terms of eigenvalues and eigenvectors of A. Note that if rank(A) = n− 1
then by Theorem 3.1, we have adj(A) = vu∗ for some left and right eigenvectors u
and v of A corresponding to 0. On the other hand, if 0 is a simple eigenvalue of A
then for any left and right eigenvectors y and x of A corresponding to 0, it is easy to
see that adj(A) = −Tr(adj(A))xy∗/y∗x. More generally, we have the following result.

Theorem 3.4. Let A : C → C
n×n be meromorphic and regular and let (λ, y, x)

be a simple eigentriple of A(z). Set p(z) := det(A(z)). Then we have

adj(A(λ)) =
p′(λ)xy∗

y∗A′(λ)x
=

Tr(adj(A(λ))A′(λ))xy∗

y∗A′(λ)x
,

where p′(λ) and A′(λ) are the derivatives of p(z) and A(z) at λ, respectively.
Proof. By Theorem 3.1, we have adj(A(λ)) = vu∗ for some nonzero vectors u and

v such that A(λ)v = 0 and u∗A(λ) = 0. Since λ is a simple eigenvalue, we have v = αx
and u = βy for some scalars α and β. Thus adj(A(λ)) = αβ̄ xy∗. By Jacobi formula,
we have p′(λ) = Tr(adj(A(λ))A′(λ)) = αβ̄ Tr(xy∗A′(λ)) = αβ̄ y∗A′(λ)x which gives
αβ̄ = p′(λ)/y∗A′(λ)x. Hence the desired result follows.

Now, by considering A(z) := zI − A and a simple eigentriple (λ, x, y) of A, it
follows from Theorem 3.4 that

adj(λI −A)

p′(λ)
=

xy∗

y∗x
. (3.2)

Hence the Smith condition number cond(λ,A) = ‖adj(A−λI)∗‖∗/|p′(λ)| is an imme-
diate consequence of the Wilkinson condition number cond(λ,A) = ‖xy∗‖∗/|y∗x| and
vice-versa. Indeed, we have the following result.

Theorem 3.5. Let A ∈ Cn×n. Let (λA, y, x) be a simple eigentriple of A. Then
there is an open set Ω ⊂ Cn×n containing A and a smooth function λ : Ω → C such
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that λ(A) = λA and λ(X) is a simple eigenvalue of X for all X ∈ Ω. Moreover,

Dλ(A)H =
Tr(adj(λAI −A)H)

p′(λA)
=

Tr(adj(λAI −A)H)

Tr(adj (λAI −A))
=

y∗Hx

y∗x
,

∇λ(A) =

(
adj(λAI −A)

p′(λA)

)∗

=

(
adj(λAI −A)

Tr(adj (λAI −A))

)∗

=
yx∗

x∗y
,

for all H ∈ Cn×n, where p(z) := det(zI − A). For any matrix norm, the condition
number cond(λA, A) is given by

cond(λA, A) =
‖(adj(A− λAI))

∗‖∗
|p′(λA)|

=
‖(adj(A− λAI))

∗‖∗
|Tr(adj (λAI −A))| =

‖yx∗‖∗
|y∗x| .

Further, for a subordinate matrix norm, we have

cond(λA, A) =
‖(adj(A− λAI))

∗‖∗
|p′(λA)|

=
‖yx∗‖∗
|y∗x| =

‖y‖∗‖x‖
|y∗x| .

Furthermore, for the spectral norm (as well as the Frobenius norm), we have

cond(λA, A) =
‖(adj(A− λAI))‖2

|p′(λA)|
=

∏n−1
j=1 σj(A− λAI)∏
µ6=λA

|µ− λA|
=

‖x‖2‖y‖2
|y∗x| ,

where σj(A−λAI), j = 1 : n− 1, are nonzero singular values of A−λAI and µ varies
over all eigenvalues of A.

Proof. The derivative Dλ(A) and the gradient ∇λ(A) follow from Theorem 3.3
and the equality (3.2). As for the condition number, we only need to prove the results
for a subordinate matrix norm and the spectral norm. For a subordinate matrix norm,
we have ‖A‖ = max{‖Ax‖ : ‖x‖ = 1}. Hence ‖yx∗‖∗ = ‖x‖ ‖y‖∗, where ‖ · ‖∗ is the
dual norm of the norm ‖ · ‖ on Cn. Consequently, for a subordinate matrix norm, the
desired results follow from Theorem 3.3.

For the spectral norm, we have ‖yx∗‖2 = ‖x‖2‖y‖2. Further, by ([10], Theorem 4)

we have ‖adj(A−λAI)‖2 =
∏n−1

j=1 σj(A−λAI). Also we have p′(λA) =
∏

µ6=λA
(λA−µ)

for all eigenvalues µ of A. Finally, note that ‖adj(A − λAI)‖2 = ‖adj(A − λAI)‖F .
Hence the desired results follow from Theorem 3.3.

Theorem 3.5 provides a first order perturbation bound for a simple eigenvalue of
A. Indeed, a first order bound as well as a fast perturbation for a simple eigenvalue
are as follows.

Corollary 3.6. Let (λA, y, x) be a simple eigentriple of A. Then there is an open
set Ω ⊂ Cn×n containing A and a smooth function λ : Ω → C such that λ(A) = λA

and λ(X) is a simple eigenvalue of X for all X ∈ Ω. Further, we have

λ(A +∆A) = λ(A) + 〈∆A, ∇λ(A)〉+O(‖∆A‖2)
= λ(A) + 〈∆A, yx∗/x∗y〉+O(‖∆A‖2)

and the first order bound |λ(A +∆A)− λ(A)| . cond(λ,A)‖∆A‖ for small ‖∆A‖.
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If Z ∈ ∂‖yx∗‖∗ then X := Z/sign(y∗x) is a fast perturbation for λA, that is,
〈X, ∇λ(A)〉 = ‖∇λ(A)‖∗ and the first order bound

|λ(A + tX)− λ(A)| = cond(λ,A)‖tX‖

holds for sufficiently small |t|, where sign(z) := z̄/|z| if z 6= 0 and sign(0) = 1. In
particular, if ‖yx∗‖∗ = ‖x‖ ‖y‖∗ and, u ∈ ∂‖y‖∗ and v ∈ ∂‖x‖ then uv∗ ∈ ∂‖yx∗‖∗
and hence X := uv∗/sign(y∗x) is a first perturbation for λA.

Let V0(F ) denote the set of simple points of V(F ), that is, (X, s) ∈ V0(F ) if s is
a simple eigenvalue of X. Then the map C : V0(F ) → (Cn×n, ‖ · ‖)∗, (A, λ) 7→ Dλ(A)
defines the condition map for eigenvalue problems such that cond(λ,A) = ‖C(A, λ)‖,
where (Cn×n, ‖ · ‖)∗ is the dual space of (Cn×n, ‖ · ‖). On the other hand, the map
K : V0(F ) → (Cn×n, ‖ · ‖∗), (A, λ) 7→ ∇λ(A) is the matrix representation of the
condition map C(λ,A) such that cond(λ,A) = ‖K(A, λ)‖∗.

4. Holomorphic perturbation. Let A : Cm → Cn×n be holomorphic. The
analysis of the eigenvalues of A(t) when t varies in Cm is a classical subject and has
been studied extensively, see [4, 8, 9, 5, 11] and the references therein, also see [3].
We mention that the holomorphic evolution of a simple eigenvalue λ(t) of A(t) also
follows from the results in Section 3. For completeness, we provide a short exposition
of the holomorphic evolutions of simple eigenvalues of A(t). Our derivation is slightly
different from those in [11, 5].

Theorem 4.1. Let A : Cm → Cn×n be holomorphic. Let λ0 be a simple eigen-
value of A(t0) and, y0 and x0 be left and right eigenvectors of A(t0) corresponding
to λ0. Then there is an open set Ω ⊂ Cm containing t0 and a holomorphic function
λ : Ω → C such that λ(t0) = λ0 and λ(t) is a simple eigenvalue of A(t) for all t ∈ Ω.
Further, for t ∈ Ω we have

λ(t+ h) = λ(t) + Dλ(t)h +O(‖h‖22) = λ(t) + 〈h, ∇λ(t)〉+O(‖h‖22)

for sufficiently small ‖h‖2. The derivative Dλ(t) and the gradient ∇λ(t) are given by

Dλ(t)h =

∑m
j=1 Tr(adj(λ(t)I −A(t))∂tjA(t))hj

∂zp(t, λ(t))
=

∑m
j=1 Tr(adj(λ(t)I −A(t))∂tjA(t))hj

Tr(adj(λ(t)I −A(t)))

∇λ(t) =

(
[Tr(adj(λ(t)I −A(t))∂t1A(t)), . . . ,Tr(adj(λ(t)I −A(t))∂tmA(t))]

Tr(adj(λ(t)I −A(t)))

)∗

for all h ∈ Cm, where ∂tjA(t) is the partial derivative of A(t) with respect to tj and
∂zp(t, λ(t)) is the partial derivative of p(t, z) with respect to z evaluated at (t, λ(t)).
In particular, we have

∂λ(t0)

∂tj
=

Tr
(
adj(λ0I −A(t0))

∂A(t0)
∂tj

)

∂zp(t0, λ0)
=

Tr
(
adj(λ0I −A(t0))

∂A(t0)
∂tj

)

Tr(adj(λ0I −A(t0)))
=

y∗0
∂A(t0)
∂tj

x0

y∗0x0
.

Proof. Consider p(t, z) := det(zI − A(t)) for (t, z) ∈ Cm × C and the analytic
variety V(p) := {(t, z) ∈ Cm×C : p(t, z) = 0}. Then (t0, λ0) ∈ V(p) and ∂zp(t0, λ0) 6=
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0. Hence by the Implicit function theorem and following similar arguments as those
in the proof of Theorem 3.3, we obtain a holomorphic function λ : Ω → C such that
λ(t0) = λ0 and λ(t) is a simple eigenvalue of A(t) for t ∈ Ω. Again by Theorem 3.3

and the chain rule, we have Dλ(t)h =
Tr(adj(λ(t)I −A(t))DA(t)h)

∂zp(t, λ(t))
for all h ∈ Cm,

where DA(t) is the derivative of A(t). The derivative DA(t) : Cm → Cn×n is a linear
map and is given by DA(t)h =

∑m
j=1 ∂tjA(t)hj for all h ∈ Cm. Also ∂zp(t, λ(t)) =

Tr(adj(λ(t)I −A(t))). Hence for h ∈ C
m, we have

Dλ(t)h =

∑m
j=1 Tr

(
adj(λ(t)I −A(t))∂tjA(t)

)
hj

Tr(adj(λ(t)I −A(t))
= 〈h, ∇λ(t)〉

which yields the desired results

Notice that the results in Theorem 4.1 can be easily extended to parameter depen-
dent nonlinear eigenvalue problems [3]. Let A : Cm × C −→ C

n×n, (t, z) 7−→ A(t, z)
be holomorphic and regular, that is, for each t ∈ Cm there is a λ ∈ C such that
det(A(t, λ)) 6= 0. If λ(t) is a simple eigenvalue of A(t, z), that is, λ(t) is a simple
zero of p(t, z) := det(A(t, z)) = 0, then the analyticity of λ(t) in a neighbourhood of t
and the derivative Dλ(t) can be deduced by applying the implicit function theorem to
p(t, z) = 0 at (t, λ(t)) followed by the Jacobi formula for the derivative of determinant.

5. Sensitivity and linearization. Consider a monic scalar polynomial p(z) :=
zn+an−1z

n−1+· · ·+a0. Then it is well known that the roots of p(z) are the eigenvalues
of the companion matrix

Cp :=




−an−1 −an−2 · · · −a0
1 0 · · · 0
...

. . .
. . .

...
0 · · · 1 0


 .

Indeed, det(zI − Cp) = p(z) and hence p(z) is the characteristic polynomial of Cp.
The matrices of the form Cp are also known as Frobenius companion matrices of
polynomials. The Frobenius companion matrices are the basic blocks in the rational
canonical forms of matrices. The matlab command roots uses Frobenius companion
matrices for computing roots of scalar polynomials. So, suppose that the roots of
p(z) are computed by solving the eigenvalue problem Cpv = λv. This raises a natural
question: How is the sensitivity of λ as a root of p(z) related to the sensitivity of
λ as an eigenvalue of Cp? This is a pertinent question because the sensitivity of
eigenvalues influence the accuracy of the computed eigenvalues. Thus, with a view to
providing an answer to the question, we compare the condition numbers cond(λ, p)
and cond(λ,Cp).

Proposition 5.1. Let λ be a simple root of p(z). Then λ is a simple eigenvalue
of Cp and v := [λn−1, . . . , λ, 1]⊤ is an eigenvector of Cp corresponding to λ. Further,

u := [1, λ+ an−1, . . . , λ
n−1 + an−1λ

n−2 + · · ·+ a2λ+ a1]
∗
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is a left eigenvector of Cp corresponding to λ. Furthermore, u∗v = p′(λ) and that
adj(λI − Cp) = vu∗, where p′(λ) is the derivative of p(z) at λ. Thus we have

cond(λ,Cp) =
‖(adj(λI − Cp))

∗‖∗
|p′(λ)| =

‖uv∗‖∗
|p′(λ)| .

Proof. It is easy to see that Cpv = λv and u∗Cp = λu∗. A simple calculation
shows that u∗v = p′(λ). Hence by Theorem 3.4 we have adj(λI − Cp) = vu∗ and
the desired expression for cond(λ,Cp) follows from Theorem 3.5. This completes the
proof.

Set Λn := [1, λ, . . . , λn]⊤. Then recall from Theorem 2.2 that the condition num-
ber of λ as a root of p(z) is given by cond(λ, p) = ‖Λ̄n‖∗/|p′(λ)|. We now compare
the sensitivity of λ as a root of p(x) with the sensitivity of λ as an eigenvalue of Cp.

Theorem 5.2. Let p(x) := det(xI −Cp) and λ be a simple eigenvalue of Cp. Let
u and v be as in Proposition 5.1 and Λn := [1, λ, . . . , λn]

⊤. Then, for the spectral and
Frobenius norms, we have

‖u‖2√
1 + |λ|2

≤ cond(λ,Cp)

cond(λ, p)
≤

√
2 ‖u‖2√
1 + |λ|2

.

Proof. By Theorem 2.2 and Proposition 5.1, for the spectral and Frobenius norms,
we have cond(λ,Cp)/cond(λ, p) = ‖v‖2‖u‖2/‖Λn‖2. Now a straightforward calcula-
tion shows that

1 ≤
√
1 + |λ|2 ‖v‖2
‖Λn‖2

≤
√
2

which yields the desired bounds.
Note that ‖u‖2 ≥ 1 and ‖u‖2 → ∞ as |λ| → ∞. Thus, a root λ of p(x) with a large

absolute value is more ill-conditioned as an eigenvalue of Cp than as a root of p(x).
This is to be expected as cond(λ,Cp) measures the sensitivity of λ to an arbitrary
small perturbation ∆A to Cp and the perturbed matrix Cp +∆A almost always will
not be a companion matrix. Since the perturbed matrix Cp+∆A cannot be expected
to be a companion matrix, restricting the perturbation ∆A such that Cp + ∆A is
a companion matrix we obtain structured sensitivity analysis of λ. Observe that if
b = [bn−1, . . . , b0]

⊤ ∈ C
n then ∆A := −e1b

⊤ is a structure preserving perturbation
of Cp, that is, Cp + ∆A is a companion matrix of the polynomial (p + ∆p)(x) =
xn+(an−1+bn−1)x

n−1+· · ·+(a0+b0), where e1 = [1, 0, . . . , 0]⊤ ∈ Cn. The sensitivity
of an eigenvalue λ of Cp relative to perturbations of the form e1b

⊤ is measured by

the structured condition number of λ which we denote by condS(λ,Cp). Then by
Theorem 3.5 we have

condS(λ,Cp) = sup{|〈e1b⊤, uv∗/v∗u〉| : b ∈ C
n and ‖e1b∗‖ = 1}. (5.1)

Also recall from Theorem 2.2 that condS(λ, p) measures the sensitivity of λ relative to
small perturbations ∆p(x) ∈ Pn−1 to p(x). In such a case, the perturbed polynomial
p(x) + ∆p(x) is again a monic polynomial.

Proposition 5.3. Let p(x) := det(xI −Cp) and λ be a simple eigenvalue of Cp.
Let u and v be as in Proposition 5.1. Then, for the spectral and Frobenius norms, we
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have

condS(λ,Cp) = condS(λ, p) =
‖v‖2
|p′(λ)| =

‖v‖2
|u∗v| .

Proof. By Theorem 2.2 we have condS(λ, p) = ‖v‖2/|p′(λ)|. Since

|〈e1b∗, uv∗/v∗u〉| = |b∗v|/|u∗v|

and p′(λ) = u∗v, taking supremum over ‖b‖2 = 1 for b ∈ Cn, by (5.1) we have

condS(λ,Cp) =
‖v‖2

|p′(λ)| =
‖v‖2

|u∗v| = condS(λ, p).

We mention that the results presented in this paper can be generalized, with
appropriate modifications, to nonlinear eigenvalue problems, see [2].
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