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FAMILIES OF GRAPHS HAVING FEW DISTINCT DISTANCE
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Abstract. The distance matrix of a simple connected graph G is D(G) = (dij), where dij is

the distance between ith and jth vertices of G. The multiset of all eigenvalues of D(G) is known

as the distance spectrum of G. Lin et al.(On the distance spectrum of graphs. Linear Algebra

Appl., 439:1662-1669, 2013) asked for existence of graphs other than strongly regular graphs and

some complete k-partite graphs having exactly three distinct distance eigenvalues. In this paper

some classes of graphs with arbitrary diameter and satisfying this property is constructed. For

each k ∈ {4, 5, . . . , 11} families of graphs that contain graphs of each diameter grater than k − 1 is

constructed with the property that the distance matrix of each graph in the families has exactly k

distinct eigenvalues. While making these constructions we have found the full distance spectrum of

square of even cycles, square of hypercubes, corona of a transmission regular graph with K2, and

strong product of an arbitrary graph with Kn.
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1. Introduction. All graphs considered in this paper are simple graphs, that

is, undirected, loop free and having no multiple edges. Consider an n-vertex connected

graph G = (V,E), where V = V (G) is the vertex set and E is the edge set of G. The

distance matrix D(G) of G is an n×n matrix (dij), where dij is the distance (length

of a shortest path) between the ith and jth vertices in G. The eigenvalues, eigenvec-

tors, and spectrum of D(G) are said to be the distance eigenvalues (D-eigenvalues),

distance eigenvectors (D-eigenvectors), and distance spectrum (D-spectrum) of G re-

spectively. The matrix D(G) is symmetric, so that all of its eigenvalues are real, say

µi, i = 1, 2, . . . , n, and can be ordered as µ1 ≥ µ2 ≥ · · · ≥ µn. If µi1 > µi2 > · · · > µip

are the distinct D-eigenvalues and m1,m2, . . . ,mp are the algebraic multiplicities of

them respectively, then the D-spectrum can be represented as

specD(G) =

(

µi1 µi2 · · · µip

m1 m2 · · · mp

)

.

The transmission Tr(v) of a vertex v is defined to be the sum of the distances from v

to all other vertices in G, i.e., Tr(v) =
∑

u∈V d(u, v). A connected graph G is said to
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be s-transmission regular if Tr(v) = s for every vertex v ∈ V . A connected graph G is

called distance regular if it is regular of valency k, and if for any two vertices x, y ∈ G

at distance i = d(x, y), there are precisely ci neighbors of y inGi−1(x) and bi neighbors

of y in Gi+1(x), where Gi(x) is the set of all vertices with distance i from x. The kth

power Gk of a graph G is a graph with same set of vertices V (G) and two vertices are

adjacent when their distance in G is at most k. The corona of two graphs G1 and G2,

denoted by G1 ◦ G2, is the graph which is the disjoint union of one copy of G1 and

|V (G1)| copies of G2 in which each vertex of the copy of G1 is adjacent to all vertices

of the corresponding copy of G2. The Cartesian Product of G1 and G2 is the graph

G1 ×G2 with vertex set {(x1, x2)|x1 ∈ V (G1), x2 ∈ V (G2)} and two vertices (x1, x2)

and (y1, y2) are adjacent if and only if (i) x1 is adjacent to y1 in G1 and x2 = y2 in

G2 or (ii) x2 is adjacent to y2 in G2 and x1 = y1 in G1. The Strong Product of G1

and G2 is the graph G1 ⊠G2 with vertex set {(x1, x2)|x1 ∈ V (G1), x2 ∈ V (G2)} and

two vertices (x1, x2) and (y1, y2) are adjacent if and only if one of the following hold

(i) x1 is adjacent to y1 in G1 and x2 = y2 in G2 (ii) x2 is adjacent to y2 in G2 and

x1 = y1 in G1 (iii) x1 is adjacent to y1 in G1 and x2 is adjacent to y2 in G2. The

Johnson graph J(n,m) is the graph whose vertex set is the set of all m-subsets of an

n-element set and two m-subsets are adjacent if they have m−1 elements in common.

The Hamming graph H(n, d) has vertex set Xn, where X is a finite set of cardinality

d ≥ 2, and two vertices of H(n, d) are adjacent whenever they differ in precisely one

coordinate. In particular the n-dimensional hypercube Qn is H(n, 2). The theorem

below gives the diameter of these graphs defined here.

Theorem 1.1. Let G, G1, and G2 be graphs having diameters d, d1, and d2

respectively. Then

Graph Diameter

Gk ⌈d
2
⌉

G1 ◦G2 d1 + 2

G1 ×G2 d1 + d2

G1 ⊗G2 max{d1, d2}

J(n,m) d = min(m,n−m)

H(n, d) n

Recall that, the Kronecker product of matrices A = (aij) of size m × n and B of

size p × q, denoted by A ⊗ B, is defined to be the mp × nq partition matrix (aijB).

It is known [13] that for matrices M , N , P and Q of suitable sizes, MN ⊗ PQ =

(M ⊗ P )(N ⊗Q). Suppose a real symmetric matrix A can be partitioned as





A11 A12 · · · A1m

· · · · · · · · · · · ·

Am1 Am2 · · · Amm



 ,
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where each Aij is a submatrix (block) of A. If qij denotes the average row sum of Aij

then the matrix Q = (qij) is called a quotient matrix of A. If the row sum of each

block Aij is a constant then the partition is called equitable. The following is an well

known result on equitable partition of matrices.

Theorem 1.2. [5] Let Q be a quotient matrix of a square matrix A corresponding

to an equitable partition. Then the spectrum of A contains the spectrum of Q.

The distance eigenvalues of graphs have been studied by researchers for many

years. For early work, see Graham and Lovász [10], where they have discussed about

the characteristic polynomial of distance matrix of a tree. Ruzieh and Powers [23]

have found all the eigenvalues and eigenvectors of the distance matrix of the path

Pn on n vertices. In [9] Fowler et al. gave all the D-eigenvalues of the cycle Cn with

n vertices. Ramane et al. [22] obtained the D-eigenvalues of the join of two graphs

whose diameter is less than or equal to 2. In [16] Indulal and Gutman have found the

distance spectrum of graphs obtained by some operations. The D-spectrum of the

cartesian product of two transmission regular graphs and that of the lexicographic

product of two graphs G and H when H is regular are obtained by Indulal [19].

Stevanović and Indulal [24] described the D-spectrum of the join-based compositions

of regular graphs in terms of their adjacency spectrum. Ilić [14] characterized the D-

spectrum of integral circulant graphs and calculated theD-spectrum of unitary Cayley

graphs. Lin et al. [20] characterized all connected graphs with least D-eigenvalue

−2 and all connected graphs of diameter 2 with exactly three D-eigenvalues when

largest D-eigenvalue is not an integer. For more results related to D-spectrum see

[8, 11, 12, 17, 18, 14].

In this paper we find the full distance spectrum of the square of even cycles, the

square of hypercubes, the corona of a transmission regular graph with K2, and the

strong product of an arbitrary graph with Kn. Using these and some of the earlier

results we have constructed infinite classes of graphs with any diameter but having

fixed number, say k, of distinct D-eigenvalues where k = 4, 5, . . . , 11. Here we have

proved square of hypercubes Q2
n has exactly three distinct D-eigenvalues. Lin et

al. [20] asked “Are there any graphs other than strongly regular graphs and some

complete k-partite graphs which have three distinct D-eigenvalues?”. So the graph

Q2
n is a partial answer to this. The authors of [1] asked “Are there connected graphs

other than distance regular graphs with diameter d and having less than d+1 distinct

D-eigenvalues?” We have also partially answered this question.

Next we state some of the known results which will be used in the sequel.

Lemma 1.3. [7] Let G be a graph with adjacency matrix A and spec(G) =

{λ1, λ2, . . . , λp}. Then det A =
∏p

i=1λi. In addition, for any polynomial P (x), P (λi)

is an eigenvalue of P (A) and hence det P (A) =
∏p

i=1P (λi).
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Lemma 1.4. [7] Let C =

(

A B

B A

)

be a symmetric 2 × 2 block matrix. Then

the spectrum of C is the union of the spectra of A+B and A−B.

Theorem 1.5. [21] Let S be a complex square matrix, which is partitioned into

blocks, each of size n× n:

S =





S11 S12 S13

S21 S22 S23

S31 S32 S33



 ,

where S33 is an invertible matrix. Then the determinant of S is given by

det(S) =det
(

[S11 − S13S
−1

33 S31]− [S12 − S13S
−1

33 S32][S22 − S23S
−1

33 S32]
−1[S21 − S23S

−1

33 S31]
)

×det([S22 − S23S
−1

33 S32]) × det(S33).

Theorem 1.6. [16] Let D be the distance matrix of a connected transmission

regular graph G of order p. Then D is irreducible and there exists a polynomial P (x)

such that P (D) = J. In this case

P (x) = p×
(x− λ2)(x − λ3) · · · (x − λg)

(k − λ2)(k − λ3) · · · (k − λg)
,

where k is the unique sum of each row which is also the greatest simple eigenvalue of

D, whereas λ2, λ3, . . . , λg are the other distinct eigenvalues of D.

Theorem 1.7. [9] If n = 2p, then the characteristic polynomial of D(Cn), the

distance matrix of an n-vertex cycle Cn, is given by

p(t) = tp−1

(

t−
n2

4

) p
∏

j=1

(

t+ csc2
(

π(2j − 1)

n

))

.

Theorem 1.8. [1] The distance spectrum of the Johnson graph J(n,m) is given

by

specD(J(n,m)) =

(

s 0 − s
n−1

1
(

n
m

)

− n n− 1

)

,

where s =
m
∑

j=0

jkj and kj =
(

m
j

)(

n−m
j

)

for j = 0, 1, . . . ,m.

Theorem 1.9. [19] Let H(n, d) be the Hamming graph of diameter n. Then the

distance spectrum of H(n, d) is given by

specD(D(H(n, d))) =

(

ndn−1(d− 1) 0 −dn−1

1 dn − n(d− 1)− 1 n(d− 1)

)

.
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Theorem 1.10. [19] Let G and H be two transmission regular graphs on p

and n vertices with transmission regularity k and t respectively. Let specD(G) =

{k, µ2, µ3, . . . , µp} and specD(H) = {t, η2, η3, . . . , ηp}. Then the distance spectrum of

cartesian product of G and H is given by

specD(G×H) = {nk + pt, nµi, pηj, 0},

where i = 2, 3, . . . , p, j = 2, 3, . . . , n and 0 is with multiplicity (p− 1)(n− 1).

Theorem 1.11. [16] Let G be a k-transmission regular graph of order n and

having D-spectrum {k, µ2, µ3, . . . , µn}. Then the D-spectrum of G ◦ K1 consists of

the numbers

n+ k − 1±
√

(n+ k)2 + (n− 1)2, µi − 1±
√

µ2
i + 1 for i = 2, 3, . . . , n.

2. Full D-spectrum of some graphs. Here we first prove a lemma which will

be used in the proof of some of the results of this section.

Lemma 2.1. Let M = (mij) be a symmetric matrix of order n with sum of the

entries of each row is a constant s and let the spectrum of M be {λ1 = λ2 = . . . =

λk = s, λk+1, λk+2, . . . , λn} for some integer k ≥ 1. Let J be the square matrix of

order n with all entries equal to 1. Then for any real number r, the spectrum of the

matrix M + rJ is {s+ nr, s, . . . , s, λk+1, λk+2, . . . , λn}.

Proof. Since M is a symmetric square matrix of order n with sum of the entries

of each row is s, M + rJ is also a square matrix of order n with sum of the entries of

each row is s+ nr. Therefore s+ nr is an eigenvalue of M + rJ .

As the symmetric matrices M and rJ commute, they are simultaneously diago-

nalizable. Then the eigenvalues of M + rJ are the sum of the sum of the eigenvalues

of M and rJ for a certain ordering. But the matrix rJ has rank 1, so it has eigen-

values rn and 0 with multiplicity n − 1. Hence spectrum of the matrix M + rJ is

{s+ nr, s, . . . , s, λk+1, λk+2, . . . , λn}

The theorem below gives the full D-spectrum of square of even cycles.

Theorem 2.2. Let {n2

2
, 0, λ3, λ4, . . . , λn} or {n2

2
,−1, λ3, λ4, . . . , λn} be the D-

spectrums of Cn depending on whether n
2
is even or odd. Then the D-spectrum of C2

n is

given by {n2

8
+ n

4
,−n

4
, λ3

2
, λ4

2
, . . . , λn

2
} if n

2
is even and {n2

8
+ n

4
, −1

2
− n

4
, λ3

2
, λ4

2
, . . . , λn

2
}

if n
2
is odd.

Proof. Let {u1, u2, . . . , un} be the vertex set of Cn, such that ui is adjacent to

ui+1 (where subscripts are taken mod n). Let us partition the vertex set of Cn as

V1 ∪ V2 where V1 is a set of all even index vertices and V2 is a set of all odd index

vertices. Then every pair of vertices within V1 or within V2 are of even distance from

each other. Again any vertex of V1 and any vertex of V2 are of odd distance from
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each other. Now if we index the rows and columns of the distance matrix by taking

the vertices of V1 followed by the vertices of V2 and by considering a suitable ordering

we get the distance matrix of Cn in the form

D(Cn) =

(

A B

B A

)

,

where each entry of the block A is even and sum of the entries of any row in A is

equal to the sum of the distances from any vertex in V1 to all other vertices in V1,

and hence A has constant row sum n2
−4
8

or n2

8
depending on whether n

2
is odd or

even. Again each entry of the block B is odd and sum of the entries of any row in B

is equal to the sum of the distances from any vertex in V1 to all vertices in V2 and

hence B has constant row sum n2+4
8

or n2

8
depending on whether n

2
is odd or even.

By Lemma 1.4. the eigenvalues of D(Cn) are the union of the eigenvalues of A+B

and A−B. Now the matrix A+B has constant row sum n2

4
for all n and the matrix

A − B has constant row sum −1 or 0 depending on whether n
2
is odd or even. We

note that for vertices u and v in Cn if d(u, v) = a in Cn then d(u, v) = ⌈a
2
⌉ in C2

n.

Therefore the distance matrix of C2
n is given by

D(C2
n) =

1

2

(

A B + J

B + J A

)

,

where J is a square matrix of order n
2
with all entry 1. Again using Lemma 1.4. the

eigenvalues of D(C2
n) are the union of the eigenvalues of A+B+J

2
and A−B−J

2
. Using

Lemma 2.1. we get that eigenvalues of A + B + J are same as the eigenvalues of

A+B except the eigenvalue n2

4
which is replaced by the eigenvalue n2

4
+ n

2
for all n.

Similarly the eigenvalues of A−B−J are same as the eigenvalues of A−B except the

eigenvalues −1 and 0 which are replaced by the eigenvalues −1− n
2
and −n

2
according

as n
2
is odd or even respectively. Hence we get the desired result.

In [20] Lin at al. have asked “Are there any graphs other than strongly regular graphs

and some complete k-partite graphs which have three distinct D-eigenvalues?” Our

next theorem gives a partial answer to this question.

Theorem 2.3. Let Qn be the hypercube graph of dimension n. Then the distance

spectrum of Q2
n is given by

specD(D(Q2
n)) =





1
2

n
∑

r=1

r
(

n
r

)

+ 2n−2 0 −2n−2

1 2n − (n+ 2) n+ 1



 .

Proof.
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We recall that an n-dimensional hypercube Qn is a graph with vertex set V (Qn) =

{(a1, a2, . . . , an) : ai = 0 or 1} and two vertices of Qn are adjacent if and only if they

differ at exactly one coordinate. For u, v ∈ V (Qn), it is clear that d(u, v) = r if and

only if coordinates of u and v differ in exactly r places.

Consider the vertex u = (0, 0, ..., 0). Let V1 be the set of vertices of Qn which are

of even (may be zero) distance from u and let V2 be the set of vertices of Qn which

are of odd distance from u. All vertices within V1 and those within V2 are of even

distance from each other. Again any vertex of V1 and any vertex of V2 are of odd

distance from each other. Clearly V1 ∪ V2 partitions of V (Qn). Also in Qn, from any

vertex v, the number of vertices in Qn with distance i is
(

n
i

)

.

We have in the structure of Qn it has two copies of Qn−1. Consider a suitable

ordering of the vertices of V1 and V2 and by taking the vertices of V1 followed by the

vertices of V2 the distance matrix of Qn is of the form

D(Qn) =

(

A B

B A

)

,

where A and B have same properties as in the Theorem 2.2. Now we find the constant

row sum of the matrices A and B according as n is odd or even. The sum of the

distances from any vertex in V1 to all other vertices in V1 is given by

k1 =







2
(

n
2

)

+ 4
(

n
4

)

+ · · ·+ (n− 1)
(

n
n−1

)

, if n is odd,

2
(

n
2

)

+ 4
(

n
4

)

+ · · ·+ n
(

n
n

)

, if n is even.

Again the sum of the distances from any vertex in V1 to all vertices in V2 is given by

k2 =







1
(

n
1

)

+ 3
(

n
3

)

+ · · ·+ n
(

n
n

)

, if n is odd,

1
(

n
1

)

+ 3
(

n
3

)

+ · · ·+ (n− 1)
(

n
n−1

)

, if n is even.

By using Lemma 1.4. the eigenvalues of D(Qn) are the union of the eigenvalues of

A+B and A−B. The matrix A+B has constant row sum k1 + k2 and the matrix

A−B has constant row sum k1 − k2.

Here k1 + k2 =
n
∑

r=1

r
(

n
r

)

and k1 − k2 = 0 for each n.

Then the distance matrix of Q2
n is given by

D(Q2
n) =

1

2

(

A B + J

B + J A

)

,

where J is a square matrix of order 2n+1 with all entries equal to 1. The matrix

A+B+J
2

has constant row sum 1
2

n
∑

r=1

r
(

n
r

)

+2n−2 and the matrix A−B−J
2

has constant
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row sum −2n−2. Using Lemma 1.6, Theorem 1.9, and Lemma 2.1. we get the desired

result.

Next we determine the distance spectrum of the corona of a k-transmission regular

graph G with K2, in terms of the distance spectrum of G.

Theorem 2.4. Let G be a k-transmission regular graph of order n with D-

spectrum {k, λ2, λ3, . . . , λn}. Then the D-spectrum of G ◦K2 consists of
1
2

(

4n+ 3k − 3±
√

(4n+ 3k − 3)2 + 4(2n2 + 3k)
)

,

1
2

(

3λi − 3±
√

(3λi − 3)2 + 12λi

)

for i = 2, 3, . . . , n, and −1 with multiplicity n.

Proof. Let D be the distance matrix of the graph G. Then by definition of corona
the distance matrix of G ◦K2 can be written as

D(G ◦K2) =







D D + J D + J

D + J D + 2(J − I) D + 2J − I

D + J D + 2J − I D + 2(J − I)






,

where J is a square matrix of order n with all entries 1 and I is the identity matrix of order

n. Now characteristic equation of D(G ◦K2) is given by

det







xI −D −(D + J) −(D + J)

−(D + J) xI − (D + 2(J − I)) −(D + 2J − I)

−(D + J) −(D + 2J − I) xI − (D + 2(J − I))






= 0

Since any two blocks of the above determinant commute, by applying Theorem 1.5. we get

the characteristic equation is

det((xI −D)[{xI − (D + 2(J − I))}2 − {D + 2J − I}2]

+(D + J)[−(D + J){xI − (D + 2(J − I))} − (D + J)(D + 2J − I)]

− (D + J)[(D + J)(D + 2J − I) + (D + J)(xI − (D + 2(J − I))]) = 0

Since J2 = nJ and G is a k-transmission regular graph, each row sum and column sum of

D is the constant k. So DJ = JD = kJ and the above equation becomes

det[(1 + x)I{3(1 + x)D + (2n+ 4x)J − (x2 + 3x)I}] = 0 (2.1)

Then in equation (2.1) we put the value of J in terms of D which is given in Theorem 1.6.

Finally the D-spectrum of G ◦K2 is obtained by applying Lemma 1.3.

Remark 2.5. Note that if the graph G has r distinct D-eigenvalues then G ◦K2

has 2r + 1 distinct D-eigenvalues provided that G is a transmission regular graph

and the functional values of the expressions in the Theorem 2.4 of two distinct D-

eigenvalues of G are not equal.

Theorem 2.6. Let G be a graph of order m with D-eigenvalues λi, i = 1, 2, . . . ,m

and let Kn be the complete graph of order n. Then the D-spectrum of G⊠Kn, n ≥ 2

is given by nλi + (n− 1), i = 1, 2, . . . ,m and −1 with multiplicity m(n− 1).
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Proof. Let V (G) = {u1, u2, . . . , um} and V (Kn) = {v1, v2, . . . , vn}, then V (G ⊠

Kn) = {(ui, vj) : i = 1, 2, . . . ,m and j = 1, 2, . . . , n}. Now we consider V (G⊠Kn) =
m
⋃

i=1

Si where Si = {(ui, vj), j = 1, 2, . . . , n}. Then S = {Si : i = 1, 2, . . . ,m} is a

partition of V (G ⊠Kn). Using this partition we consider the blocks of the distance

matrix D(G⊠Kn). For i, j ∈ {1, 2, . . . ,m}, let Sij be the (i, j)
th block of D(G⊠Kn).

Now if we maintain the ordering of vertices as in the above partition then the distance

matrix of G⊠Kn can be written as

D(G⊠Kn) = D(G) ⊗ J + Im ⊗D(Kn),

where J is a square matrix of order n with all entries 1, Im is a unit matrix of order

m and D(G), D(Kn) are the distance matrices of G and Kn respectively. Now each

vertex set Si, i = 1, 2, . . . ,m induces a copy of Kn. So each block Sii = D(Kn) for

i = 1, 2, ...,m. Consider the vertex (ui, vj) ∈ Si and the vertex (uk, vl) ∈ Sk for i 6= k.

Then

dG⊠Kn
((ui, vj), (uk, vl)) = max{dG(ui, uk), dKn

(vj , vl)}

= dG(ui, uk) for all j, l ∈ {1, 2, . . . , n}.

Thus we get all the entries of the block Sik is dG(ui, uk) for i 6= k and i, k ∈

{1, 2, . . . ,m}. So row sum of each block of the matrix D(G⊠Kn) is a constant. Then

corresponding to the equitable partition
m
⋃

i=1

Si the quotient matrix of D(G ⊠Kn) is

given by

Q = nD(G) + (n− 1)Im.

By Lemma 1.2. the eigenvalues of Q are eigenvalues of D(G ⊠ Kn). So we get

nλi + (n − 1), i = 1, 2, . . . ,m, are eigenvalues of D(G ⊠ Kn). For the remaining

eigenvalues let Xi be the eigenvector of D(G) corresponding to the eigenvalue λi for

i = 1, 2, ...,m, and since D(Kn) has −1 as an eigenvalue with multiplicity (n− 1), let

Yj be the eigenvector of D(Kn) corresponding to the eigenvalue −1 for j = 2, 3, . . . , n.

Then

D(G)Xi = λiXi for i = 1, 2, . . . ,m and D(Kn)Yj = −Yj for j = 2, 3, . . . , n.

We have that the m(n − 1) vectors (Xi ⊗ Yj) for i = 1, 2, . . . ,m and j = 2, 3, . . . , n
are linearly independent and also

D(G ⊠Kn)(Xi ⊗ Yj) = (D(G) ⊗ J + Im ⊗D(Kn))(Xi ⊗ Yj)

= (D(G) ⊗ J)(Xi ⊗ Yj) + (Im ⊗D(Kn))(Xi ⊗ Yj)

= (D(G)Xi)⊗ (JYj) + (ImXi)⊗ (D(Kn)Yj)

= (D(G)Xi)⊗ 0 +Xi ⊗−Yj [as sum of all entries of Yj is zero]

= −(Xi ⊗ Yj)
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Thus we get that Xi⊗Yj is an eigenvector of D(G⊠Kn) corresponding to the eigenvalue −1

for i = 1, 2, . . . ,m, j = 2, 3, . . . , n. Hence −1 is an eigenvalue of D(G⊠Kn) with multiplicity

m(n− 1).

Remark 2.7. Note that the graph G ⊠ Kn, n ≥ 2 has k or k + 1 distinct D-

eigenvalues depending on whether or not −1 is a D-eigenvalue of G.

3. Graphs with few distinct D-eigenvalues. There are several graphs with

diameter d and having at least d + 1 distinct D-eigenvalues. For example, inte-

gral circulant graphs [14], complete k-partite graphs Kn1,...,nk
with ni 6= nj , i, k ∈

{1, 2, . . . , k} [20], odd cycles [9], square of even cycles (Section 2, Theorem 2.2.) etc.

Moreover there are several graphs for which the number of distinct D-eigenvalues

depends on the diameter d. For examples, the graphs odd cycles, even cycles, and

square of even cycles have number of distinct D-eigenvalues d+1, ⌈d
2
⌉+2, and d+2

respectively.

Here we construct families of graphs for which number of distinct D-eigenvalues
is independent of the diameter. Moreover these families of graphs have arbitrary
diameter and few distinct D-eigenvalues. These graphs are listed in the table below.
In this table Tr-regular stands for the transmission regular.

Graphs Tr-regular D-eigenvalues Diameter

J(n,m)⊠Kp Yes 4 d ≥ 2

H(n, d)⊠Kp Yes 4 d ≥ 2

Q2

n ⊠Kp Yes 4 d ≥ 2

J(n,m)×H(n, d) Yes 4 d ≥ 4

(J(n,m)×H(n, d))⊠Kp Yes 5 d ≥ 4

J(n,m) ◦K1 No 6 d ≥ 4

H(n, d) ◦K1 No 6 d ≥ 4

Q2

n ◦K1 No 6 d ≥ 4

J(n,m) ◦K2 No 7 d ≥ 4

H(n, d) ◦K2 No 7 d ≥ 4

Q2

n ◦K2 No 7 d ≥ 4

(J(n,m)⊠Kp)× (J(n,m) +H(n, d)) Yes 7 d ≥ 6

(J(n,m)⊠Kp)× (H(n, d)⊠Kn) Yes 8 d ≥ 4

(J(n,m)×H(n, d)) ◦K2 No 9 d ≥ 6

((J(n,m)×H(n, d))⊠Kp) ◦K1 No 10 d ≥ 6

((J(n,m)×H(n, d))⊠Kp) ◦K2 No 11 d ≥ 6

Analysis of the above table. (i) By Theorem 1.8, Theorem 1.9, Theorem 2.2,

and Remark 2.7. the graphs J(n,m) ⊠ Kp, H(n, d) ⊠ Kp, and Q2

n ⊠ Kp have exactly four

distinct D-eigenvalues. Again by Theorem 1.8, Theorem 1.9, and Theorem 1.10. the graph

J(n,m) × H(n, d) has exactly four distinct D-eigenvalues as both the graphs J(n,m) and
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H(n, d) has zero as a D-eigenvalue.

(ii) Note that to apply Theorem 1.11. and Theorem 2.4, the graph G has to be transmis-

sion regular. From Theorem 1.8, Theorem 1.9, Theorem 2.2, and Theorem 1.11 the graphs

J(n,m) ◦K1, H(n, d) ◦K1, Q
2

n ◦K1 have exactly 6 distinct D-eigenvalues. Also by Remark

2.5. the graphs J(n,m)◦K2, H(n, d)◦K2, and Q2

n◦K2 have exactly 7 distinct D-eigenvalues.

(iii) Again note that by Theorem 2.6. and Remark 2.7, the graphs G ⊠ Kp and (G ⊠

Kp)⊠Kp have the same number of distinct D-eigenvalues. In this way one can calculate the

number of distinct D-eigenvalues of the remaining graphs. Also from Theorem 1.1. one can

get the restriction on the diameters of the above graphs.

(iv) In [1] the authors have asked “Are there connected graphs other than distance

regular graphs with diameter d and having less than d + 1 distinct D-eigenvalues ?”. For a

partial answer to this question we refer to the graphs in the above table. For any distance

regular graph G, G ◦ K1 and G ◦ K2 are not distance regular graph as they loose their

regularity. In fact one verifies that none of the graphs given in the table are distance regular

graphs.
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[24] D. Stevanović and G. Indulal. The distance spectrum and energy of the compositions of

regular graphs. Appl. Math. Lett., 22:1136-1140, 2009.
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