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Abstract. In this paper, we invoke the theory of generalized inverses and the minus partial order on the study of

regular matrices over a commutative ring to define rank–function for regular matrices and dimension–function for

finitely generated projective modules which are direct summands of a free module. Some properties held by the rank

of a matrix and the dimension of a vector space over a field are generalized. Also, a generalization of rank–nullity

theorem has been established when the matrix given is regular.
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1. Introduction and Preliminaries. Given a matrix A and a vector space V over a field

F, the notion of rank of matrix A (rank(A)) and dimension of vector space V (dim(V )) are

well defined and folklore in the literature. Similarly, the rank condition for solvability of a

linear system and addition theorem for the dimension are well-known. Whenever we consider

the matrices over a commutative ring, not necessarily a field, the known definition of rank

and dimension do not hold good. The determinantal rank of a matrix (the size of largest

submatrix with nonzero determinant), denoted by ρ(·), is widely used as an alternative notion

for the rank of a matrix. In [3], [11] and [17], some attempts have been made to provide some

necessary conditions and some sufficient conditions for the solvability of linear system Ax= b

over a commutative ring with identity. For the purpose, McCoy rank of a matrix has been

introduced.

Throughout this paper, A denotes a commutative ring with identity, E is the set of all

nonzero idempotents from A , and the matrices are with entries from A , unless indicated

otherwise. Let A be an m× n matrix over A .

DEFINITION 1.1. McCoy rank of an m× n matrix A, denoted by ρM(A), is the largest

integer ‘t’ such that Ann(Dt(A)) = 0, where Dt(A) is the ideal in A generated by t× t minors
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of A, and Ann(Dt(A)) = {a ∈ A | ad = 0 ∀ d ∈ Dt(A)}.

Note that ρM(A)≤ ρ(A), and equality holds if A is a field.

In an attempt to find a necessary and sufficient condition for the solvability of linear

system Ax = b over a commutative ring with identity, the author in [7] confined himself to

the case when the matrix A is regular and proved that the linear system is consistent if and

only if ρ(eA) = ρ(e(A : b)) for every nonzero idempotent in the ring. Here (A : b) is the

matrix obtained by augmenting an additional column b to A. This study leads to introducing

an integer valued rank–function of a matrix, defined on the set of nonzero idempotents of

the ring. In this article, we further study the rank–function and then define the dimension–

function which inherits some of the known properties of rank and dimension.

In the following, we recall some basics related to the theory of generalized inverses and

minus partial order on the class of regular matrices.

Given an m×n matrix A over A , the notation C (A) represents the submodule generated

by the columns of A in A m. Matrix A is said to be a regular matrix if there exists a matrix

G such that AGA = A, in which case G is said to be a generalized inverse (g-inverse) of A.

An arbitrary generalized inverse of A is denoted by A−. For r ≤ min(m,n), Cr(A) denotes

the r-th compound matrix of A. The notation ⊗ represents tensor product and ∧r represents

r-th exterior power. Given a ∈ A , [a] represents the ideal generated by a in A . Readers are

referred to [11] for the fundamentals of rings and modules, referred to [14] for the basics of

determinants, [1, 8, 16] for the generalized inverse, and [4, 9, 12, 13, 15] for the minus partial

order.

2. Rank–Function and Dimension–Function. First, we recall some developments in

the theory of generalized inverses of a matrix over a commutative ring A , relevant to the

present article, before studying some properties of rank–function and define dimension–

function.

2.1. Regular Matrices and Minus Partial Order. In characterizing the regular ma-

trices, some properties of compound matrices were found useful (for example, see [2]). It

has been noted in [6] that if Cr(A) – the r-th compound matrix (r-th exterior power) of an

m× n matrix A, has determinantal rank one and there exists an idempotent e such that [e] is

the same as the ideal generated by entries of A as well as the ideal generated by the entries

of Cr(A), then the matrix A has a generalized inverse. A regular matrix with such a special

property, called a Rao–regular matrix, was introduced in [6]. The definition of the same has

been reworded, in terms of ideals, in the following.

DEFINITION 2.1 (Rao–regular Matrix). A matrix A over A is a Rao–regular matrix

if there exists an idempotent e in A such that D1(A) = [e] = Dt(A), where t is ρ(A) and [e]

represents the ideal generated by e in the ring. The idempotent e is called the Rao–idempotent
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of Rao–regular matrix A.

In fact, a Rao–regular matrix is regular and ρM(A) = ρ(A) over the subring e⊗A . Con-

veniently, we consider zero matrix is a Rao–regular matrix with its Rao–idempotent equals

to 0.

LEMMA 2.2. Let A be an m× n matrix with determinantal rank t. Then the following

assertions hold.

(i) If A is a Rao–regular matrix over A , then it is a regular matrix.

(ii) Matrix A with determinantal rank one is Rao–regular if and only if it is regular.

(iii) For any idempotent f in A , if A is Rao–regular then so is B = f A.

Proof. The idempotent e in A satisfying D1(A) = [e] = Dt(A), is the Rao–idempotent

of the matrix A as defined in [6]. So, there exists a linear combination of elements of Dt(A)

such that ∑IJ cJ
I |A

I
J| = e, where |AI

J| ∈ Dt(A) is a t × t minor obtained by the submatrix with

rows determined by t-element subset I of {1,2, . . . ,m} and columns determined by t-element

subset J of {1,2, . . . ,n}. Further, we have (∑IJ cJ
I |A

I
J|)A = A and the matrix G = (g ji) defined

by g ji = ∑IJ cJ
I

∂
∂ai j

|AI
J| is a generalized inverse of A, as proved in the Theorem 1 of [6].

The part (ii) follows easily from the definition of Rao–regular matrix and the construction

of G given by g ji = ci j.

For B = f A, we have D1(A) = [e] = Dt(A) implies D1(B) = [ f e] = Dt(B). So, (iii)

follows.

With the clear understanding that an idempotent e in A such that D1(A) = [e] = Dt(A) is

the Rao–idempotent of the matrix A, as defined in [6], we have the following decomposition

theorem. For the proof, we refer to [6].

THEOREM 2.3 (Decomposition Theorem). An m× n matrix A with determinantal rank

r over A is regular if and only if there exist idempotents e0,e1,e2, . . . ,er in A such that

(i) e0 + e1 + e2 + · · ·+ er = 1 and eie j = 0 for 0 ≤ i, j ≤ r and i 6= j,

(ii) each Ai = eiA, 0 ≤ i ≤ r is either a zero matrix or else a Rao–regular matrix with

determinantal rank i satisfying D1(Ai) = [ei] = Di(Ai).

Further, the above decomposition is unique.

REMARK 2.4. From the properties of ei given in the Theorem 2.3, it is clear that e0A = 0

and for any idempotent e∈A , we get ρ(eA) =maxi ρ(eeiA). Also, eA is Rao–regular implies

that e = eei for some ei given in (i) of the Theorem 2.3. For any g-inverse A− of A, the

decomposition for AA− (similarly, for A−A) is obtained by replacing Ai with AiA
− (similarly,

with A−Ai) in the decomposition given for A in the theorem.

REMARK 2.5. Let E be the set of all nonzero idempotents from A . An atom in E is an
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element e in that set such that e f = f for some f ∈ E implies f = e. In other words, the atoms

are the smallest elements in E with reference to the partial order defined by g < h if gh = g.

If E has only finitely many idempotents (like in the case of a ring satisfying descending chain

condition), we find finitely many atoms e1,e2, . . . ,ek in E which are orthogonal to each other

(i.e., eie j = 0 for i 6= j), such that e1 + e2 + · · ·+ ek = 1. In such a case, we can rephrase the

Theorem 2.3 as

A is regular if and only if Ai = eiA is Rao–regular, for all atoms ei from E.

If A has no nontrivial idempotents (i.e., the only idempotents in A are 0 and 1), then a

nonzero matrix A is regular (Rao–regular) if and only if D1(A) = A = Dt(A), where t is

ρ(A) - the determinantal rank of A.

THEOREM 2.6 (Theorem 2.2, [7]). Let A be an m×n regular matrix with determinantal

rank r and let B,C and D be matrices of size m× p, q× n, and q× p, respectively. For

T =

(

A B

C D

)

, the following statements are equivalent.

(i) ρ(eA) = ρ(eT ) for every idempotent e ∈ A .

(ii) Matrix equations AX = B,YA = C are solvable and D = CA−B is invariant under the

choices of A−.

In [7], the above theorem lead the author to obtain a rank condition for the solvability of

linear system Ax = b and further to define rank–function of a matrix. For E = {e ∈ A |e2 =

e 6= 0}, the rank–function of a matrix A is defined in the following.

DEFINITION 2.7 (Rank–Function [7]). The rank–function of an m×n matrix A, denoted

by RA, is an integer valued function RA : E → Z such that RA(e) = ρ(eA) for all e ∈ E.

If the ring A has no nontrivial idempotents, then E = {1} and RA coincides with well-

known determinantal rank ρ(A). The following property of rank–function was noted in [7].

(R1) Given an m× n regular matrix A over A , a linear system Ax = b is solvable if and

only if RA =RT , where T = (A : b) is a augmented matrix A with column vector b.

So, we have

(R2) Given an m× n regular matrix A and b ∈ A m, we have b /∈ C (A) if and only if

RA(e)<RT (e) for some e ∈ E , where T = (A : b).

Note that for every projective submodules P, Q such that P⊕Q = A m, there exists an

m×m projection (idempotent) matrix A such that C (A) = P and C (I−A) =Q. Similarly, for

a regular matrix A of size m×n with a generalized inverse G we have that C (A) = C (AG) is

a projective submodule and C (AG)⊕C (I −AG) = A m. So, the properties (R1) and (R2) of

rank–function invites us to define a dimension–function for a projective submodule of A
m.
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From the equivalence of (i) and (iv) given in the Theorem 2.9, we are convinced that the

theory of ‘minus partial order’ has an important role in studying the properties of dimension–

function to be defined. In the following, we have a definition of minus partial order on the

class of regular matrices, adopted from [5].

DEFINITION 2.8 (Minus Partial Order). The minus partial order denoted by ≤− is a

relation on the class of regular matrices defined by B ≤− A if there exists a B− such that

B−A = B−B(2.1)

AB− = BB−.(2.2)

The following theorem is well-known for the matrices over a field and readers are re-

ferred to [12] for the proof. In general, when the matrices are regular over a commutative

ring with identity, the techniques used in [12] fails to prove the theorem, but it has been

proved with different techniques in [10].

THEOREM 2.9. Let A,B,C ∈ A m×n such that A is regular and A = B+C. Then the

following statements are equivalent.

(i) B is regular and B ≤− A.

(ii) B is regular and {A−} ⊆ {B−}.

(iii) B,C are regular and both B,C ≤− A.

(iv) C (A) = C (B)⊕C (C) (‘Range Summability’ condition).

COROLLARY 2.10. Let A be an m×n regular matrix over A . Then we have the follow-

ing.

(i) B ≤− A if and only if eB ≤− eA for all idempotents e of A .

(ii) If Ai is any component of decomposition as given in the Theorem 2.3, then Ai ≤
− A.

Proof. Since (eA)A−(eA)= eA for every idempotent e∈A and every generalized inverse

A− of A, the proof follows immediately from Theorem 2.9.

The following theorem is an interesting case of Theorem 2.6 with A = B+C and D = 0.

Also, it helps in verifying the rank additive property for the Rao–regular matrices A,B,C

satisfying A = B+C and B,C ≤− A.

THEOREM 2.11. Let A be an m×n regular matrix and A = B+C. For T =

(

A B

C 0

)

,

the following statements are equivalent.

(i) B and C are regular and B ≤− A,C ≤− A.

(ii) RA =RT .

(iii) AX = B and YA =C are solvable and CA−B = 0 for every choice of A−.
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(iv) B and C are regular and {A−} ⊂ {B−}∩{C−}.

Proof. (i) ⇒ (ii). Let B− and C− be any g-inverses of B and C, respectively, such that

(2.3) B−A = B−B, AB− = BB−

(2.4) C−A =C−C, AC− =CC−.

Note that P =

(

I 0

−CC− I

)

and Q =

(

I −B−B

0 I

)

are invertible matrices. Now using

(2.3) and (2.4), we get PTQ =

(

A 0

0 0

)

. Therefore RA =RT .

(ii) ⇒ (iii) follows immediately from (i) ⇒ (ii) of Theorem 2.6.

(iii) ⇒ (iv). Since AX = B and YA =C are solvable, we have

(2.5) AA−B = B

(2.6) CA−A =C

for every choice of A−. Now substitute CA−B = 0 in (2.5) to get BA−B = B for all A− and

similarly, substitute the same in (2.6) to obtain CA−C =C for all A−. Thus, (iii) ⇒ (iv).

(iv) ⇒ (i) follows from (ii) ⇒ (i) of Theorem 2.9.

For a regular matrix A such that A = B+C, T =

(

A B

C 0

)

and S =

(

0 B

C 0

)

, we

have

(R3) B,C ≤− A if and only if RA = RT = RS.

REMARK 2.12. Note that RA =RS need not imply the rank–additive property, as known

in the literature i.e., RA = RB +RC. For example, choose A =

(

1 0

0 1

)

, B =

(

4 0

0 4

)

and C =

(

3 0

0 3

)

over Z6, the commutative ring of integers modulo 6. Clearly, the property

(R3) holds but RA(1) = 2 6= 4 = RB(1)+RC(1).

The rank–additive property has been addressed in [10], when the matrices A,B are Rao–

regular. However, we will establish rank additive property for Rao–regular matrices, inde-

pendently, as a consequence of Theorem 2.11 and proceed to establish rank–additive property
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in the class of regular matrices in terms of rank–function.

LEMMA 2.13. Let B and C be Rao–regular matrices of size m× n and with same Rao–

idempotent. For T =

(

B 0

0 C

)

, we have ρ(T ) = ρ(B)+ρ(C), in which case T is also a

Rao–regular matrix.

Proof. Clearly, ρ(T )≤ ρ(B)+ρ(C). We will prove the equality, whenever the matrices

B and C are Rao–regular with same Rao–idempotents. Let ρ(B) = p and ρ(C) = q. Since

B and C are Rao–regular, D1(B) = Dp(B) = [e] = D1(C) = Dq(C) for some idempotent e ∈

A . Clearly, ebα = bα and ecβ = cβ , for all bα ∈ Dp(B) and cβ ∈ Dq(C). Now for r =

p+ q, consider any r × r submatrix T1 of T in the form

(

B1 0

0 C1

)

, where B1 and C1

are appropriate submatrices of B and C, respectively. Since ρ(B) = p and ρ(C) = q, the

determinant |T1| is zero unless B1 is of size p× p and C1 is of size q× q. So, let B1 and

C1 be of size p × p and q× q, respectively, and |T1| = bα cβ for bα = |B1| ∈ Dp(B) and

cβ = |C1| ∈ D1(C).

Suppose |T1|= 0 for every choice of B1 and C1. Since Dp(B) = [e], there exists a linear

combination of elements of Dp(B) which equals to e, viz. ∑aαbα = e. Now |T1| = 0 for

every choices of B1 and C1 implies that bα cβ = 0 for all bα ∈ Dp(B) and cβ ∈ D1(C). So,

(∑aαbα)cβ = 0. In other words, ecβ = 0 for all cβ ∈ Dq(C), a contradiction. Thus, ρ(T ) =

ρ(B)+ρ(C).

Note that the product of any two linear combinations of the elements, one from Dp(B)

and the other from Dq(C), produces a linear combination of Dr(T ). Now choose the lin-

ear combinations that equal to e, we get a linear combination of Dr(T ) which equals to e.

Therefore T is Rao–regular.

Now, we have the following

(R4) If A,B,C are Rao–regular matrices with same Rao–idempotents, and A=B+C, then

B,C ≤− A if and only if ρ(A) = ρ(B)+ρ(C). In fact, we have

RA =RB +RC.

Now with reference to given matrices M1,M2, . . .Mk, we define a typical characteristic

function on the set of idempotents E = {e ∈ A : e2 = e} which is useful in establishing

rank–additive property in the case of regular matrices.

DEFINITION 2.14. Given an m× n matrix M, we define

χM : E →{0,1}

such that χM(e) = 1, if eM is either a zero matrix or else it is a Rao–regular matrix with

Rao–idempotent e, and χM(e) = 0, otherwise. Further, χ(M1,...,Mk)(e) = χM1
(e) · · ·χMk

(e).
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Let A,B,C be regular matrices and A = B+C. From (iii) of Lemma 2.2 and Theorem

2.3, it is clear that there exists f1, f2, . . . fk ∈ E such that (i) fi f j = 0 for i 6= j, (ii) ∑i fi = 1,

and (iii) fiA, fiB and fiC are Rao–regular. Note that B ≤− A if and only if fiB ≤− fiA ≤− A

for all i. So from (R4), we have

(R5) Let A,B,C be regular matrices such that A = B +C. Then B ≤− A if and only

if χ(A,B,C)(e)RA(e) = χ(A,B,C)(e)RB(e) + χ(A,B,C)(e)RC(e) for all e ∈ E . In other

words,

B ≤− A ⇔ χ(A,B,C)RA = χ(A,B,C)RB + χ(A,B,C)RC.

LEMMA 2.15. Let A and B be any regular matrices of same size. Then we have the

following.

(R6) RA =RB if and only if χ(A,B)RA = χ(A,B)RB.

Proof. Since A,B are regular, from (iii) of Lemma 2.2 and Theorem 2.3, we find idem-

potents f1, f2, . . . fk ∈ E such that (i) fi f j = 0 for i 6= j, (ii) ∑i fi = 1, and (iii) fiA and

fiB are Rao–regular. Note that |D| = | f1D|+ | f2D|+ · · ·+ | fkD| for every square matrix

D and therefore ρ(C) = maxi ρ( fiC) for any C. So, we have ρ(eC) = maxi ρ( fieC) =

maxi

(

χ(A,B)( fi)ρ( fieC)
)

=maxi

(

χ(A,B)( fie)ρ( fieC)
)

for C = A,B and ‘only if’ part follows.

As ‘if part’ is trivial, the lemma is proved.

The rank–function defined above inherits the following property from well-known deter-

minantal rank.

(R7) RAB ≤ {RA,RB}. Further, RAA− =RA−A =RA, where A− is any g-inverse of A.

2.2. Dimension–Function and its properties. Let P be a finitely generated projective

module and be a direct summand of A m for some m. An idempotent e ∈ A is said to be the

supporting idempotent of P, if the ideal generated by 1− e is the annihilator of P i.e.,

[1− e] = {x ∈ A : xp = 0 ∀ p ∈ P}.

It is well-known that a matrix A ∈ A m×n is regular if and only if C (A) is a direct summand

of A m. In this case, C (A) = C (AA−) is a projective module. So, all the projective modules

we consider in this paper are finitely generated and direct summand of A
m, unless indicated

otherwise.

LEMMA 2.16. Given a finitely generated projective module P in A m, supporting idem-

potent of P exists and it is unique.

Proof. Given a projective module P, consider a projection matrix E (an idempotent

matrix) such that C (E) = P. It is clear that the sum of Rao–idempotents of the nonzero sum-

mands in the unique decomposition, as given in Theorem 2.3, is the supporting idempotent

of P.
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Now, we define dimension–function for a submodule of A m as similar to the case of

rank–function for the matrices. The notation ρ , which denotes the determinantal rank of a

matrix, is used in the following definition for the reason that the determinant function and the

exterior power are related.

DEFINITION 2.17 (Dimension–Function). For a finitely generated submodule M of A m,

let ρ(M) be the largest positive integer r such that ∧r(M) 6= (0). The dimension–functionDM

for a module M is defined by

(2.7) DM : E → Z

such that DM(e) = ρ(eM) for all e ∈ E, where eP =< e >⊗P.

From the Definition 2.17, it is clear that DM = RA for any choice of matrix A such that

C (A) = M. Now from (R1) and (R2), we have the following theorem.

THEOREM 2.18. Let P,Q be such that P⊕Q = A m and b ∈ A m. Then the following

assertions hold.

(D1) DP(e)≤DM(e) for all e ∈ E, where M is a module generated by P and b.

(D2) b ∈ P if and only if DP =DM .

Analogous to a Rao–regular matrix, we introduce ‘strong projective module’.

DEFINITION 2.19 (Strong Projective Module). A nontrivial projective module P is said

to be a strong projective module if the supporting idempotent of ∧rP is the same as that of P,

where r is the largest integer for which ∧rP 6= (0). We consider P = (0) as a trivial case of

strong projective module with 0 as its supporting idempotent.

Note that ∧rC (A) =C (Cr(A)) (where Cr(A) is the r-th compound matrix or r-th exterior

power of A) and therefore, C (A) is strong projective module and direct summand of A
m if

and only if A is Rao–regular. In this case, the supporting idempotent of P is the same as the

Rao–idempotent of A. Now, we have the following theorem.

THEOREM 2.20. Let P⊕Q = A m and ρ(P) = k. Then there exist strong projective

modules P1,P2, . . . ,Pk with mutually orthogonal supporting idempotents such that ρ(Pi) = i,

unless Pi = (0), and P = P1 ⊕P2 ⊕·· ·⊕Pk.

Proof. Let E be an m×m idempotent matrix such that C (E) = P and C (E)⊕C (I−E)=

A m. Referring to Theorem 2.3, we have Rao–regular matrices E1,E2, . . . ,Ek with mutually

orthogonal Rao–idempotents e1,e2, . . . ,er such that E = E1 + E2 + · · ·+ Er. From (ii) of

Corollary 2.10, we have Ei ≤
− E and from Theorem 2.9, it is easily proved that P =C (E1)⊕

C (E2)⊕·· ·⊕C (Ek). The cases in which Ei = 0 and C (Ei) = (0), for any i, are conveniently

ignored. Since Ei is Rao–regular, we have C (Ei)(1 ≤ i ≤ k) are strong projective module

with desired properties.
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Analogous to the rank–additive property in the case of Rao–regular matrices, we have

the following theorem for strong projective modules.

THEOREM 2.21. Let P,Q,R be strong projective modules with the same supporting

idempotents and be direct summands of A m. Then

(D3) If P = Q⊕R, then DP =DQ +DR

(D4) Particularly, if P = A m then DQ +DR = m, a constant function on E.

Proof. For projective modules P,Q,R satisfying P = Q⊕R and any x ∈ A m, consider

the unique decomposition x = q+ r+ z, where q ∈ Q, r ∈ R, z ∈ P′ and P⊕P′ = A
m. Now,

identify the idempotent matrices E,F,G satisfying E(x) = q+ r, F(x) = q and H(x) = r.

Clearly, C (E) = P, C (F) = Q, C (G) = R, E = F +G and FG = GF = 0. So, F,G ≤− E .

Since, P,Q,R are strong projective modules with the same supporting idempotents, we have

that E,F,G are Rao–regular matrices with same Rao–idempotents. Now, (D3) follows from

(R4).

(D4) is immediate from (D3).

For finitely generated projective modules P,P1,P2, ...,Pk, being direct summands of A m,

define

χP : E →{0,1}

such that χP(e) = 1 if eP is either a zero module or a strong projective module with its

supporting idempotent equals to e, and χP(e) = 0, otherwise. Further,

χ(P1,...Pk)(e) = χP1
(e)χP2

(e) · · ·χPk
(e) for all e ∈ E.

From Theorem 2.20, it can be seen that every projective module is a direct sum of strong

projective modules with mutually orthogonal support. Now, from the associations between

regular matrices, Rao–regular matrices, projective modules and strong projective modules,

we obtain the following result.

THEOREM 2.22. Let P,Q,R,S be projective modules and be direct summands of A
m.

(D5) If P = Q⊕R, then χ(P,Q,R)(DQ +DR) = χ(P,Q,R)DP.

(D6) If P = Q⊕R = Q⊕ S, then DR =DS

(D7) If P,Q,P+Q and P∩Q are direct summands of A m, then

χ(P,Q,P+Q,P∩Q)D(P+Q) = χ(P,Q,P+Q,P∩Q)(D(P)+D(Q)−D(P∩Q)).

Proof. There exist idempotent matrices E,F,G such that E = F +G, F,G ≤− E and

C (E) = P, C (F) = Q,C (G) = R, as discussed in the proof of Theorem 2.21. So, (D5)

follows from (R5).
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If P = Q⊕R = Q⊕ S, from (D5) we have χ(P,Q,R,S)DR = χ(P,Q,R,S)DS. Now, (D6) is

proved in the lines similar to that in the proof of (R6) given in the Lemma 2.16.

Note that the modules U and V are direct summands of A m and U ⊆ V implies that U

is a direct summand of V . This can be verified easily from (i) ⇒ (iv) of Theorem 2.9, by

considering the projections E on U , F on V and then EF ≤− F . Now, (D7) follows from the

fact that P,Q are direct summands P+Q and P∩Q is direct summand of each of P,Q,P+Q.

Now, we prove the rank–nullity theorem when the matrix given over a commutative ring

is regular.

THEOREM 2.23 (Rank–Nullity Theorem). Let A be an m×n regular matrix over A and

K be the null–space (kernel) of A. Then

(D8) χ(A)χK (RA +DK ) = n.

Proof. If A− is any g-inverse of A, the kernel K of A is given by C (I−A−A). We know

that A−A, (I−A−A)≤− I and therefore from (R5) we get

χ(A−A, I−A−A)RA−A + χ(A−A, I−A−A)R(I−A−A) = n.

(D7) follows from the fact that χA−A, = χA, χ(I−A−A) = χK , RA−A = RA, and R(I−A−A) =

DK .

2.3. Examples. Now, we shall conclude this paper with examples demonstrating vari-

ous results presented in the paper. Consider a 2× 2 matrix A =

(

1 2

0 3

)

over A = Z6.

Clearly, ρ(A) = 2 as |A| = 3. The ideal generated by 1× 1 minors denoted by D1(A) is A ,

but D2(A) is the ideal generated by 3 in A . Since Ann(D2(A)) = Ann([3]) = [4] 6= (0), the

McCoy rank of the matrix ρM(A) = 1.

The matrix A is regular, as it is an idempotent matrix.

The Rao–decomposition of the matrix, as given in Theorem 2.3 is

(

1 2

0 3

)

=

(

4 2

0 0

)

+

(

3 0

0 3

)

,

where e0 = 0, e1 = 4, e2 = 3.

The supporting idempotent of projective module P =C (A) = Span

{(

1

0

)

,

(

0

3

)}

is 1. The decomposition P = P1 ⊕P2, as desired in the Theorem 2.20, is given by the strongly

projective modules P1 = Span

{(

4

0

)}

and P2 = Span

{(

3

0

)

,

(

0

3

)}

with support-

ing idempotents 4 and 3, respectively.
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Note that E = {1, 3, 4}. For the regular matrix A, we have χA(1) = 0, χA(3) = 1= χA(4)

and χA = χP. The rank–function of A, denoted by RA, is defined by RA(1) =RA(3) = 2 and

RA(4) = 1. Further, DP =RA.

Note that B = I −A =

(

0 4

0 4

)

is a Rao–regular matrix with determinantal rank 1.

Clearly, I = A+B and A,B≤− I. As B satisfying χB(1) = 0, χB(3) = χB(4) = 1 and RB(1) =

RB(4) = 1, RB(3) = 0, the rank–nullity theorem is easily verified.
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