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Abstract. A real n×n matrix B is a P
+

0
-matrix if for each k ∈ {1, 2, . . . , n} every k×k principal

minor of B is nonnegative, and at least one k × k principal minor is positive. A digraph D is said

to have P
+

0
-completion if every partial P+

0
-matrix specifying D can be completed to a P

+

0
-matrix.

In this paper, some necessary and sufficient conditions for a digraph to have P
+

0
-completion are

discussed and those digraphs of order at most four that have P
+

0
-completion are singled out.
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1. Introduction. A real n× n matrix B is a

(i) P -matrix (P0-matrix ) if every principal minor of B is positive (nonnegative).

(ii) P+
0 -matrix, if for each k ∈ {1, 2, . . . , n}, every k × k principal minor of B is

nonnegative, and at least one k × k principal minor is positive.

(iii) Q-matrix if for every k ∈ {1, 2, . . . , n}, the sum Sk(B) of all the k×k principal

minors of B is positive.

Clearly, a P -matrix is a P+
0 -matrix, and a P+

0 -matrix is both a P0-matrix and a

Q-matrix.

A partial matrix M is a rectangular array of numbers in which some entries are

specified while others are free to be chosen. A completion of M is a matrix obtained

by assigning numbers to the unspecified entries in M .

For a class Π of matrices (e.g., P -, P0- or Q-matrices) a partial Π-matrix is one

whose specified entries satisfy the required properties of a Π-matrix. For example,

a partial P -matrix (P0-matrix ) has all fully specified minors positive (nonnegative),

and for a partial Q-matrix M , Sk(M) > 0 for each k for which all k × k principal

submatrices are fully specified. A partial P+
0 -matrix M is a partial matrix in which

all fully specified principal minors are nonnegative and Sk(M) > 0 for every k =

1, 2, . . . , n, whenever all k×k principal submatrices are fully specified. A Π-completion

of a partial Π-matrix is a Π-matrix obtained by some choices of the unspecified entries.
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Graphs and digraphs have played an important role in the study of matrix com-

pletion problems. In many cases, the positions of the specified entries determine the

existence of completions of partial matrices of a given class.

A pattern for n×n partial matrices is a subset of N×N , where N = {1, 2, . . . , n}.

A partial matrix specifies a pattern if its specified entries lie exactly in those positions

listed in the pattern. Patterns are usually specified by digraphs. An n × n partial

matrix M is said to specify a digraph D on vertices {v1, . . . , vn} if (vi, vj) is an arc

in D if and only if the entry mij of M is specified.

For a class Π of matrices, the (combinatorial) Π-matrix completion problem at-

tempts to study the digraphs D having the property that any partial Π-matrix spec-

ifying D has a Π-completion. Such a digraph D is then said to have Π-completion.

For an exposition in matrix completion problems, see the survey articles [7] and [8].

The completion problems for the classes of P - and P0-matrices have been studied by a

number of researchers (see [2, 3, 5, 8, 10], for example). DeAlba et al. have discussed

the Q-matrix completion problem in 2009 in their paper [4].

1.1. Digraphs. In this paper, we will use commonly used graph theoretic terms

which can be found in [1], [6] or any other standard book. However, in our discussion,

a directed graph or digraph D is a pair (V,A), where V is a finite nonempty set

of objects, called vertices, and A a set of ordered pairs of vertices, called arcs or

directed edges. The vertex set and the arc set of D are denoted by V (D) and A(D),

respectively.

Note that the above definition allows an arc x = (u, u) in the arc set of a digraph

D, which is called a loop at the vertex u. Several works on matrix completion problems

used marked digraphs, i.e., digraphs with some vertices marked instead of considering

loops at those vertices (see [2, 8]). The current definition is in use in some recent

works on matrix completion problems, including [4].

Sometimes, we simply write v ∈ D (resp. (u, v) ∈ D) to mean v ∈ V (D) (resp.

(u, v) ∈ A(D)). The order of D, denoted by |D|, is the number of vertices of D. If

u 6= v and x = (u, v) is an arc in D, we say that x is incident with u and v; u is

adjacent to v; and v is adjacent from u. The outdegree (resp. indegree) of a vertex v

in D is the number of vertices of D adjacent from (resp. to) v.

It is customary to represent a digraph by a diagram with nodes representing the

vertices and directed line segments (or arcs) representing the arcs of the digraph.

A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D) and A(H) ⊆ A(D).

Further, H is an induced subdigraph (induced by V (H)) if A(H) =
(
V (H)×V (H)

)
∩

A(D), and is a spanning subdigraph if V (H) = V (D). The complement of D is the

digraph D, where V (D) = V (D) and (v, w) ∈ A(D) if and only if (v, w) /∈ A(D). For
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w ∈ V (D) the subdigraph of D induced by V (D) \ {w} is denoted by D − w.

Two digraphs D1 = (V1, A1) and D2 = (V2, A2) are isomorphic if there is a

bijection φ : V1 → V2 such that A2 = {(φ(u), φ(v)) : (u, v) ∈ A1}. An unlabelled

digraph is an equivalence class of isomorphic digraphs. Any particular member of an

unlabelled digraph is referred as the digraph obtained by a labelling of the unlabelled

digraph.

Let D̂ and Ĥ be unlabelled digraphs. We say Ĥ is an (unlabelled) subdigraph

of D̂, if some member of Ĥ is a subdigraph of a member of D̂, i.e., if the digraph

obtained by a labelling of Ĥ is a subdigraph of the digraph obtained by some labelling

of D̂.

The digraph D is symmetric if (v, w) ∈ A(D) implies (w, v) ∈ A(D). For a

(simple) graph G with vertex set V and edge set E, we define the digraph associated

to G to be the symmetric digraph with vertex set V and the arc set A = {(u, v) :

either u = v or u is adjacent to v in G}. Note that the digraph associated to a graph

includes all loops. We call the digraph associated to the complete graph Kn on n

vertices the complete symmetric digraph (or simply the complete digraph) of order n,

and denote it by K∗

n. A digraph D is said to be asymmetric if whenever (v, w) ∈ A(D)

and v 6= w we have (w, v) /∈ A(D). Note that an asymmetric digraph may have loops.

A (directed) cycle C of length k (or a k-cycle) in a digraph D is a subdigraph with

(distinct) vertices v1, v2, . . . , vk and with arcs (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1).

Note that a 1-cycle is a loop, and a 2-cycle consists of a pair of opposite arcs.

Let π be a permutation of V . A permutation digraph is a digraph of the form

Dπ = (V,Aπ) where Aπ = {
(
v, π(v)

)
: v ∈ V }. Clearly, each component of a

permutation digraph is a cycle. A permutation subdigraph of order k of a digraph D

is a permutation digraph that is a subdigraph of D of order k. A digraph D of order

n is stratified if D has a permutation subdigraph of order k for every k = 2, 3, . . . , n.

A digraph D is weakly stratified if for each k = 2, 3, . . . , n, either

(i) D has a permutation subdigraph of order k, or

(ii) for each v ∈ V (D) the digraph D− v has a permutation subdigraph of order

k − 1.

In this paper, we study the (combinatorial) P+
0 -matrix completion problem. The

property of being a P+
0 -matrix (or a Q-matrix) is not inherited by principal submatri-

ces, though it is preserved under similarity and transposition. This fact distinguishes

the P+
0 - and Q-matrix completion problems from the completion problems of several

other classes of P0-matrices.
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2. Partial P+
0 -matrices and the P+

0 -completion problem. Recall that a

partial P+
0 -matrix is a partial matrix M in which all fully specified principal minors

are nonnegative and Sk(M) > 0 for every k ∈ {1, 2, . . . , n}, whenever all k×k principal

submatrices are fully specified.

Let M be a partial P+
0 -matrix. If all 1×1 principal submatrices (i.e., all diagonal

entries) in M are specified, then trace(M) > 0. If for some k ≥ 2 all k × k princi-

pal submatrices are fully specified, then M is fully specified (and therefore M is a

P+
0 -matrix). Thus, the following proposition which provides a more useful character-

ization of a partial P+
0 -matrix is immediate.

Proposition 2.1. A partial matrix M is a partial P+
0 -matrix if and only if

exactly one of the following holds:

(i) At least one diagonal entry of M is unspecified, and each fully specified prin-

cipal minor of M is nonnegative.

(ii) All diagonal entries are specified and nonnegative, with at least one of them

positive; at least one off-diagonal entry is unspecified and each fully specified

principal minor of M is nonnegative.

(iii) All entries of M are specified and M is a P+
0 -matrix.

Definition 2.2. A partial P+
0 -matrix M is said to have a P+

0 -completion if

there is a completion of M which is a P+
0 -matrix. A digraph D is said to have P+

0 -

completion if every partial P+
0 -matrix specifying D has a P+

0 -completion. A graph G

is said to have P+
0 -completion, if the digraph associated to G has P+

0 -completion.

The P+
0 -matrix completion problem aims to classify all digraphs which have P+

0 -

completion. To distinguish the P+
0 -completion problem from those of P0- and P -

matrix classes, we furnish the following example.

Example 2.3. For m,n ≥ 2 consider the graph G obtained by identifying a

vertex of Km with a vertex of Kn. Then, G is called a 1-chordal graph with two

maximal cliques Km and Kn [5]. It is known that for any m and n, G (i.e., the

digraph associated to G) has P -completion and P0-completion (see [8]). With an

appropriate labeling of vertices, a partial matrix specifying G is given by

M =




A11 A12 X

A21 a22 A23

Y A32 A33


 ,

where Aii are square, a22 is a scalar, and X and Y are fully unspecified. If M

is a partial P0-matrix, then a P0-completion, called the zero completion of M , is

obtained by putting X = Y = 0 (see [8]). Similarly, if M is a partial P -matrix,

then a P -completion, called the asymmetric completion of M , is obtained by putting

X = A12a
−1
22 A23 and Y = 0 (see [8]). However, these techniques do not work for the
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P+
0 -completion problem. Note that in case M is a partial P+

0 -matrix, a22 may be

zero. The zero completion of the partial P+
0 -matrix

M =




1 0 1 ? ?

1 0 0 ? ?

−1 1 0 0 −1

? ? 0 1 0

? ? 1 1 0




specifying the 1-chordal graph with two maximal cliques K3 is not a P+
0 -matrix, even

though the submatrices of M corresponding to the maximal cliques are P+
0 -matrices.

However, M has P+
0 -completions, e.g.,

B1 =




1 0 1 1 0

1 0 0 0 0

−1 1 0 0 −1

0 0 0 1 0

0 1 1 1 0



.

It will follow from Corollary 4.9 that for any 1-chordal graph G with two max-

imal cliques there is a partial P+
0 -matrix specifying G which does not have a P+

0 -

completion. Nevertheless, in case one of the cliques is K2, we have the following

positive result in a restrictive situation.

Theorem 2.4. Let M be a partial matrix specifying a 1-chordal graph with two

maximal cliques Kn and K2. If the principal submatrices of M corresponding to Kn

and K2 are P+
0 -matrices, then M can be completed to a P+

0 -matrix.

Proof. Without any loss of generality we assume that V (Kn) = {1, . . . , n} and

V (K2) = {n, n+ 1}. Thus, we can write

M =




A11 A12 X

A21 a22 a23
Y a32 a33


 ,

where X is (n− 1)× 1, Y is 1× (n− 1), and they are fully unspecified. Moreover, the

two principal submatrices specifying Kn and K2, viz.,

M1 =

[
A11 A12

A21 a22

]
and M2 =

[
a22 a23
a32 a33

]

are P+
0 -matrices. If a22 > 0, consider the asymmetric completion Â of M , i.e., one

obtained by setting X = A12a
−1
22 a23 and Y = 0. Then

det Â =
detM1 detM2

a22
> 0. (2.1)
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Let A be any principal submatrix of Â. That A has nonnegative determinant follows

from an equation similar to (2.1), if a22 is included in A, and from the fact that A

is block triangular, if a22 is excluded. Since M1 has a positive minor of order k for

1 ≤ k ≤ n, Â is a P+
0 -matrix.

On the other hand, if a22 = 0, consider the zero completion Â of M , i.e., one

obtained by settingX = 0 = Y . SinceM2 is a P
+
0 -matrix, a33 must be positive. Then,

we have det Â = a33 detM1 + detA11 detM2 > 0. That a principal minor given by

a principal submatrix A of Â is nonnegative follows from the determinant equality

when n-th row is present and because the principal submatrix is block diagonal when

n-th row is absent. Since M1 has a positive minor of order k for 1 ≤ k ≤ n, Â is a

P+
0 -matrix.

Unlike several other matrix completion problems, a P+
0 -completion of the princi-

pal submatrix corresponding to the specified diagonal positions of a partial P+
0 -matrix

does not provide a P+
0 -completion of the partial matrix. For example, consider the

partial P+
0 -matrix

M =




2 1 u 1

1 1

2
0 1

−1 v 0 x

1 1 y z


 ,

with u, v, x, y, z as unspecified entries. The principal submatrix M [{1, 2, 3}] of M

induced by the specified diagonal entries has a P+
0 -completion, e.g., one obtained by

putting u = 2, v = 0. However, for any completion of M we have detM [{1, 2, 4}] =

−1/2 and hence M cannot be completed to a P+
0 -matrix.

3. Digraphs having P+
0 -completion. We observe that if a digraph D omits

all loops, then D has P+
0 -completion. Indeed, a completion of a partial P+

0 -matrix

M specifying D can be obtained by assigning a sufficiently large value to each of the

diagonal entries.

A digraphD may not have P+
0 -completion even if the subdigraph of D induced by

the vertices at which D includes loops has P+
0 -completion. For example, the digraph

D1 in Figure 3.1 includes a loop at the vertex 1. The subdigraph induced by the vertex

1 has P+
0 -completion, being a complete digraph. However, the partial P+

0 -matrix

M =

[
0 0

0 z

]

specifying D1 does not have a P+
0 -completion.

The following example shows that a digraph may not have P+
0 -completion even
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b 2b1

Fig. 3.1. A digraph D1 that does not have P
+

0
-completion

if each of its components has P+
0 -completion.

Example 3.1. Consider the digraph D2 = K∗

2 ∪K∗

3 . The components K∗

2 and

K∗

3 of D2 have P+
0 -completion. However, the partial P+

0 -matrix

M =




1 0 ? ? ?

0 1 ? ? ?

? ? 0 0 0

? ? 0 0 0

? ? 0 0 0




specifying D2 does not have a P+
0 -completion, because for any completion of M the

last three rows are linearly dependent.

The following example shows that the property of having P+
0 -completion is not

inherited by the induced subdigraphs.

Example 3.2. The digraph D3 in Figure 3.2 has P+
0 -completion whereas its

subdigraph D0 induced by the vertices 1 and 2 does not have. To see this consider a

partial P+
0 -matrix

M =




d1 a12 u

v d2 −s

a31 s d3




specifying D3, where u, v,±s are the unspecified entries. Now, for t > 0 choose a

b
3

b

2

b

1
D3

b

2

b

1
D0

Fig. 3.2. D3 has P
+

0
-completion, but its induced subdigraph D0 does not have.

completion B(t) of M with |u| = |v| = |s| = t and with appropriate signs for u, v and

s so that a12v ≤ 0, a31u ≤ 0 and uvs > 0. Then, all 2 × 2 principal minors of B are
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nonnegative and B(2, 3) > 0. Further,

detB = t3 + p(t),

where p(t) is a polynomial in t of degree at most 2. Thus, B(t) is a P+
0 -matrix for

large values of t. On the other hand, the partial P+
0 -matrix

M0 =

[
0 0

? 1

]

specifying D0 does not have a P+
0 -completion.

Theorem 3.3. Suppose D 6= K∗

n is a digraph having P+
0 -completion and D̂ is a

spanning subdigraph of D. If D̂ has P0-completion, then D̂ has P+
0 -completion.

Proof. Let M̂ = [m̂ij ] be a partial P+
0 -matrix specifying D̂. Then, being a partial

P0-matrix, M̂ has a P0-completion B̂ = [âij ]. Let M = [mij ] be the partial matrix

specifying D defined by

mij =





m̂ij , if (i, j) ∈ A(D̂),

âij , if (i, j) ∈ A(D) \A(D̂), i 6= j,

max{1, âij}, if (i, j) ∈ A(D) \A(D̂), i = j.

Then, M is a partial P+
0 -matrix specifying D, and therefore has a P+

0 -completion B.

Clearly, B is a P+
0 -completion of M̂ .

For all digraphs D that we have examined, including the digraphs of order at

most 4, the following has been observed: if D has P0-completion and its complement

D is stratified, then D has P+
0 -completion. However, we do not know whether the

result is true in general.

4. Necessary conditions for P+
0 –completion. In this section, we present

some necessary conditions for a digraph to have P+
0 -completion.

Theorem 4.1. Let D 6= K∗

n be a digraph having P+
0 -completion. Then, every

proper induced subdigraph of D has P0-completion.

Proof. Let D be of order n and α be a proper subset of {1, 2, . . . , n}. Consider the

subdigraph Dα of D induced by α and let Mα be a partial P0-matrix specifying Dα.

We extend Mα to a partial matrix M specifying D by setting all remaining specified

off-diagonal entries as 0 and the remaining specified diagonal entries, if any, as 1.

Then, all fully specified principal minors of M are nonnegative, and M is a partial

P+
0 -matrix. Now, since D has P+

0 -completion, M can be completed to a P+
0 -matrix

B̂. Clearly, the principal submatrix of B̂ induced by α is a P0-completion of Mα.
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Fig. 4.1. Digraphs not having P0-completion

In [2], Choi et al. showed that any digraph which contains one of the (unlabelled)

digraphs in Figure 4.1 as an induced subdigraph does not have P0-completion. In

particular, these digraphs do not have P0-completion. Therefore, an immediate im-

plication of Theorem 4.1 is the following.

Corollary 4.2. Any digraph which contains one of the (unlabelled) digraphs in

Figure 4.1 as a proper induced subdigraph does not have P+
0 -completion.

That the converse of the Theorem 4.1 is not true can be seen from the following

example.

Example 4.3. Consider the digraph D4 in Figure 4.2. Each of the strongly

connected components of D4, being complete, has P0-completion. It follows from

[8, Theorem 5.8] that D4 has P0-completion. Consequently, each of the induced

subdigraphs of D4 has P0-completion. However, D4 does not have P+
0 -completion

(see Remark 4.6).

b
1

b
2

b

3
b

4

Fig. 4.2. The digraph D4 does not have P
+

0
-completion

Theorem 4.4. Let D be a digraph of order n that omits at least one loop. If D

has P+
0 -completion, then D is stratified.

Proof. Suppose D has P+
0 -completion. Let k ≥ 2, and assume D has no per-
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mutation subdigraph of order k. If M is the partial matrix that specifies D with all

specified entries zero, and B is a completion of M , then all k × k principal minors of

B are zero, so B is not a P+
0 -matrix. This implies that D must be stratified.

To see that the converse of Theorem 4.4 is not true, consider the digraph D5 in

Figure 4.3, which omits loop at the vertex 4. Though D5 is stratified, D5 does not

b
1

b
2

b

3
b

4

b
1

b
2

b

3
b

4

Fig. 4.3. The digraph D5 and its complement D5

have P+
0 -completion, in view of Corollary 4.2, since the subdigraph induced by the

vertices {1, 2, 3} does not have P0-completion (see Figure 4.1).

Theorem 4.5. Let D 6= K∗

n be a digraph of order n ≥ 2 that includes all loops

and has P+
0 -completion. Then D is weakly stratified.

Proof. Suppose for some k (2 ≤ k ≤ n) D has no permutation subdigraph of

order k and there is a vertex v in D such that D − v does not have a permutation

subdigraph of order k − 1. Let M = [mij ] be the partial matrix specifying D with

mvv = 1 and all other specified entries zero. Then for any completion B of M all

k × k principal minors of B are zero, and therefore, B is not a P+
0 -matrix.

Remark 4.6. The digraph D4 in Figure 4.2 includes all loops, and D4 is not

weakly stratified. Thus, D4 does not have P+
0 -completion.

The converse of Theorem 4.5 is not true which can be seen from the following

example.

b
1

b
2

b

3
b

4

b
1

b
2

b

3
b

4

Fig. 4.4. The symmetric 4-cycle C4 and its complement

Example 4.7. Consider the symmetric 4-cycle C4 (Figure 4.4). It is easy to see

that C4 is weakly stratified. To see that C4 does not have P+
0 -completion, consider
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the partial P+
0 -matrix

M =




0 0 x13 0

1 0 0 x24

x31 −1 1 1

1 x42 0 0




specifying C4. For a completion B of M the 3 × 3 principal minor B(1, 2, 3) of B

indexed by {1, 2, 3} is −x13. Similarly, B(1, 3, 4) = x13. Therefore, for B to be a P+
0 -

matrix, x13 = 0. However, this yields detB = 0. Thus, B cannot be a P+
0 -matrix.

Corollary 4.8. If a digraph D of order n ≥ 2 contains a vertex v with indegree

or outdegree n, then D does not have P+
0 -completion.

Proof. Clearly, v has either indegree or outdegree zero in D, and therefore v does

not lie on any cycle in D. Consequently, D does not have a spanning permutation

subdigraph, i.e., D is not stratified. Further, for any vertex u 6= v in D the digraph

D − u does not have a spanning permutation subdigraph. Hence, D is not weakly

stratified.

Corollary 4.9. A 1-chordal graph G with two maximal cliques and with all

loops does not have P+
0 -completion.

Proof. Let G be of order n and v be the vertex in G common to the maximal

cliques. Then, v has indegree as well as outdegree n in the digraph associated to G,

and the result follows from Corollary 4.8.

Corollary 4.10. Let D be a digraph of order n that includes all loops and has

P+
0 -completion. Then, D has a 2-cycle.

Proof. Since D has P+
0 -completion and D includes all loops, D must be weakly

stratified. Because D does not contain any loop, D has a permutation subdigraph of

order 2 only if it has a 2-cycle.

Remark 4.11. It is known that any asymmetric digraph has P0-completion; see

for example [2, Theorem 2.2]. In contrast, a maximal asymmetric digraph with all

loops does not have P+
0 -completion, since the complement of such a digraph does not

have a 2-cycle.

5. Classification of small digraphs as to P+
0 -completion. In this section,

we apply the results in the previous sections to classify the digraphs of order at most

four that include all loops as to P+
0 -completion.

Any matrix which is permutation similar to a P+
0 -matrix is a P+

0 -matrix. There-

fore, if a digraph D has P+
0 -completion, then any digraph which is isomorphic to D
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has P+
0 -completion, that is, any digraph obtained by a labelling of the unlabelled

digraph associated to D has P+
0 -completion.

The nomenclature of the digraphs considered in the sequel is as per their order in

the atlas in [6, Appendix, pp. 233]. Here, Dp(q, n) is the one obtained by attaching a

loop at each of the vertices to the n-th member in the list of digraphs with p vertices

and q (non-loop) arcs in the atlas. The classification is broken up into a series of

lemmas.

Lemma 5.1. The digraphs Dp(q, n) which are listed below do not have P+
0 -

completion.

p = 2; q = 1

p = 3; q = 3; n = 2, 3

q = 4; n = 2, 3, 4

q = 5

p = 4; q = 6; n = 45–48

q = 7; n = 29–38

q = 8; n = 16–27

q = 9; n = 4–13

q = 10; n = 2–5

q = 11.

Proof. Each of the digraphs listed contains all loops but its complement does not

contain a 2-cycle. Hence, by Corollary 4.10, the digraph does not have P+
0 -completion.

Lemma 5.2. The digraphs Dp(q, n) which are listed below do not have P+
0 -

completion.

p = 3; q = 2; n = 1, 3, 4

q = 3; n = 1, 4

q = 4; n = 1

p = 4; q = 3; n = 8, 11

q = 4; n = 10, 12, 14, 15, 21, 27

q = 5; n = 4–6, 11, 14–17, 19, 21–24, 26, 28, 29, 31, 34, 36, 37

q = 6; n = 1, 2, 9–23, 26, 27, 29, 30, 32–41, 43, 44

q = 7; n = 1, 3–28

q = 8; n = 1, 3–15

q = 9; n = 1–3

q = 10; n = 1.
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Proof. Each of the digraphs listed contains all loops but its complement is not

weakly stratified. Thus, by Theorem 4.5, the digraphs do not have P+
0 -completion.

Lemma 5.3. The digraphs D4(q, n) which are listed below do not have P+
0 -

completion.
q = 4; n = 13

q = 5; n = 12, 13, 18, 20

q = 6; n = 24, 25, 28, 31, 42.

Proof. Each of the digraphs listed has an induced subdigraph isomorphic to one

of the digraphs in Figure 4.1. Hence, by Corollary 4.2, the digraphs do not have

P+
0 -completion.

Lemma 5.4. The digraphs D4(q, n) which are listed below do not have P+
0 -

completion.
q = 6; n = 6, 8

q = 7; n = 2

q = 8; n = 2.

b
3

b
2

b

1
b

4

D4(6, 6)

b
3

b
2

b

1
b

4

D4(6, 8)

b
1

b
2

b

3
b

4

D4(7, 2)

b
1

b
2

b

3
b

4

D4(8, 2)

Fig. 5.1. Digraphs D4(q, n) do not have P
+

0
-completion.

Proof. The digraph D4(8, 2) is the symmetric 4-cycle C4, and that it does not

have P+
0 -completion has been seen in Example 4.7. Next, for any completion B1 of

the partial P+
0 -matrix

M1 =




0 0 x13 0

1 0 x23 x24

x31 −1 1 1

1 x42 0 0




specifying D4(7, 2) we have B(1, 2, 3) = −x13 and B(1, 3, 4) = x13. Therefore, for B1

to be a P+
0 -matrix, x13 = 0. However, this yields detB = 0. Thus, B1 cannot be a

P+
0 -matrix. Similarly, the partial P+

0 -matrices

M2 =




0 1 x13 1

0 0 −1 x24

x31 x32 1 x34

0 x42 1 0


 and M3 =




0 0 x13 0

1 0 x23 x24

x31 −1 1 1

1 x42 x43 0
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specifying the digraphs D4(6, 6) and D4(6, 8), respectively, do not have P+
0 -comple-

tions. Indeed, for any completion B2 ofM2, we have B2(1, 2, 3) = −x31 and B2(1, 3, 4)

= x31. Further, M3 is the transpose of M2.

The following result can be easily verified.

Lemma 5.5. For real numbers a, b, c, d, the inequalities

ax+ by ≥ 0

cx+ dy ≥ 0

xy < 0

do not have a solution for x and y only if one of the following holds:

(i) a = 0, c = 0, bd < 0 or b = 0, d = 0, ac < 0;

(ii) b = 0, c = 0, ad > 0 or a = 0, d = 0, bc > 0;

(iii) c > 0, d > 0,
a

c
=

b

d
< 0.

Lemma 5.6. The digraphs D4(6, n), n = 3, 4, 5, 7, have P+
0 completion.

D4(6, 3)

b
1

b
2

b

3
b

4

D4(6, 4)

b
1

b
2

b

3
b

4

D4(6, 5)

b
1

b
2

b

3
b

4

D4(6, 7)

b
1

b
2

b

3
b

4

Fig. 5.2. Digraphs D4(q, n) have P
+

0
-completion.

Proof. For each partial matrix considered below we denote the specified diagonal

entries by di and the specified off-diagonal entries by aij . First, let M be a partial

P+
0 -matrix specifying the digraph D4(6, 3). We show that for some choices of s and

t the completion

B =




d1 a12 s 0

a21 d2 a23 t

−s a32 d3 a34
0 −t a43 d4




of M is a P+
0 -matrix. Clearly, for any choices of s and t, all 2 × 2 principal minors

of B are nonnegative. Moreover, B(1, 3) and B(2, 4) are positive for nonzero s and t.
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Now, the 3× 3 principal minors of B are

B(1, 2, 3) = d1B(2, 3) + s(a21a32 − a12a23) + (d2s
2 − d3a12a21) (5.1)

B(1, 2, 4) = d1t
2 + d4B(1, 2) (5.2)

B(1, 3, 4) = d1B(3, 4) + d4s
2 (5.3)

B(2, 3, 4) = d2B(3, 4) + t(a32a43 − a23a34) + (d3t
2 − d4a23a32). (5.4)

Since B(1, 2) ≥ 0, it follows that a12a21 ≤ 0 if d2 = 0. Similarly, a23a32 ≤ 0 if

d3 = 0. Consequently, for s and t with large magnitude so that d2s
2 − d3a12a21

and d3t
2 − d4a23a32 are nonnegative and with appropriate signs so that the term

s(a21a32 − a12a23) in (5.1) and the term t(a32a43 − a23a34) in (5.4) are nonnegative,

we get all 3 × 3 principal minors of B nonnegative. Moreover, at least one of them

can be made positive, because di > 0 for some i. Further, choosing |t| = |s| we get

detB = s4 + p(s),

where p(s) is a polynomial in s of degree at most 3. Hence, for large values of |s|,

detB > 0, and B is a P+
0 -matrix.

Next, let M be a partial P+
0 -matrix specifying the digraph D4(6, 4). We show

that for the following choices of the unspecified entries and some suitable choice of t

and s, the completion

B =




d1 a12 t −a41
a21 d2 a23 s

−t −a23 d3 a34
a41 −s a43 d4




of M is a P+
0 -matrix. Clearly, for any nonzero choices of t and s, all 2 × 2 principal

minors of B are nonnegative and B(1, 3) > 0, B(2, 4) > 0. Now, 3 × 3 principal

minors of B are

B(1, 2, 3) = d3B(1, 2) + d1a
2
23 + d2t

2 − t(a12 + a21)a23 (5.5)

B(1, 2, 4) = d4B(1, 2) + d2a
2
41 + d1s

2 + s(a12 + a21)a41 (5.6)

B(1, 3, 4) = d1B(3, 4) + d3a
2
41 + d4t

2 + t(a34 + a43)a41 (5.7)

B(2, 3, 4) = d2B(3, 4) + d4a
2
23 + d3s

2 − s(a34 + a43)a23. (5.8)

Case 1: a23 = 0 or a41 = 0. If a23 = 0, then choose signs for s and t such that

s(a12 + a21)a41 ≥ 0 and t(a34 + a43)a41 ≥ 0. Then, all 3 × 3 principal minors are

nonnegative, and since di > 0 for some i, at least one of these minors is positive.

Finally, for large values of |s| and |t|, detB > 0. The case when a41 = 0 is similar.
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Case 2: a23 6= 0 and a41 6= 0. We note that one or more of the diagonal entries of M

are positive, since M is a partial P+
0 -matrix. If d1 > 0, then we choose t such that

t(a34 + a43)a41 ≥ 0

d1a
2
23 − t(a12 + a21)a23 > 0.

Further, we choose appropriate sign for s such that s(a34 + a43)a23 ≤ 0. Then for

large values of |s| all 3× 3 principal minors are nonnegative, and B(1, 2, 3), B(1, 2, 4)

and detB are positive. We get similar results if one of d2, d3 and d4 is positive instead

of d1.

Similarly, with suitable values of t and s, a partial P+
0 -matrix M specifying the

digraph D4(6, 5) can be completed to a P+
0 -matrix

B =




d1 a12 t −a41
a21 d2 −a32 s

−t a32 d3 a34
a41 −s a43 d4


 .

Finally, let M be a partial P+
0 -matrix specifying the digraph D4(6, 7). We show

that for some choices of s, t and x, y, z, w the completion

B =




d1 a12 x s

t d2 a23 z

y a32 d3 a34
a41 w a43 d4




of M is a P+
0 -matrix. Clearly, for any choices of s, t, x, y, z, w such that a12t, a41s, xy

and zw are nonpositive and at least one of them negative, we have all 2× 2 principal

minors of B are nonnegative and at least one of them is positive. Now, the 3 × 3

principal minors of B are

B(1, 2, 3) =
(
d1B(2, 3)− d3a12t− d2xy

)
+ a32tx+ a12a23y (5.9)

B(1, 3, 4) =
(
d1B(3, 4)− d3a41s− d4xy

)
+ a34a41x+ a43sy (5.10)

B(1, 2, 4) =
(
d4B(1, 2)− d2a41s− d1zw

)
+ a41a12z + stw (5.11)

B(2, 3, 4) =
(
d2B(3, 4)− d4a23a32 − d3zw

)
+ a32a43z + a23a34w. (5.12)

Since the terms in the parentheses in the right sides of the above equations are all

nonnegative under our choices of the unspecified entries, the 3 × 3 principal minors

are nonnegative if

a32tx+ a12a23y ≥ 0 (5.13)

a34a41x+ a43sy ≥ 0 (5.14)

a41a12z + stw ≥ 0 (5.15)

a32a43z + a23a34w ≥ 0. (5.16)
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In view of Lemma 5.5, the above equations have solutions with s = t = 0, and

arbitrary large values of −xy and −zw in all cases except when a12a23a34a41 > 0 and

a32a43 = 0. In the latter case, putting s = t = 0, we have

B =




d1 a12 x 0

0 d2 a23 z

y 0 d3 a34
a41 w 0 d4


 .

If d1 > 0, then a P+
0 -completion of M is obtained by setting x = y = 0 and choosing

−z = w such that a23a34
(
d1w − a12a41

)
> 0 in B. A P+

0 -completion of M can be

obtained in a similar way in case some other di, instead of d1, is positive. Note that

the structure of the above matrix B is invariant under a cyclic permutation. This

completes the proof.

Lemma 5.7. The digraphs D4(5, 25) and D4(5, 27) have P+
0 -completion.

b
1

b
2

b

3
b

4 D4(5, 25)

b
1

b
2

b

3
b

4 D4(5, 27)

Fig. 5.3. The digraphs have P
+

0
-completion.

Proof. Let M be a partial P+
0 -matrix specifying the digraph D4(5, 25). We show

that for some choices of r, s, t, x, y, z and w the completion

B =




d1 r a13 a14
a21 d2 s x

t a32 d3 z

a41 y w d4




of M is a P+
0 -matrix.

Case 1: a13 6= 0 or a21 6= 0. We put

r = −a21, s = −a32, t = −a13, y = −x and w = −z.

Then, all 2× 2 principal minors of B are nonnegative and one of B(1, 2) and B(1, 3)

is positive. Further, the 3× 3 principal minors of B are

B(1, 2, 3) = d1B(2, 3) + d3a
2
21 + d2a

2
13 (5.17)

B(1, 2, 4) = d2B(1, 4) + d4a
2
21 + d1x

2 − a21(a14 + a41)x (5.18)

B(1, 3, 4) = d3B(1, 4) + d4a
2
13 + d1z

2 + a13(a14 + a41)z (5.19)

B(2, 3, 4) = d4B(2, 3) + d3x
2 + d2z

2. (5.20)
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For nonzero x and z satisfying

a21(a14 + a41)x ≤ 0 and a13(a14 + a41)z ≥ 0, (5.21)

all 3× 3 principal minors of B are nonnegative, and since di > 0 for some i, at least

one of these minors is positive. Now, breaking the determinant along the first column

of B we get

detB = det




d1 −a21 a13 a14
a21 d2 −a32 x

−a13 a32 d3 z

−a14 −x −z d4


+ det




0 −a21 a13 a14
0 d2 −a32 x

0 a32 d3 z

a41 + a14 −x −z d4


 .

The terms in the first determinant not involving the diagonal entries di are given by

the determinant of the skew-symmetric matrix




0 −a21 a13 a14
a21 0 −a32 x

−a13 a32 0 z

−a14 −x −z 0


 ,

which equals (a13x + a21z + a14a32)
2. Further, the only terms of total degree more

than 1 in x and z involving di in the first determinant are d1d2z
2 and d1d3x

2. The

second determinant does not contribute any term with total degree more than 1 in x

and z. Therefore, we get

detB = (a13x+ a21z + a14a32)
2 + d1d2z

2 + d1d3x
2 + p(x, z),

where p(x, z) is a polynomial in x and z with total degree at most 1. Since either

a13 6= 0 or a21 6= 0, for x and z with large magnitudes we have detB > 0.

Case 2: a13 = a21 = 0. In this case, the 3× 3 principal minors of

B =




d1 r 0 a14
0 d2 s x

t a32 d3 z

a41 y w d4




are given by

B(1, 2, 3) = d1B(2, 3) + rst (5.22)

B(1, 2, 4) = d2B(1, 4) + x(a41r − d1y) (5.23)

B(1, 3, 4) = d3B(1, 4) + w(a14t− d1z) (5.24)

B(2, 3, 4) = d4B(2, 3)− d3xy − d2zw + a32xw + syz. (5.25)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 29, pp. 120-143, October 2015



ELA

138 B.K. Sarma, Kalyan Sinha

If a14 6= 0 then we put

r = x = z = 0, t = s, w =
a14s

|a14s|
, y =

−|s|

a14
,

where the nonzero s is to be chosen such that a32s ≤ 0. Then, all 3 × 3 principal

minors are nonnegative and B(1, 3, 4) > 0. Since detB is a monic polynomial in |s|

of degree 3, B is a P+
0 -matrix for sufficiently large values of |s|. If a41 6= 0, then we

put

t = y = w = 0, r = z, x =
a41r

|a41r|
, s =

−|r|

a41
,

where the nonzero s is to be chosen such that a32s ≤ 0. Then, B is a P+
0 -matrix for

sufficiently large values of |r|. Finally, if a14 = a41 = 0, then we put y = z = 0, x =

t, r = st, w = −st with s 6= 0 such that a32s ≤ 0. Then, B is a P+
0 -matrix for large

values of |s|.

Similarly, with suitable values of r, x, y, w, z, t and s, any partial P+
0 -matrix

M =




d1 r a13 a14
a21 d2 a23 x

t s d3 z

a41 y w d4




specifying the digraph D4(5, 27) can be completed to a P+
0 -matrix.

Lemma 5.8. The asymmetric digraphs D4(5, n), n = 30, 32, 33, 35, 38, have P+
0 -

completion.

b
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b
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b

3
b

4

D4(5, 30)

b
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b
2

b
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b

4

D4(5, 32)

b
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b
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D4(5, 33)

b
1

b
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3
b

4

D4(5, 35)

b
1

b
2

b

3
b

4

D4(5, 38)

Fig. 5.4. The digraphs have P
+

0
-completion.

Proof. We prove the result for D4(5, 38); the proofs for the other digraphs are

similar. Consider a partial P+
0 -matrix

M =




d1 a12 x a14
y d2 r a24
s a32 d3 z

u w a43 d4
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specifying the digraph D4(5, 38), where x, y, r, s, z, u, w are unspecified entries. Now,

for a completion B of M the 3× 3 principal minors of B are given by

B(1, 2, 3) = d1B(2, 3) + a12sr − d3ya12 + xya32 − d2xs (5.26)

B(1, 2, 4) = d1B(2, 4)− a12yd4 + a14yw + a12a24u− d2a14u (5.27)

B(1, 3, 4) = d1B(3, 4) + xzu− sxd4 + a14sa43 − a14ud3 (5.28)

B(2, 3, 4) = d2B(3, 4) + rzw − ra32d4 + a24a32a43 − a24wd3. (5.29)

Case 1: a24 6= 0 or a12a43 + a14a32 6= 0. In that case, we put

y = −a12, r = −a32, u = −a14, w = −a24, z = −a43, x = −s = t.

Then, all 2× 2 principal minors are nonnegative and for t 6= 0, B(1, 3) > 0. Further,

it can be easily seen that each principal minor of order 3 × 3 is nonnegative. Now,

M being a partial P+
0 -matrix, at least one of the di is positive. Moreover, in case

(a14a32+a43a12) 6= 0, at least one of the a12a43 and a14a32 is nonzero. It can be easily

verified that in each of the three cases, viz. a24 6= 0, a12 6= 0 6= a43 and a14 6= 0 6= a32,

at least one 3×3 principal minor of B is positive, depending on i with di > 0. Further,

from the condition a24 6= 0 or a12a43 + a14a32 6= 0, for any nonzero t we have

detB = (a14a32 + a43a12 + ta24)
2 + d1d2a

2
43 + d1d3a

2
24 + d1d4a

2
32

+d2d3a
2
14 + d2d4t

2 + d3d4a
2
12 + d1d2d3d4 > 0.

Case 2: a24 = 0, a12a43+a14a32 = 0. This case is divided into the following subcases.

Subcase I:
(
a32 6= 0 or a14 6= 0

)
and

(
a12 6= 0 or a43 6= 0

)
. In this case, we consider

a completion B of M by putting r = s = u = 0 in M . We can choose nonzero y, w

and z with appropriate signs such that a12y ≤ 0, a43z ≤ 0 and a14yw ≥ 0. Then,

each of the 2 × 2 principal minors of B becomes nonnegative. Since at least one of

a12 and a43 is nonzero, we have either B(1, 2) > 0 or B(3, 4) > 0. Now, the equation

a12a43 + a14a32 = 0 implies that the sign of each nonzero term in the equation is

opposite of the sign of the product of the other three, if the product is nonzero. So,

we can always choose an appropriate sign for x such that ya32x ≥ 0 and −xyzw > 0.

Then, each of the 3 × 3 principal minors is nonnegative. Further, at least one of

a14yw and ya32x is positive, since a14 or a32 is nonzero, which yields either B(1, 2, 3)

or B(1, 2, 4) is positive. Finally, we choose |x| = |y| = |z| = |w| = t > 0. Then, for

sufficiently large values of t we have detB = t4 + p(t) > 0, where p(t) is a polynomial

of degree at most 3.

Subcase II: (a32 = 0 and a14 = 0) and (a12 6= 0 or a43 6= 0). In this case, consider a

completion B of M obtained by putting s = u = 0 in M . Now, we choose appropriate

signs for y, z and r such that a12y ≤ 0, a43z ≤ 0 and rwz > 0. Since at least one

of a12 and a43 is nonzero, each 2× 2 principal minor of B is nonnegative, and either
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B(1, 2) > 0 or B(3, 4) > 0. Moreover, each of the 3 × 3 principal minors of B is

nonnegative and B(2, 3, 4) > 0. Finally, we choose appropriate sign for x and put

|x| = |y| = |z| = |w| = t > 0. Then, for large values of t we have detB = t4+p(t) > 0,

where p(t) is a polynomial of degree at most 3.

Subcase III: a24 = 0; (a32 6= 0 or a14 6= 0) and (a12 = 0 and a43 = 0). Consider a

completion B of M obtained by putting, u = r = 0 and s = −x = t. Then, all 2 × 2

principal minors of B are nonnegative and for large values of t, B(1, 3) > 0. Next,

we choose appropriate signs for t and w such that −tya32 ≥ 0 and a14yw ≥ 0. Since

a32 6= 0 or a14 6= 0, each of the 3 × 3 principal minors is nonnegative, and either

B(1, 2, 3) or B(1, 2, 4) is positive. Finally, we choose appropriate sign for z and put

|x| = |y| = |z| = |w| = t > 0. Then, detB > 0 for large values of t.

Subcase IV: We are left with the case when all specified off-diagonal entries are zero.

In this case, a P+
0 -completion of M is obtained by putting x = r = z = w = −y =

−s = t > 0.

Combining all cases, we see that the partial P+
0 -matrix M can be completed to a

P+
0 -matrix, and therefore, the digraph D4(5, 38) has P

+
0 -completion.

Theorem 5.9. For 1 ≤ p ≤ 4, the digraph Dp(q, n) has P+
0 -completion if and

only if it is one of the digraphs listed below:

p = 1

p = 2; q = 0, 2

p = 3; q = 0, 1, 6

q = 2; n = 2

p = 4; q = 0, 1, 12

q = 2; n = 1–5

q = 3; n = 1–7, 9, 10, 12, 13

q = 4; n = 1–9, 11, 16–20, 22–26

q = 5; n = 1–3, 7–10, 25, 27, 30, 32, 33, 35, 38

q = 6; n = 3–5, 7.

Proof. It is clear that Dp(q, n) has P+
0 -completion if q = 0 or it is a complete

digraph.

Case: p = 3. It follows from Example 3.2 that D3(2, 2) (i.e., D3 in Figure 3.2) has

P+
0 -completion. Further, D3(1, 1) is a spanning subdigraph of D3(2, 2) and has P0-

completion. Therefore, in view of Theorem 3.3, D3(1, 1) has P
+
0 -completion. Rest of

the digraphs of order 3 appear in the lists in Lemma 5.1 and Lemma 5.2 and do not
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b 1
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D3(1, 1)

b 1

b 2b3

D3(2, 2)

Fig. 5.5. The digraphs have P+

0
-completion.

have P+
0 -completion.

Case: p = 4. The digraphs D4(q, n), q = 5, n = 1–3; q = 4, n = 1–9; q = 3, n =

1–7; q = 2, n = 1–5; q = 1, have P0-completion (see [2]) and each of them is a

spanning subdigraph of the digraph D4(6, 3). Therefore, in view of Theorem 3.3,

they have P+
0 -completion, since D4(6, 3) has P

+
0 -completion (see Lemma 5.6).

The digraphsD4(q, n), q = 5, n = 7, 9; q = 4, n = 16–18, have P0-completion and each

of them is a spanning subdigraph of D4(6, 4). Therefore, they have P+
0 -completion,

since D4(6, 4) has P
+
0 -completion (see Lemma 5.6).

The digraphs D4(q, n), q = 5, n = 8, 10; q = 4, n = 19, have P0-completion and each

of them is a spanning subdigraph of D4(6, 5). Therefore, they have P+
0 -completion,

since D4(6, 5) has P
+
0 -completion (see Lemma 5.6).

The digraphs D4(q, n), q = 4, n = 11, 20, 24; q = 3, n = 9, 10, 12, have P0-completion

and each of them is a spanning subdigraph of D4(5, 25). Therefore, they have P+
0 -

completion, since D4(5, 25) has P
+
0 -completion (see Lemma 5.7).

Finally, the digraphs D4(q, n), q = 4, n = 22, 26; q = 3, n = 13, have P0-completion

and each of them is a spanning subdigraph of D4(5, 27). Therefore, they have P+
0 -

completion, since D4(5, 27) has P
+
0 -completion (see Lemma 5.7).

The proof is complete, as the rest of the digraphs of order 4 appear in the lists in

Lemmas 5.1–5.8.

6. Comparison with P -, P0- and Q-matrix completion problems. Al-

though a P+
0 -matrix is a Q-matrix as well as a P0-matrix, a digraph which has

both Q-completion and P0-completion may not have P+
0 -completion. The digraph

D4(7, 3) in Figure 6.1 is an example of a digraph having Q-completion as well as

P0-completions, but not P+
0 -completion.

We have observed that for all digraphs we have considered including the digraphs

of order at most 4, if a digraph D has P+
0 -completion, then D has both P0-completion

and Q-completion. However, we do not know whether the result is true in general.
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D4(7, 3)

Fig. 6.1. P
+

0
-completion vs. Q- and P0-completion

The following result shows that the completion problems for the classes of P - and

P+
0 -matrices are related. The effective argument used in the proof was applied for

comparing a large number of pairs of completion problems by L. Hogben [9].

Theorem 6.1. Any digraph that has P+
0 -completion also has P -completion.

Proof. Let D be a digraph which has P+
0 -completion and M be a partial P -

matrix specifying D. Then, all fully specified principal minors of M are positive.

Since determinant of a matrix is a continuous function of its entries, there is ǫ > 0

such that the partial matrix M0 obtained from M by decreasing the specified diagonal

entries by ǫ is a partial P -matrix. Since a partial P -matrix is a partial P+
0 -matrix,

M0 is a partial P+
0 -matrix specifying D. Consequently, M0 has a P+

0 -completion B0.

We now have a P -completion of M , namely, B = B0 + ǫI, where I is the identity

matrix.

The converse of Theorem 6.1 is not true. For example, the digraph D3(2, 1) does

not have P+
0 -completion (see Lemma 5.2). However, D3(2, 1) has P -completion, since

any digraph of order 3 has P -completion (see [10]).
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