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ALMOST DEFINITE MATRICES REVISITED
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Abstract. A real matrix A is called as an almost definite matrix if 〈x,Ax〉 = 0 =⇒ Ax = 0.

This notion is revisited. Many basic properties of such matrices are established. Several characteri-

zations for a matrix to be an almost definite matrix are presented. Comparisons of certain properties

of almost definite matrices with similar properties for positive definite or positive semidefinite ma-

trices are brought to the fore. Interconnections with matrix classes arising in the theory of linear

complementarity problems are discussed briefly.
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1. Introduction. The central object of this article is the class of almost definite

matrices with real entries. Let us recall that a complex square matrix A is called an

almost definite matrix if x∗Ax = 0 ⇒ Ax = 0. In what follows, we give a brief survey

of the literature. Almost definite matrices were studied first in [7], where a certain

electromechanical system is shown to have a solution if and only if a specific matrix

is almost definite. The authors of [14] study certain extensions of the work of [7].

Here, the authors provide a frame work in terms of generalized inverses of a certain

partitioned matrix in which the notions of the fundamental bordered matrix of linear

estimation of a Gauss-Markov model and the Duffin-Morley linear electromechanical

system are shown to be related. In [13], the author presents suficient conditions

for a complex matrix to be almost definite. This is done by considering a cartesian

decomposition of the matrix concerned. In [12], the author extends some monotonicity

type results known for positive semidefinite matrices to the case of almost definite

matrices.

In the present work, we take a fresh look at almost definite matrices. We shall be

concerned with real matrices. A ∈ Rn×n is almost definite if 〈x,Ax〉 = 0 =⇒ Ax = 0,

where 〈·, ·〉 is the standard inner product on Rn. We prove many fundamental prop-

erties of such matrices. For instance, we show that for an almost definite matrix,
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a certain generalized inverse always exists (Lemma 3.1). The set of almost definite

matrix is closed with respect to certain operations performed on them (Theorem 3.1).

Statements on the entries of an almost definite matrix are proved (Theorem 3.2). For

further results, we refer to the third section. In Section four, we prove new charac-

terizations for almost definite matrices. In Section five, perhaps the most important

section of this article, we collect certain results that hold for almost definite matrices.

The point of view that is taken in this section is that these results are motivated by

corresponding results for positive definite or positive semidefinite matrices. Among

others, we would like to highlight Theorem 5.3 and Theorem 5.7 as stand out results.

The final section shows how invertible almost definite matrices are related to certain

matrix classes arising in the theory of linear complementarity problems.

2. Preliminary Notions. Let Rm×n denote the set of all m× n matrices over

the real numbers. For A ∈ Rn×n let S(A), K(A), R(A), N(A), η(A) and rk(A) denote

the symmetric part of A (1
2
(A+AT )), the skew-symmetric part of A (1

2
(A−AT )), the

range space of A, the null space of A, the nullity of A and the rank of A. The Moore-

penrose (generalized) inverse of a matrix A ∈ Rm×n is the unique matrix X ∈ Rn×m

satisfying A = AXA,X = XAX, (AX)T = AX and (XA)T = XA and is denoted by

A†. The group (generalized) inverse of a matrix A ∈ Rn×n, if it exists, is the unique

matrix X ∈ Rn×n satisfying A = AXA,X = XAX and AX = XA and is denoted

by A#. A well known characterization for the existence of A# is that R(A) = R(A2);

equivalently, N(A) = N(A2). If A is nonsingular, then A−1 = A† = A#. Recall that

A ∈ R
n×n is called range-symmetric if R(A) = R(AT ). If A is range-symmetric, then

A† = A#. For more details on generalized inverses of matrices, we refer to [3].

A ∈ Rn×n is called a positive semidefinite matrix if xTAx ≥ 0, for all x ∈ Rn.

A ∈ Rn×n is called a negative semidefinite matrix if −A is positive semidefinite.

Let Rn
+ denote the nonnegative orthant of Rn, viz., (xi) = x ∈ Rn

+ means xi ≥ 0,

1 ≤ i ≤ n.

In the rest of this section, we collect results that will be used in the sequel. The

first result gives a formula for the Moore-Penrose inverse of a symmetric block matrix.

Theorem 2.1. Let U =

(

A B

BT D

)

be a symmetric matrix. Suppose that

R(B) ⊆ R(A) and R(BTA†) ⊆ R(F ), where F = D − BTA†B is the pseudo Schur

complement of A in U . Then

U † =

(

A† +A†BF †BTA† −A†BF †

−F †BTA† F †

)

.

Proof. First, we observe that BTA†A = BT (since R(B) ⊆ R(A)) and A†B =

A†BFF † (since R(BTA†) ⊆ R(F )). Now, R(B − BFF †) ⊆ N(A†) = N(AT ). Also,
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R(B − BFF †) ⊆ R(B) ⊆ R(A) and so BF †F = B. We then have DF †F = (F +

BTA†B)F †F = F +BTA†BF †F = F +BTA†B = D. Also, A†B+A†BF †BTA†B−

A†BF †D = A†B +A†BF †(BTA†B −D) = A†B −A†BF †F = 0. If we set

X =

(

A† +A†BF †BTA† −A†BF †

−F †BTA† F †

)

.

It then follows that

XU =

(

A† +A†BF †BTA† −A†BF †

−F †BTA† F †

)(

A B

BT D

)

=

(

A†A 0

O F †F

)

.

So, (XU)T = XU . Also, UXU =

(

A BF †F

BT DF †F

)

=

(

A B

BT D

)

= U . Further,

XUX = X .

Finally,

UX =

(

A B

BT D

)(

A† +A†BF †BTA† −A†BF †

−F †BTA† F †

)

=

(

AA† 0

0 FF †

)

so that, (UX)T = UX . Thus

U † =

(

A† +A†BF †BTA† −A†BF †

−F †BTA† F †

)

.

Remark 2.1. If we drop the condition R(BTA†) ⊆ R(F ) then the above formula

for the Moore-Penrose inverse does not hold. Let U =

(

1 1

1 1

)

. Then R(BTA†) 6⊆

R(F ) and

(

A† +A†BF †BTA† −A†BF †

−F †BTA† F †

)

=

(

1 0

0 0

)

. But U † = 1
4
U .

The formula for the Moore-Penrose inverse of a symmetric block matrix in terms

of the pseudo Schur complement is given next. Its proof is similar to the previous

result and is omitted.

Theorem 2.2. Let U =

(

A B

BT D

)

be a symmetric matrix. Suppose that

R(BT ) ⊆ R(D) and R(BD†) ⊆ R(G), where G = A−BD†BT . Then

U † =

(

G† −G†BD†

−D†BTG† D† +D†BTG†BD†

)

.

The next result concerns range symmetry of a block matrix and a sufficient con-

dition when the pseudo Schur complement is zero. While the former is proved in
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[11] (Real version of Theorem 3), the latter is stated in [4] (Real version of Corollary,

pp.171).

Theorem 2.3. Let U =

(

A B

C D

)

∈ Rn×n with rk(U) = rk(A). Then

(a) U is a range-symmetric matrix if and only if A is range-symmetric and CA† =

(A†B)T .

(b) F = 0, where F = D − CA†B is the pseudo Schur complement of A in U .

The following assertion on the Hadamard product is well known.

Theorem 2.4. (Theorem 7.5.3, [8]) Let A,B ∈ Cn×n.

(a) If both A and B are positive semidefinite or negative semidefinite, then the

Hadamard product A ◦B is positive semidefinite.

(b) If A is positive semidefinite and B is negative semidefinite, then A ◦B is negative

semidefinite.

We conclude this section with a lemma on linear equations.

Lemma 2.1. (Corollary 2, [3]) Let A ∈ Rm×n and b ∈ Rm. Then the system

Ax = b is consistent if and only if AA†b = b. In such a case, the general solution is

given by x = A†b+ z, for some z ∈ N(A).

3. Basic Properties. In this section, we prove certain basic results on almost

definite matrices. We show first, that if A is almost definite then A# exists. We show

that the set of almost definite matrices is closed with respect to the unary operations

of the transpose of a matrix and Moore-Penrose inversion. These are included in

Theorem 3.1. In Theorem 3.2, we make certain assertions on the entries of an almost

definite matrix. We then briefly study a generalization of almost definiteness. We

conclude the section with statements on the null space and the range space of the

symmetric part of an almost definite matrix. This appears as Theorem 3.5.

First, we show that if A is almost definite, then A# exists. In fact, we prove a

little more.

Lemma 3.1. Let A ∈ Rn×n be almost definite. Then A is range symmetric.

Proof. Let ATx = 0. Then 〈x,Ax〉 = 〈x,ATx〉 = 0 and by the almost definiteness

of A it follows that Ax = 0. Hence N(AT ) ⊆ N(A). A standard rank argument shows

that these subspaces are equal.

It now follows that if A is almost definite, then A† = A#. In the next result, we

collect some preliminary results on almost definite matrices.

Theorem 3.1. For A ∈ Rn×n we have the following:

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 29, pp. 102-119, October 2015



ELA

106 Ar. Meenakshi, Projesh Nath Choudhury, and K.C. Sivakumar

(a) A is almost definite if and only if AT is almost definite.

(b) A is almost definite if and only if A† is almost definite.

(c) Let A be almost definite. Then PAPT is almost definite for any P ∈ Rn×n.

Conversely, let P be invertible. If PAPT is almost definite, then A is almost definite.

(d) If A is almost definite, then so is its symmetric part S(A). The converse is not

true.

Proof. In (a) and (b), it is clear that it suffices to prove just a one way implication.

(a): If 〈x,ATx〉 = 0, then 〈Ax, x〉 = 0 and so by the almost definiteness of A we have

Ax = 0. By Lemma 3.1, since A is range symmetric we then have ATx = 0, showing

that AT is almost definite.

(b): Note that R(A†) = R(AT ) = R(A). Let 〈x,A†x〉 = 0. Set y = A†x, so that

x = Ay + z for some z ∈ N(AT ), by Lemma 2.1. Then y ∈ R(A) and so 0 =

〈x,A†x〉 = 〈Ay + z, y〉 = 〈Ay, y〉. By the almost definiteness of A we have Ay = 0 so

that y ∈ N(A) ∩R(A). Thus A†x = 0, proving the almost definiteness of A†.

(c): Let A be almost definite and 〈x, PAPTx〉 = 0. Then 〈PTx,APTx〉 = 0 so that

APTx = 0. Thus PAPTx = 0, showing the almost definiteness of PAPT . Conversely,

suppose that PAPT is almost definite, with P being invertible. Let 〈y,Ay〉 = 0. There

exists x such that y = PTx. Thus, 0 = 〈PTx,APTx〉 = 〈x, PAPTx〉 and so by the

almost definiteness of PAPT , we then have PAPTx = 0. Since P is invertible, we

have 0 = APTx = Ay, proving that A is almost definite.

(d): The proof follows from the observation that 〈x, S(A)x〉 = 2〈x,Ax〉. For the

second part, let A =

(

1 3

−1 1

)

. Then S(A) =

(

1 1

1 1

)

. It may be verified that

S(A) is almost definite, whereas A is not.

In the next result, we make certain assertions on the entries of an almost definite

matrix. Since A is almost definite if and only AT is almost definite, statements made

about the columns of A have analogues for its rows.

Theorem 3.2. Let A be almost definite. Then the following hold:

(a) All the column entries corresponding to any zero diagonal entry of A are zero. In

particular, if A is invertible, then all its diagonal entries are non-zero.

(b) No non-zero column of A can be perpendicular to the corresponding column of

AA#.

(c) If the sum of all the entries of A is zero, then each column sum of A is zero.

Proof. (a): Let ek be the kth column of the identity matrix. Let bk = Aek

be a column of A such that bkk = 0, where bkk is the kth coordinate of bk. Then

〈Aek, ek〉 = 0. By the almost definiteness of A, it now follows that bk = 0. The second

part follows from the fact that an invertible matrix cannot have a zero column.

(b): First observe that by Lemma 3.1, the group inverse A# exists equals A† and so by

(b) of Theorem 3.1, it is almost definite. As in (a), set A = (b1, b2, . . . , bn). Then each
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bk ∈ R(A) and AA# = A#A = (A#b1, A#b2, . . . , A#bn). Note that the kth column

of AA# is AA#ek = A#Aek = A#bk. Let 0 6= bk be such that 〈bk, A#bk〉 = 0. So,

A#bk = 0 so that bk ∈ N(A#) = N(A). However since the subspaces R(A) and N(A)

are orthogonal complementary, this means that bk = 0, a contradiction.

(c): Let e ∈ Rn be the vector with all entries 1. If the sum of all the entries of A

is zero, then 〈Ae, e〉 = 0. We then have Ae = 0 so that each row sum is zero. Since

N(A) = N(AT ), it follows that each column sum is zero.

In what follows, we take a brief digression to consider another class of matrices

which includes almost definite matrices as a subclass. We present a sufficient condition

that guarantees when a matrix in this new class turns out to be almost definite. The

precise definition is given next.

Definition 3.1. A ∈ Rn×n is called pseudo almost definite if

〈x,Ax〉 = 0, x ∈ R(AT ) =⇒ x = 0.

Unlike an almost definite matrix, a pseudo almost definite matrix is not necessarily

range symmetric. Let A =

(

1 1

0 0

)

. Then it may be verified that A is pseudo almost

definite matrix which is not range symmetric. Next, we prove a relationship between

pseudo almost definite matrices and almost definite matrices.

Theorem 3.3. Any almost definite A ∈ Rn×n is pseudo almost definite. The

converse is true if A is range symmetric.

Proof. Let A be almost definite, 〈x,Ax〉 = 0 and x ∈ R(AT ). Then Ax = 0 and so

x = 0, showing that A is pseudo almost definite. Conversely, suppose that A is pseudo

almost definite and range symmetric. Let 〈x,Ax〉 = 0. Consider the decomposition

x = x1+x2, where x1 ∈ R(AT ) and x2 ∈ N(A). Then 0 = 〈x,Ax〉 = 〈(x1+x2), A(x1+

x2)〉 = 〈x1, Ax1〉 + 〈x2, Ax1〉, where we have used the fact that Ax2 = 0. Since A

is range symmetric, the subspaces R(A) and N(A) are orthogonal complementary

and so 〈x2, Ax1〉 = 0. Thus 〈x1, Ax1〉 = 0 with x1 ∈ R(AT ). The pseudo almost

definiteness of A then implies that x1 = 0. We then have x = x2 ∈ N(A) and so

Ax = 0, showing that A is almost definite.

It is easy to see that if a matrix A is positive definite, then it is invertible and that

the inverse is also positive definite. A not so well known result states that if a matrix

is positive semidefinite, then its group inverse exists and is also positive semidefinite.

This is a consequence of Theorem 2 [10], where it is shown that a positive semidefinite

matrix is range symmetric. Let us also recall that in Theorem 3.1, the existence of

the group inverse of a matrix is shown, if it is almost definite. In the next result,

we show that if a matrix is pseudo almost definite or its symmetric part is almost
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definite, then its group inverse exists.

Theorem 3.4. Let A ∈ Rn×n. Suppose that A is either pseudo almost definite

or S(A) is almost definite. Then A# exists.

Proof. Suppose that A is pseudo almost definite. We show that (AT )# exists. It

then follows that A# exists, since we have the formula (AT )# = (A#)T . Set B = AT .

We show that N(B2) = N(B). It suffices to show that N(B2) ⊆ N(B). Let y = Bx

and suppose that By = 0 so that B2x = 0. Then 0 = 〈y,By〉 = 〈y,AT y〉 = 〈y,Ay〉.

Also y = Bx = ATx ∈ R(AT ). Since A is pseudo almost definite, we then have y = 0

so that Bx = 0. Thus N(B2) = N(B), as required.

Next, let S(A) be almost definite. Let A2x = 0. We show that Ax = 0. Set

y = Ax, so that Ay = 0. So 〈y, S(A)y〉 = 1
2
〈y, (A + AT )y〉 = 0, so that S(A)y = 0,

since S(A) is almost definite. This means that Ay+AT y = 0. Then 0 = AT y = ATAx

so that Ax = 0. This shows that A# exists.

In the last part of this section, we prove certain miscellaneous results for almost

definite matrices.

Remark 3.1. Let A =

(

1 1

1 1

)

and B =

(

0 0

0 −1

)

. Then A and B are

almost definite matrix but A+B is not almost definite. However, we have the follow-

ing. Let A be almost definite and B be skew-symmetric matrix with N(A) ⊆ N(B).

Then A+B is almost definite. For, let x ∈ Rn be such that 〈x, (A +B)x〉 = 0. Now

0 = 〈x, (A + B)x〉 = 〈x,Ax〉, since B is skew-symmetric. Then Ax = 0, since A

almost definite. Thus (A+B)x = 0, since N(A) ⊆ N(B).

A matrix A ∈ Cn×n is called almost positive definite (see [12] and the references

cited therein) if A is almost definite and satisfies the inequality Re〈x,Ax〉 ≥ 0 for

all x ∈ Cn. We recall a couple of results from [12], whose generalizations we shall

be studying next. Among other results, it is shown that if A − B is positive semi

definite and B is almost positive definite then A is almost positive definite. It is

also demonstrated that if A − B is almost positive definite, B is range hermitian

and N(A) ⊆ N(B), then N(A) = N(H(B)) if and only if R(A) = R(H(B)). Here,

range hermitianness of B means that R(B) = R(B∗) and the hermitian part H(B)

of a matrix B is defined by 1
2
(B +B∗). The following observation was also made: If

A ∈ Rn×n is range symmetric, then N(A) ⊆ N(S(A)). A stronger conclusion could

be drawn if A is almost definite. We summarize these in the next result. We continue

to restrict our attention to real matrices.

Theorem 3.5. The following hold:

(a) Let A be almost definite. Then N(A) = N(S(A)) and R(A) = R(S(A)).

(b) Let A−B be almost definite, B be range symmetric and N(A) ⊆ N(B). Then A
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is range symmetric. If, in addition, R(A) ⊆ R(S(B)), then N(A) = N(S(B)).

Proof. (a): Let Ax = 0. Then ATx = 0 so that x ∈ N(S(A)). So, N(A) ⊆

N(S(A)). Note that this inclusion is true if A is just range symmetric. On the other

hand, let (A + AT )x = 0. Then 0 = 〈x, (A + AT )x〉 = 2〈x,Ax〉 and so Ax = 0.

This shows that N(S(A)) ⊆ N(A). The second equality follows by taking orthogonal

complements and by using the range symmetry of A.

(b): Since B is range symmetric, as remarked in the proof of (a), we have N(B) ⊆

N(S(B)). So, N(A) ⊆ N(S(B)). The inclusion R(A) ⊆ R(S(B)) yields N(S(B)) ⊆

N(A), where we have used the range symmetry of A and the symmetry of S(B).

4. Characterizations. In this section, we present certain necessary and suffi-

cient conditions for almost definiteness. In the first result, Theorem 4.1, equivalent

conditions are given for the symmetric part S(A) of a matrix A to be almost definite.

In Theorem 4.2, we characterize the almost definiteness of A. The third assertion,

viz., Theorem 4.3 characterizes symmetric almost definite matrices and the fourth re-

sult, Theorem 4.5 concerns inferences on the factors of a full-rank factorization. The

last result, Theorem 4.6, deals with the almost definiteness of I −ATA.

We begin with the following assertion, motivated by Theorem 1, [9].

Theorem 4.1. Let A ∈ Rn×n. Then the following statements are equivalent:

(a) S(A) is almost definite.

(b) rk[S(A)X ] ≤ rk(XTAX) for all X ∈ Rn×n.

(c) xTAx = 0 ⇒ S(A)x = 0 for all x ∈ Rn.

Proof. (a) ⇒ (b): Let X ∈ Rn×n and u ∈ N(XTAX). Then XTAXu = 0 so

that uTXTAXu = 0. So, 〈u,XTS(A)Xu〉 = 0. Thus S(A)Xu = 0, since S(A) is

almost definite. Thus N(XTAX) ⊆ N(S(A)X), which in turn gives rk[S(A)X ] =

n− η(S(A)X) ≤ n− η(XTAX) ≤ rk(XTAX), as required.

(b) ⇒ (c): Let x ∈ Rn be such that xTAx = 0. Let X = (x, 0, 0, . . . , 0) ∈ Rn×n. Then

XTAX = 0. Thus rk(S(A)X) = 0 so that S(A)x = 0.

(c) ⇒ (a): Let x ∈ Rn such that xTS(A)x = 0. Then 〈x,Ax〉 = 1
2
(〈x,Ax〉 +

〈x,ATx〉) = 1
2
〈x, S(A)x〉 = 0. Thus S(A)x = 0, showing that S(A) is almost definite.

Next, almost definiteness of a matrix is characterized. This is motivated by

Corollary 2, [9].

Theorem 4.2. Let A ∈ Rn×n. Then the following statements are equivalent:

(a) N(AX) = N(XTAX) for all X ∈ Rn×n.

(b) rk(AX) = rk(XTAX) for all X ∈ Rn×n.

(c) A is almost definite.
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Proof. (a) ⇒ (b): This follows from a standard argument using the rank and the

nullity of a matrix.

(b) ⇒ (c): Let x ∈ Rn such that xTAx = 0. Let X = (x, 0, 0, . . . , 0) ∈ Rn×n. Then

XTAX = 0 so that rk(AX) = 0 and so AX = 0. Thus Ax = 0, showing that A is

almost definite.

(c) ⇒ (a): Let X ∈ Rn×n and u ∈ N(XTAX). Then XTAXu = 0 so that

uTXTAXu = 0. Thus AXu = 0, since A is almost definite. So, N(XTAX) ⊆

N(AX). Thus N(AX) = N(XTAX), for all X ∈ R
n×n.

For the next result, we use the following notation: Let A ∈ Rn×n. If either

〈x,Ax〉 ≥ 0 for all x ∈ Rn or 〈x,Ax〉 ≤ 0 for all x ∈ Rn, we say that ±A is positive

semidefinite. We have the following result:

Theorem 4.3. Let A be a symmetric matrix. Then A is almost definite if and

only if ±A is positive semidefinite.

Proof. Necessity: The proof is by contradiction. Suppose that A is symmetric

and almost definite. Assume that there exist x, y ∈ Rn such that

〈x,Ax〉 < 0 and 〈y,Ay〉 > 0

By the continuity of the function φ(u) := 〈u,Au〉, u ∈ Rn, it follows that there exists

z ∈ R
n such that z = λx+(1−λ)y and 〈z, Az〉 = 0. By the almost definiteness of A we

then have Az = 0, so that Ax = αAy, for some α < 0. So, 0 > 〈x,Ax〉 = α〈x,Ay〉 so

that 〈x,Ay〉 > 0. On the ther hand, we have 0 > −〈y,Ay〉 = − 1
α
〈y,Ax〉 = − 1

α
〈x,Ay〉

(using the symmetry of A) so that 〈x,Ay〉 < 0, a contradiction. Thus ±A is positive

semidefinite.

Sufficiency: Suppose that A is positive semidefinite, without loss of generality. Since

A is symmetric, there exists a diagonal matrix D with nonnegative diagonal entries

such that A = UDUT , where U is an orthogonal matrix. It is easy to see that D is

almost definite and so by (c) of Theorem 3.1, it follows that A is almost definite.

Before proceeding with the other characterizations, let us present another suffi-

cient condition for ±A to be positive semidefinite.

Theorem 4.4. Let A ∈ Rn×n be an invertible almost definite matrix. Then ±A

is positive definite.

Proof. Suppose that A is an invertible almost definite matrix and there exist

x, y ∈ Rn such that 〈Ax, x〉 < 0 and 〈Ay, y〉 > 0. Then there exists z ∈ Rn such

that z = λx + (1 − λ)y and 〈Az, z〉 = 0. By the almost definiteness of A and by its

invertiblility, we have z = 0, so that x = αy, for some α < 0. Then 0 > 〈Ax, x〉 =

α2〈Ay, y〉 so that 〈Ay, y〉 < 0, a contradiction.

It is well known that any non-zero matrix A ∈ Cn×n of rank r can be factorized
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as A = BC, where B ∈ Cn×r and C ∈ Cr×n with rank(B) = rank(C) = r [3].

Such a factorization is referred to as a full-rank factorization due to the reason that

the factors B and C have full-rank. Let A = BC be a full-rank factorization of A.

The following result yields information about the factors B and C, given that A is

almost definite. This characterization is already known (Theorem 5.1, [5]) and is

listed among several other statements. It is included with a proof, for the sake of

completeness.

Theorem 4.5. Let A ∈ R
n×n and A = BC be a full-rank factorization. Set

S = {x ∈ Rn : 〈x,Ax〉 = 0}. Then A is almost definite if and only if S = N(C) =

N(BT ).

Proof. Let us note that the factors B and C satisfy the equalities R(B) = R(A)

and N(C) = N(A). The first formula in turn yields, N(BT ) = N(AT ). Let A be

almost definite. Then S = N(A) = N(C) and N(BT ) = N(AT ) = N(A) = S.

Conversely, suppose that 〈x,Ax〉 = 0 so that x ∈ S. Then Cx = 0 and so Ax = 0,

proving the almost definiteness of A.

In the next result, the notation ‖ x ‖ stands for the Euclidean vector norm (or

the 2-norm) of x ∈ Rn and for A ∈ Rn×n, ‖ A ‖ denotes the matrix norm induced

by the Euclidean vector norm on R
n. The next result is an analogue of a well known

result which states that I −ATA is positive definite if and only if A is a contraction

(‖ A ‖< 1).

Theorem 4.6. Let A ∈ Rn×n. Then I − ATA is almost definite if and only if

either ‖ A ‖≤ 1 or A−1 exists and ‖ A−1 ‖≤ 1.

Proof. Necessity: Let I − ATA be almost definite. Then by Theorem 4.3, it

follows that ±(I − ATA) is positive semidefinite. First, let I − ATA be positive

semidefinite so that for all x ∈ Rn, 〈x, x〉 − 〈x,ATAx〉 ≥ 0. Then ‖ Ax ‖≤‖ x ‖

so that ‖ A ‖≤ 1, proving the first part. On the other hand if I − ATA is negative

semidefinite then ‖ x ‖≤‖ Ax ‖. Now, if Ax = 0, then x = 0 and so A−1 exists. It is

easy to see that ‖ A−1 ‖≤ 1.

Sufficiency: Let ‖ A ‖≤ 1. Then for all x ∈ Rn, ‖ Ax ‖≤‖ x ‖ so that 〈x, x〉 −

〈x,ATAx〉 ≥ 0. Thus I − ATA is positive semidefinite. On ther other hand, if

A−1 exists and ‖ A−1 ‖≤ 1, then for all x ∈ Rn we have ‖ A−1x ‖≤‖ x ‖ so that

‖ Ax ‖≥‖ x ‖. Thus 〈x, x〉−〈x,ATAx〉 ≤ 0. Thus ±(I−ATA) is positive semidefinite.

Since I −ATA is symmetric, by Theorem 4.3, I −ATA is almost definite.

In the next result, we consider almost definiteness of a block matrix. A more

detailed study on such matrices is carried out in the next section (Theorem 5.3).

Theorem 4.7. Let U =

(

A B

C D

)

∈ Rn×n with rk(U) = rk(A). Then U is
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almost definite if and only if A is almost definite with CA† = (A†B)T .

Proof. Suppose that U is almost definite. Then A is also almost definite and U

is range-symmetric. By Theorem 2.3, CA† = (A†B)T .

Conversely, Suppose that A is almost definite and CA† = (A†B)T . The condition

rk(U) = rk(A) gives D = CA†B, since the pseudo Schur complement is zero (by

Theorem 2.3). It may be verified that U = P

(

A 0

0 0

)

PT , where P =

(

I 0

CA† I

)

is invertible. Since the block matrix

(

A 0

0 0

)

is almost definite, by (c) Theorem

3.1, we conclude that U is almost definite.

5. Comparisons with Positive Semidefinite Matrices. The objective of

this section is to prove certain results for almost definite matrices that are analogous

to these of positive definite or positive semidefinite matrices. This perspective does

not seem to have been taken in the earlier works. Before getting to the precise details,

let us briefly outline the important results that have been proved in this section. In

Theorem 5.3, we consider a block almost definite matrix and draw several conclusions.

Among these, the almost definiteness of the principal diagonal blocks and the pseudo

Schur complements are proved. In Theorem 5.4, we obtain an extension of a similar

result for positive semidefinite matrices proved in Proposition of [1]. Finally, an

analogue of a certain result for the Hadamard product of a positive definite matrix

and its inverse [2] is obtained in Theorem 5.7. To summarize, we reiterate that each

of the results of this section could be thought of an analogue of a corresponding result

for positive semidefinite or positive definite matrices.

First, we start with a simple result.

Theorem 5.1. (Real version of Theorem 1, [15]) Let A, B ∈ Rn×n such that

R(I −ATB) ⊆ R(I −ATA). Then

(I −BTB)− (I −BTA)(I −ATA)†(I −ATB) = −(A−B)T (I −AAT )(A−B).

Theorem 5.2. Let A, B ∈ R
n×n such that, I−AAT is almost definite and R(I−

ATB) ⊆ R(I−ATA). Then the matrix (I−BTA)(I −ATA)†(I−ATB)− (I−BTB)

is almost definite.

Proof. Let I − AAT be almost definite. Now by Theorem 5.1, we have (I −

BTB) − (I − BTA)(I −ATA)†(I −ATB) = −(A− B)T (I − AAT )†(A− B). By (c)

Theorem 3.1, (A − B)T (I − AAT )†(A − B) is almost definite so its negative is also

almost definite. The conclusion now follows.

We turn our attention to certain inheritance properties of almost definite matrices.
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Let us recall that if U =

(

A B

C D

)

is a symmetric positive semidefinite matrix, then

the principal diagonal blocks A and D are also positive semidefinite. It is also known

that if A is invertible, then the Schur complement F = D − CA−1B is also positive

semidefinite. In the next result, we obtain similar results for almost definite matrices,

among other results.

Theorem 5.3. Let A and D be square matrices and U =

(

A B

C D

)

be an

almost definite block matrix. We have the following:

(a) N(A) ⊆ N(C), R(B) ⊆ R(A) and the principal diagonal blocks, A and D are

almost definite.

(b) The matrix UP =

(

D C

B A

)

is almost definite. (The subscript P signifies that

UP is permutationally equivalent to U). We also have the inclusions R(C) ⊆ R(D)

and N(D) ⊆ N(B).

(c) The pseudo Schur complement F = D − CA†B and the complementary pseudo

Schur complement are almost definite.

(d) Let A,D be symmetric and C = BT . Then the matrices V1 =

(

BD†BT B

BT D

)

and V2 =

(

A B

BT BTA†B

)

are almost definite.

(e) If A = 0 or D = 0, then B = 0 and C = 0.

Proof. (a): Let Ax = 0 and set z =

(

x

0

)

. Then 〈z, Uz〉 = 0 so that

(

Ax

Cx

)

=

Uz = 0. This shows that Cx = 0 and so N(A) ⊆ N(C). Since U is almost definite if

and only if so is UT (by (a) of Theorem 3.1), it now follows that N(AT ) ⊆ N(BT ),

which in turn is the same as R(B) ⊆ R(A), proving the second inclusion.

If 〈x,Ax〉 = 0, then by setting z as above, it follows that 〈z, Uz〉 = 〈x,Ax〉 = 0.

By the almost definiteness of U we have Ax = 0, proving the almost definiteness of

A. The proof for D is entirely similar and is skipped.

(b): Let P =

(

0 I1

I2 0

)

, where I1 and I2 are identity matrices of appropriate

orders. Then UP = PUPT . Thus UP is almost definite, since U is almost definite.

The inclusions R(C) ⊆ R(D) and N(D) ⊆ N(B) follow from (a).

(c): Let us now show that the pseudo Schur complement F is almost defi-

nite. Let 〈x, Fx〉 = 0. Set w =

(

−A†Bx

x

)

. Then Uw =

(

0

Fx

)

, so that
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〈w,Uw〉 = 〈x, Fx〉 = 0. Here, we have used the fact that AA†B = B, since

R(B) ⊆ R(A), by (a). By the almost definiteness of U , we then have Uw = 0.

This means that Fx = 0, showing that F is almost definite. The proof for the almost

definiteness of G follows, by appealing to (b).

(d): Let z =

(

x

y

)

. Then

〈z, V1z〉 = 〈x,BD†BTx〉+ 〈y,BTx〉+ 〈x,By〉 + 〈y,Dy〉.

Let w =

(

0

D†BTx+ y

)

. Then

〈w,Uw〉 = 〈x,BD†DD†BTx〉+ 〈y,DD†BTx〉 + 〈x,BD†Dy〉+ 〈y,Dy〉

By (b), we have R(BT ) ⊆ R(D) (using the symmetry of D). Again, since D is

symmetric, it commutes with its Moore-Penrose inverse D†. We then have V1z = Uw.

If 〈z, V1z〉 = 0, then

〈w,Uw〉 = 〈x,BD†BTx〉+ 〈y,BTx〉+ 〈x,By〉 + 〈y,Dy〉 = 〈z, V1z〉 = 0.

By the almost definiteness of U , it then follows that V1z = Uw = 0, showing the

almost definiteness of V1. Similarly we can show that V2 is almost definite.

(e): In particular, the diagonals of A and D are zero. By Theorem 3.2 (a), it

follows that B = 0 and C = 0.

We have the following consequence of Theorem 5.3.

Corollary 5.1. Let U ∈ Rn×n with rank r. Then U is almost definite if and

only if every principal submatrix of rank r is almost definite.

Proof. Let A be a principal submatrix of U of rank r. Then there exists a

permutation matrix P such that V = PUPT =

(

A B

C D

)

for some matrices B,C

and D, with D being a square matrix. Since U is almost definite, by (c) Theorem 3.1,

V is almost definite. By (a) Theorem 5.3, it now follows that A is almost definite.

The converse is easy to see.

To motivate the next result, let us recall the result of [1] (Proposition 1). For a

block matrix M , for the sake of convenience, we denote its subblocks with the sub-

script M . In this notation, let U =

(

AU BU

BT
U DU

)

be positive semidefinite, where

AU and DU are symmetric matrices. Let V = U † =

(

AV BV

BT
V DV

)

be partitioned
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conformably with U . If rk(U) = rk(AU )+rk(DU ), then AV −A
†
U is positive semidef-

inite. An analogue of such a condition is true for almost definite matrices. However,

we provide a different sufficient condition. This is given next.

Theorem 5.4. Let U =

(

AU BU

BT
U DU

)

be an almost definite matrix, where

AU and DU are symmetric matrices. Let R(BT
UA

†
U ) ⊆ R(FU ), where FU = DU −

BT
UA

†
UBU is the pseudo Schur complement of AU in U . Suppose that U † = V =

(

AV BV

BT
V DV

)

. Then AV −A
†
U is almost definite.

Proof. Let U be almost definite. Then R(BU ) ⊆ R(AU ), by (a) Theorem 5.3. By

Theorem 2.1,

U † =

(

A
†
U +A

†
UBUF

†
UB

T
UA

†
U −A

†
UBUF

†
U

−F
†
UB

T
UA

†
U F

†
U

)

.

Comparing the two expressions for U †, we have, AV − A
†
U = A

†
UBUF

†
U (A

†
UBU )

T .

The almost definiteness of U implies that FU and F
†
U are almost definite (by (c) of

Theorem 5.3 and (b) of Theorem 3.1). By (c) of Theorem 3.1, it now follows that

AV −A
†
U is almost definite.

Using a certain unitary equivalence of a range symmetric matrix, we prove the

next result.

Theorem 5.5. Let A ∈ Rn×n with r = rank(A). Then A is almost definite

if and only if there exists an invertible almost definite matrix C ∈ Rr×r such that

V TCV = A, where V ∈ Rr×n satisfies V V T = I.

Proof. Since A is range symmetric, we have the orthogonal direct sum decom-

position Rn = R(A) ⊕ N(A) [3]. This means that there exists an orthogonal matrix

Q ∈ Rn×n and an invertible C ∈ Rr×r such that

A = Q

(

C 0

0 0

)

QT .

By (c) Theorem 3.1 and (a) Theorem 5.3, it follows that C is almost definite. Let Q

be partitioned as [Q1, Q2], where Q1 ∈ Rn×r and Q2 ∈ Rr×n. Set V = QT
1 . Then

V TCV = A. Since Q is an orthogonal matrix, we have V V T = QT
1 Q1 = I.

Conversely, let A = V TCV with V ∈ Rr×n satisfying V V T = I. Let 〈x,Ax〉 = 0.

Then 〈x, V TCV x〉 = 0 so that 〈V x,CV x〉 = 0. By the almost definiteness of C it

then follows that V x = 0, which in turn implies that Ax = 0, showing the almost

definiteness of A.

In the last part of this section, we consider the Hadamard product of almost
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definite matrices. The Schur (or Hadamard) product of two matrices A = (aij),

B = (bij) ∈ Rn×n is denoted by A ◦ B and defined as A ◦ B = (aijbij) ∈ Rn×n. To

motivate our result, let us recall that in [2], it was proved that if A is a symmetric

positive definite matrix then A ◦ A−1 ≥ I. In other words, A ◦ A−1 − I ≥ 0. Here,

for A,B ∈ Cn×n A ≥ B denotes that A − B is hermitian positive semidefinite. We

obtain an analogue in Theorem 5.7 for symmetric almost definite matrices.

Theorem 5.6. Let A,B ∈ Rn×n be two symmetric almost definite matrices.

Then A ◦B is almost definite.

Proof. Suppose that A,B ∈ Rn×n are two symmetric almost definite matrices. By

Theorem 4.3, ±A and ±B are positive semidefinite. Then by Theorem 2.4, ±(A ◦B)

is positive semidefinite. Thus by theorem 4.3, A ◦B is almost definite.

Theorem 5.7. Let U, V ∈ Rn×n be two symmetric almost definite matrices, and

suppose that U , U †, V and V † are conformally partitioned as follows:

U =

(

AU BU

BT
U DU

)

, U † =

(

ÃU B̃U

B̃T
U D̃U

)

V =

(

AV BV

BT
V DV

)

, V † =

(

ÃV B̃V

B̃T
V D̃V

)

.

Let R(BT
UA

†
U ) ⊆ R(F ), R(BV D

†
V ) ⊆ R(GV ), where FU = DU − BT

UA
†
UBU and

GV = AV −BV D
†
V B

T
V . Then

U ◦ V −

(

AU ◦ Ã†
V 0

0 D̃
†
U ◦DV

)

is almost definite. In particular the matrix,

U ◦ U † −

(

AU ◦A†
U 0

0 D̃U ◦D†
U

)

is almost definite.

Proof. Let U and V be almost definite. Then R(BU ) ⊆ R(AU ), by (a) Theorem

5.3. Now by Theorem 2.1, FU = DU−BT
UA

†
UBU = D̃

†
U so that DU−D̃

†
U = BT

UA
†
UBU .

Similarly, by Theorem 2.2, AV − Ã
†
V = BV D

†
V B

T
V . By (d) Theorem 5.3,

N =

(

AU BU

BT
U DU − D̃

†
U

)

and P =

(

AV − Ã
†
V BV

BT
V DV

)

are almost definite. Thus by Theorem 5.6, N ◦ P is almost definite. Hence
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U ◦ V −

(

AU ◦ Ã†
V 0

0 D̃
†
U ◦DV

)

is almost definite. To prove the second part, set V = U †.

6. Relationships with Other Classes of Matrices. We conclude the discus-

sion of almost definite matrices by studying the relationship between almost definite

matrices and certain other classes of matrices, relevant especially in connection with

linear complementarity problems. Let us recall the following classes of matrices. For

more details on these we refer to the excellent book [6].

For a given q ∈ R
n and a matrix A ∈ R

n×n, the linear complementarity problem,

abbreviated LCP (q, A), is to find a z ∈ Rn
+ such that q+Az ≥ 0 and zT (q+Az) = 0.

A vector z is called a feasible solution for LCP (q, A), if z ≥ 0 and q+Az ≥ 0. In such

a case, we say that LCP (q, A) is feasible. The solution set of LCP(q, A) is denoted

by SOL(q, A). A ∈ Rn×n is called a Q-matrix if LCP(q, A) has a solution for all

q ∈ Rn. For instance, it is known that a nonnegative matrix A is a Q-matrix if and

only all its diagonal entries are positive. Let us turn to the next class of matrices. A

is called a P -matrix if all its principal minors are positive. It can be shown that any

P -matrix is a Q-matrix. One of the most fundamental results in the theory of linear

complementarity problems states that A is a P -matrix if and only if LCP (q, A) has

a unique solution for all q ∈ Rn. It is also very well known that for a matrix A whose

off-diagonal entries are nonpositive, these two notions are equivalent. We consider a

more general class next. A is called a P0-matrix if all the principal minors of A are

nonnegative. A close relationship between a P -matrix and a P0-matrix exists. It is

the statement that A is a P0-matrix if and only for every ǫ > 0, the matrix A+ ǫI is a

P -matrix. A ∈ Rn×n is called an R0-matrix if SOL(0, A) = {0}. To state a result for

an R0-matrix, let us mention that A is an R0-matrix if and only if the solution set of

LCP (q, A) is bounded for all q ∈ R
n. Let us consider another class, a more general

class then the previous one. A ∈ Rn×n is called an R-matrix if for every α ≥ 0 and

for some q > 0 the problem LCP (αq,A) has only one solution (namely, zero). It is

a fact that if A is both a P0-matrix and an R0-matrix, then A is an R-matrix. It is

also known that any R-matrix is a Q-matrix. A ∈ Rn×n is called an S-matrix if there

exists z > 0 such that Az > 0. It can be proved that any P -matrix is an S-matrix.

It is rather well known that A is an S-matrix if and only if LCP (q, A) is feasible for

all q ∈ Rn. A ∈ Rn×n is called a copositive matrix if xTAx ≥ 0, for all x ∈ Rn
+.

A ∈ Rn×n is called a copositive-star matrix if A is copositive and for all x ∈ Rn
+ with

xTAx = 0, Ax ≥ 0 implies ATx ≤ 0. A result for copositive-star matrices is given in

the next result.

Theorem 6.1. (Corollary 3.8.14, [6]) Let A ∈ Rn×n be a copositive-star matrix.

Then the following statements are equivalent:
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(a) A is an S-matrix.

(b) A is an R0-matrix.

(c) A is a Q-matrix.

Theorem 6.2. (Theorem 3.9.22, [6]) Let A ∈ Rn×n be a P0-matrix. Then the

following statements are equivalent:

(a) A is an R0-matrix.

(b) A is an R-matrix.

(c) A is a Q-matrix.

We have the following result for certain subclasses of almost definite matrices.

Theorem 6.3. Let A ∈ Rn×n be an invertible almost definite matrix. Then the

following hold:

(a) If A is a copositive matrix, then A is an S-matrix and a Q-matrix, as well.

(b) If A is a P0-matrix, then A is both an R-matrix and a Q-matrix.

Proof. We prove that A is an R0-matrix. Let 〈x,Ax〉 = 0. Then we have in fact,

Ax = 0, since A is almost definite and so x = 0, since A is invertible. Hence, the

inequalities x ≥ 0, Ax ≥ 0 together with the complementarity condition 〈x,Ax〉 = 0,

imply that x = 0 and so A is an R0-matrix.

(a): Let A be a copositive matrix. Let x ≥ 0, Ax ≥ 0 and 〈x,Ax〉 = 0. Then Ax = 0

and since A is range symmetric, it follows that ATx = 0. This proves that A is a

copositive-star matrix. By Theorem 6.1, it now follows that A is an S-matrix and

also a Q-matrix.

(b): As A is an R0-matrix, the proof follows by appealing to Theorem 6.2.
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