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ON THE INVERSE OF A CLASS OF BIPARTITE GRAPHS WITH

UNIQUE PERFECT MATCHINGS∗

S. K. PANDA† AND S. PATI‡

Abstract. Let G be a simple, undirected graph and Gw be the positive weighted graph obtained

from G by giving weights to its edges using the positive weight function w. A weighted graph Gw

is said to be nonsingular if its adjacency matrix A(Gw) is nonsingular. Let G denote the class of

connected, unweighted, bipartite graphs G with a unique perfect matching M such that G/M (the

graph obtained by contracting the matching edges in G) is bipartite. Similarly, let Gw denote the

class of connected, weighted, bipartite graphs Gw with a unique perfect matching such that the

underlying unweighted graph G ∈ G. These graphs are known to be nonsingular. In (Inverses of

trees, Combinatorica, 5(1):33–39, 1985), Godsil showed that if G ∈ G, then A(G)−1 is signature

similar to a nonnegative matrix, that is, there exists a diagonal matrix D with diagonal entries ±1

such that DA(G)−1D is nonnegative. The graph associated to the matrix DA(G)−1D is called

the inverse of G and it is denoted by G+. The graph G+ is an undirected, weighted, connected,

bipartite graph with a unique perfect matching. Notice that unweighted trees which are nonsingular

are contained inside the class G.

In (On reciprocal eigenvalue property of weighted trees, Linear Algebra and its Applications,

438:3817–3828, 2013), Neumann and Pati have characterized graphs that occur as inverses of non-

singular, unweighted trees. We generalize this result and constructively characterize the class of

weighted graphs which can occur as the inverse of any graph in G. We also show that for a graph

G ∈ G, the inverse G+ ∈ G if and only if G ∼= G+ (isomorphic).

A weighted graph Gw is said to have the property R if for each eigenvalue λ of A(Gw), 1/λ is

also an eigenvalue of A(Gw). If further, the multiplicity of λ and 1/λ are the same, then Gw is said

to have property SR. A characterization of the class of nonsingular, weighted trees Tw with at least

8 vertices that have property R was given in (On reciprocal eigenvalue property of weighted trees,

Linear Algebra and its Applications, 438:3817–3828, 2013) under some restriction on the weights.

It is natural to ask for such a characterization for the whole of Gw, possibly with some weaker

restrictions on the weights. We supply such a characterization. In particular, for trees it settles an

open problem raised in (On reciprocal eigenvalue property of weighted trees, Linear Algebra and its

Applications, 438:3817–3828, 2013).
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1. Introduction. We consider simple, undirected graphs. If G is a graph, we

denote its vertex set by V (G) and its edge set by E(G). By Gw we denote the

weighted graph obtained from G by giving weights to its edges using the function

w : E(G) → (0,∞). The unweighted graph G may be viewed as a weighted graph

where each edge has weight 1. Let Gw be a weighted graph on vertices 1, . . . , n. The

notations i ∼ j (resp. i ≁ j) mean ‘i is adjacent j’ (resp. i is not adjacent to j). The

notation [i, j] is used to denote an edge. The adjacency matrix A(Gw) of Gw is the

square symmetric matrix of size n whose (i, j)th entry aij is given by

aij =

{

w([i, j]) if i ∼ j

0 otherwise.

We say λ is an eigenvalue of Gw if λ is an eigenvalue of A(Gw). The spectral radius

of Gw is denoted by ρ(Gw). If Gw is connected, then A(Gw) is irreducible and so

ρ(Gw) is simple with a positive eigenvector called a Perron vector. A weighted graph

Gw is singular (resp. nonsingular) if A(Gw) is singular (resp. nonsingular). A perfect

matching in a graph G is a spanning forest whose components are paths on two

vertices. Studying the properties of graphs by associating matrices with them is a

vast area of research; see [2, 4, 5, 6, 11].

Definition 1.1. Let G and H be two graphs. A mapping f : V (G) → V (H)

is an isomorphism of graphs if f is bijective and any two vertices u and v of G are

adjacent if and only if f(u) and f(v) are adjacent in H . If an isomorphism exists

between two graphs, then the graphs are called isomorphic and we write G ∼= H .

Definition 1.2. [9] Let G be a connected, bipartite, unweighted graph with a

unique perfect matching M. An edge in M is called a matching edge and other edges

are called nonmatching edges. By G/M, we denote the graph obtained from G by

contracting each matching edge to a single vertex. Let G denote the class of bipartite,

connected, unweighted graphs G with a unique perfect matching M such that G/M

is bipartite.

In [9], the author proved that if G ∈ G, then A(G)−1 is signature similar to a

nonnegative matrix, that is, there exists a diagonal matrix D with diagonal entries

±1 (called a signature matrix) such that DA(G)−1D is nonnegative. The weighted

graph associated to the matrix DA(G)−1D is called the inverse of G and it is denoted

by G+. Note that the inverse G+ of a graph G ∈ G is a bipartite graph with a

unique perfect matching. The notion of the inverse of a graph was motivated by

quantum chemistry. In [9], the author posed an open problem to characterize the

bipartite graphs G with a unique perfect matching such that G possesses an inverse.

In [1], Akbari and Kirkland characterized the bipartite, unicyclic graphs G with a

unique perfect matching such that G possesses an inverse. In [15], Tifenbach and

Kirkland supplied necessary and sufficient conditions for a bipartite graph with a
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unique perfect matching to possess an inverse. Note that, in both these documents

it was not necessary that G/M is bipartite. This necessary and sufficient condition

required some constructions involving the directed graphs and the undirected interval

graphs. In [15], the authors discussed different characteristics of the inverses of the

bipartite, unicyclic graphs with unique perfect matchings. The characteristics of the

inverses of the graphs in G is completely unknown.

It is known that for a tree G ∈ G, the inverse G+ is an unweighted graph; see

[7]. Consider a graph G ∈ G such that G+ is an unweighted graph. Then it is not

necessary that G+ ∈ G. For example, the path P6 on 6 vertices is in G, whereas its

inverse P+
6 , is not in G even though P+

6 is an unweighted graph. In [13, Theorem

2.6], the authors have characterized graphs which can occur as inverses of nonsingular

unweighted trees.

In Section 2, we supply different characteristics of the inverses of the graphs in

G. We also characterize the graphs G ∈ G such that G+ ∈ G. It turns out that for

a graph G ∈ G, the inverse G+ ∈ G if and only if G ∼= G+ (isomorphic). This adds

to the earlier studies on self dual graphs, see Tifenbach [16]. We give a constructive

characterization of the class of weighted graphs Hw that can occur as the inverse of

some graph G ∈ G, generalizing the result in [13].

Definition 1.3. Let G be an unweighted graph with a unique perfect matching.

We shall consider weight functions w such that w(e) = 1 for each matching edge e.

Let WG be the class of such weight functions on G.

The definition of the inverse of a weighted graph is same as that of an unweighted

graph. It is also an interesting problem to characterize the weighted, bipartite graphs

with unique perfect matchings which possess inverses. In Section 3, we show that for

each graph Gw ∈ Gw with w ∈ WG, the inverse G+
w always exists.

The following definition is taken from Frucht and Harary [8].

Definition 1.4. Let G1 and G2 be two graphs on disjoint sets of n and m

vertices, respectively. The corona G1 ◦ G2 of G1 and G2 is defined as the graph

obtained by taking one copy of G1 and n copies of G2, and then joining the ith vertex

of G1 to every vertex in the ith copy of G2. The corona G1 ◦G2 has n(m+1) vertices

and |E(G1)|+n(|E(G2)|+m) edges. The corona G ◦K1 is sometimes called a simple

corona, where Kp denotes the complete graph on p vertices. If T is a tree, then we

call T ◦K1 a corona tree. For an example, see the Figure 1.1.

A graph G is said to satisfy the property SR if 1/λ ∈ σ(G) whenever λ ∈ σ(G)

and both have the same multiplicity. Cvetkovic [7] and Godsil and McKay [10] have

shown that a tree has property SR if and only if it is a corona tree.
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Fig. 1.1. Corona of two graphs.

A graph G is said to satisfy the property R if 1/λ ∈ σ(G) whenever λ ∈ σ(G),

where the multiplicity condition is relaxed. Barik, Neumann and Pati [3] have charac-

terized the trees with property R. Interestingly, it turns out that a tree T has property

R if and only if it has property SR.

A characterization of the class of nonsingular, weighted trees Tw with at least

8 vertices that have property R was given in [13] under the restriction that each

matching edge has weight 1 and each nonmatching edge has weight at least 1.

Proposition 1.5. [13] Let T be a nonsingular tree on at least 8 vertices and

w ∈ WT such that w(e) ≥ 1 for each edge in T . Then the weighted tree Tw has

property R if and only if Tw = T ′
w ◦ K1, where T ′

w is an weighted tree with edge

weights at least 1.

In [13], the authors posed the question of whether this result is true even when

one allows the weights of the nonmatching edges to be any positive number. In Section

3, we answer this question affirmatively. Moreover, we supply a characterization of

the graphs Gw in {Gw : Gw ∈ Gw,w ∈ WG} which satisfy property R. It turns out

that they must be simple corona of connected, bipartite, weighted graphs.

2. Inverses of a class of graphs. We shall require a combinatorial description

of the inverse of a connected, bipartite graph with a unique perfect matching. The

description involves the term ‘alternating path’ which we define now.

Definition 2.1. Consider a graph G with a unique perfect matching M. A path

P = [u1, u2, . . . , u2k] is called an alternating path if the edges [ui, ui+1] ∈ M for each

i = 1, 3, . . . , 2k − 1 and the other edges are nonmatching edges.

The following description of the inverse of the adjacency matrix of a connected,

bipartite graph with a unique perfect matching is a restatement of results contained

in [1, 3]. We follow the convention that a sum over an empty set is zero.

Lemma 2.2. Let G be a connected, bipartite graph with a unique perfect matching.
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Let B = [bij ], where

bij =
∑

P (i,j)∈PG

(−1)(‖P (i,j)‖−1)/2,

where PG is the set of alternating paths in G, P (i, j) means an i-j-path and ‖P (i, j)‖

denotes the number of edges in P (i, j). Then B = A(G)−1.

Remark 2.3. Let G ∈ G. As G and G/M are bipartite, each cycle in G must

contain an even number of matching edges. It is clear that, if G ∈ G and a path from

i to j contains an odd (resp. even) number of nonmatching edges, then each path

from i to j must contain an odd (resp. even) number of nonmatching edges.

The following results will be used in the sequel.

Lemma 2.4. [9] Let G ∈ G. Then G+ exists. Furthermore, under a permutation

similarity A(G+) dominates A(G) entrywise.

Recall that PG is the set of alternating paths in G.

Corollary 2.5. Let G ∈ G. Then |PG| ≥ |E(G+)| ≥ |E(G)|.

Proof. If [i, j] ∈ E(G+), then there is an i-j-alternating path in G and in view of

Remark 2.3, we get the first inequality. The second one follows by Lemma 2.4.

Using Lemma 2.2 and Remark 2.3, one gets the following conclusion.

Lemma 2.6. Let G ∈ G and [i, j] ∈ E(G+). Then the weight of the edge [i, j]

in G+ is the total number of alternating i-j-paths in G. Hence G+ is an unweighted

graph if and only if the number of alternating i-j-paths is at most one.

Let Gu be the class of graphs G ∈ G such that G+ is unweighted. Considering

G = P6, we know that there are graphs in Gu such that G+ is not isomorphic to G.

In fact, G+ is not even in G. Question: Are there graphs in Gu for which G+ ∈ G

but G+ is not isomorphic to G?

Theorem 2.7. Let G ∈ Gu. Then the following are equivalent.

1) |PG| = |E(G)|.

2) G ∼= G+.

3) G+ ∈ G.

4) G = G1 ◦K1 for some connected bipartite graph G1.

Proof. 1)⇒2). It follows that |E(G+)| = |E(G)|. As G ∈ Gu using Lemmas 2.2,

2.4 and 2.6 we see that G ∼= G+. The proofs of 2)⇒3) and 4)⇒1) are trivial.

3)⇒4). Suppose that G is not a corona. Then there exists a matching edge [ui, u
′
i]

which is not a leaf. This can be extended to an alternating path [uk, u
′
k, ui, u

′
i, um, u′

m]
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in G. Hence the cycle [uk, u
′
i, ui, u

′
m, uk] ∈ G+. As this cycle contains only one

matching edge, it cannot be in G, a contradiction.

Remark 2.8. The equivalence of items 2. and 4. in Theorem 2.7 has previously

been observed in [14].

Lemma 2.9. [13] Let G be a bipartite, connected graph with a unique perfect

matching. Then G has at least two pendant (degree one) vertices.

The following theorem gives some structural information on connected, bipartite

graphs with unique perfect matchings.

Theorem 2.10. Let G be a connected, bipartite graph with a unique perfect

matching M. Then G has a pendant vertex v such that G−v−v′ is connected, where

v′ is the vertex adjacent to v.

Proof. In view of Lemma 2.9, take a pendant vertex u. Let u′ be adjacent to u.

If G − u − u′ is connected, we have nothing to prove. So, assume that G− u − u′ is

not connected. Let C be a component of G− u− u′.

Claim. The component C has a pendant vertex v which is also a pendant vertex

in G. To see the claim, note that C has pendant vertex (by Lemma 2.9), say v. If

v is not pendant vertex of G, then [u′, v] ∈ E(G). As C has a perfect matching M,

let [v, v′] ∈ M. Note that v′ ≁ u′, otherwise we have an odd cycle, which is not

possible. Thus, v′ ∼ v1 for some v1 ∈ C. Again, as C has a perfect matching M, let

[v1, v
′
1] ∈ M. Note again that v′1 ≁ u′, otherwise we have an odd cycle, which is not

possible. Continue the process. As C is finite, we must have a repetition of a vertex,

say w, for the first time. Our walk so far must look like [v, v′, v1, v
′
1, . . . , v

′
j−1, vj , w] or

[v, v′, v1, v
′
1, . . . , v

′
j−1, w]. As each vertex on [v, v′, v1, v

′
1, . . . , v

′
j−1] have already been

matched, our walk so far cannot look like [v, v′, v1, v
′
1, . . . , v

′
j−1, vj , w]. So our walk

so far looks like [v, v′, v1, v
′
1, . . . , v

′
j−1, w]. If w ∈ {v, v1, . . . , vj−2}, then we have an

alternating cycle giving us more than one perfect matching. If w ∈ {v′, v′1, . . . , v
′
j−2},

then we have an odd cycle, which is not possible. Thus, the claim is justified.

Now we continue the main proof. Select a pendant vertex v of G which is in C.

Let v be adjacent to v′. If G − v − v′ is connected, then we have nothing to prove.

So, suppose that G − v − v′ is disconnected. Consider a component C′ which does

not contain u′. Then C′ is a strict subgraph of C with less number of vertices. So

C′ has a pendant vertex which is also a pendant vertex in G. As G is finite, this

process cannot be continued indefinitely, so we finally get a pendant vertex w of G

which is adjacent to w′ and G−w−w′ has a component which is just an edge [x, x′].

Assume (in view of Lemma 2.9) that x is a pendant vertex of G. Then dG(x
′) = 2
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and G− x− x′ is connected.

Proposition 2.11. Let G ∈ G. Take a pendant vertex u which is adjacent to

u′ such that G− u− u′ is connected. Let NG(u
′) = {v1, v2, . . . , vm}. Then each path

from vi to vj contains an even number of matching edges.

Proof. Suppose that there is a path P (vi, vj) from vi to vj contains an odd

number of matching edges. Then the cycle Γ = [u′, P (vi, vj), u
′] has an odd number

of matching edges. This contradicts the fact that G ∈ G.

Lemma 2.12. Let G ∈ G have n ≥ 4 vertices and let H = G+. Then there exist

vertices u′, u, v1, v2, . . . , vm ∈ H such that

1. u′ is pendant in H;

2. u ∼ u′ and for each i = 1, . . . ,m, we have u′ ≁ vi in H;

3. NH(u) = ∪m
i=1NH(vi) ∪ {u′}; and

4. for each x ∈ ∪m
i=1NH(vi) we have wH([u, x]) =

∑

vi∼x wH([vi, x]).

Proof. We use Proposition 2.11 and select u, u′, v1, v2, . . . , vm ∈ G as described

there. Using Lemma 2.2, we see that u′ is pendant, u′ ∼ u and for each i = 1, . . . ,m,

u′ ≁ vi in H .

Let x ∈ ∪m
i=1NH(vi). Then there is an alternating path from some vi to x in G.

Hence an alternating path from u to x exists in G. Using Remark 2.3, we see that

[u, x] ∈ E(H).

Conversely, if x ∼H u and x 6= u′, then there is an alternating path P from u to

x in G. As u is pendant and u ∼G u′, the third vertex on P must be some vi. Then

P − u− u′ gives an alternating path from vi to x in G. Thus x ∼H vi.

The final assertion follows from the fact that wH([u, x]) is the number of alter-

nating paths from u to x in G and when we delete u and u′ from each such path we

get an alternating path from some vi to x in G.

We have the following extension of Theorem 2.2 of [13].

Theorem 2.13. Let F1 = {P2} and F2 = {P4}. Notice that graphs in Fi are

precisely the inverses of graphs of order 2i in G. Assume that we have constructed the

graph class Fk−1 which consists of the graphs which can occur as the inverse of some

graph of order 2(k − 1) in G. Now we construct Fk in the following manner.

1. Take a graph Hk−1 ∈ Fk−1. Take a disjoint union of [u, u′] with Hk−1.

2. Choose a set of vertices S = {v1, v2, . . . , vm} in Hk−1 such that

distHk−1
(vi, vj) is even and no path from vi to vj in H+

k−1 contains an odd

number of matching edges for i, j = 1, 2, . . . ,m.

3. For each x ∈ ∪m
i=1NHk−1

(vi), add the edge [u, x] and put the weight w([u, x]) =
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∑

x∼vi
wHk−1

([x, vi]) and the weight w([u, u′]) = 1.

Then Fk consists of the graphs of order 2k which occur as the inverses of the graphs

in G.

Before we supply a proof let us illustrate the theorem by constructing one element

from F3 and one element from F4.

Note that H2 = P4 = [x, x′, y, y′] ∈ F2 and H+
2 = [x′, x, y′, y] ∈ G. We take

a disjoint union of H2 and [u, u′]. We cannot choose more than one vertices from

H2 which satisfy Condition 2 in the hypothesis in Theorem 2.13. So, let us choose

S = {y}. Now, NH2
(y) = {x′, y′}. Now we add the edges [u, x′] and [u, y′]. Since

the weights of the edges [x′, y] and [y, y′] are 1 in H2, using Condition 3, we put

w([u, x′]) = w([u, y′]) = 1. This graph H3 is shown in Figure 2.1. By using Lemma

2.2, we see that H+
3 = P6 = [x′, x, y′, y, u′, u].

b b b bb b

b

b

x x′ y y′

u

u′

H2

b b b bb b

x′ x y′ y

H+
2

b b b bb b

b

b

b

b

b

b
x x′ y y′

u

u′

H3

b b b b b bb b b b

x′ x y′ y u′ u

H+
3

Fig. 2.1. Construction of a graph H3 in F3.

Now, let us take a disjoint union of H3 and [u1, u
′
1]. Take S = {x, u}. Then

these vertices have even distance among them in H3 and no path among them in H+
3

contain an odd number of matching edges. This satisfy Condition 2 in the hypothesis

of Theorem 2.13. Notice that NH3
(x) = {x′} and NH3

(u) = {u′, x′, y′}. Now we

add the edges [u1, x
′], [u1, y

′] and [u1, u
′]. Using Condition 3, we put w([u1, x

′]) = 2

because x′ is in NH3
(x)∩NH3

(u). Similarly, we put w([u1, y
′]) = 1 and w([u1, u

′]) = 1.

The new graph H4 and its inverse H+
4 are shown in Figure 2.2.

Now we prove the theorem.

Proof. Let G ∈ G of order 2k and G+ = H . By using Proposition 2.11 and

Lemma 2.12, there exist vertices u′, u, v1, v2, . . . , vm ∈ G such that

1. u is pendant and u ∼ u′ in G;

2. NG(u
′) = {v1, v2, . . . , vm};

3. u′ is pendant in H ;
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Fig. 2.2. Construction of a graph H4 in F4.

4. u ∼ u′ and for each i = 1, . . . ,m, we have u′ ≁ vi in H ;

5. NH(u) = ∪m
i=1NH(vi) ∪ {u′}; and

6. for each x ∈ ∪m
i=1NH(vi) we have wH([u, x]) =

∑

vi∼xwH([vi, x]).

It is clear that G−u−u′ ∈ G. By the hypothesis there is a graph H ′ ∈ Fk−1 such

that (G − u − u′)+ = H ′. Then the graph H − u − u′ = H ′ and H ∈ Fk. Therefore

the inverses of the graphs G ∈ G of order 2k lie in Fk.

Now we show that each Hk ∈ Fk is the inverse of some graph G ∈ G or order 2k.

Let Hk ∈ Fk. Then Hk is constructed in the following manner.

1. Take a graph Hk−1 ∈ Fk−1. Take a disjoint union of [u, u′] with Hk−1;

2. Choose a set of vertices S = {v1, v2, . . . , vm} in Hk−1 such that

distHk−1
(vi, vj) is even and no path from vi to vj in H+

k−1 contains an odd

number of matching edges for i, j = 1, 2, . . . ,m;

3. For each x ∈ ∪m
i=1NHk−1

(vi), add the edge [u, x] and put the weight

wHk
([u, x]) =

∑

x∼vi
wHk−1

([x, vi]) and the weight wHk
([u, u′]) = 1.

By the hypothesis there is a graph Gk−1 ∈ G such that G+
k−1 = Hk−1. Now take

the disjoint union of Gk−1 and [u, u′]. Adding the edges [u′, v1], . . . , [u
′, vm] we get a

new graph Gk. It is clear that Gk ∈ G. By Lemma 2.12, G+
K = Hk. Therefore each

graph Hk ∈ Fk is the inverse of some graph in G of order 2k. Hence we conclude

that the class Fk consists of the graphs of order 2k which occur as the inverses of the

graphs in G. The proof is complete.
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3. Property R of graphs in Gw with w ∈ WG. Let Gw ∈ Gw, that is, Gw is

a weighted, connected, bipartite graph with a unique perfect matching such that the

underlying unweighted graph G ∈ G. Recall that WG be the class of weight functions

w on G such that w(e) = 1 for each matching edge e. A characterization of the class

of the nonsingular, weighted trees Tw with at least 8 vertices, having property R was

given in [13] under the restriction that w ∈ WT and w(e) ≥ 1 for each edge.

Let Gw ∈ Gw with w ∈ WG. One would expect G+
w to exist. Indeed, it is

true. In this section, we first prove this. Then we characterize the class of graphs

in Gw with w ∈ WG which have property R. This characterization gives the answer

to the question which was posed in [13]. We shall use the following result which is a

restatement of a result in [13].

Lemma 3.1. Let Gw be a weighted, connected, bipartite, graph with a unique

perfect matching M. Define g(e) = −w(e), if e /∈ M, and g(e) = 1
w(e) , if e ∈ M. Let

B = [bij ], where

bij =
∑

P (i,j)∈PGw

∏

e∈P (i,j)

g(e),

where PGw
is the set of alternating paths in Gw and P (i, j) means an i-j-path. Then

B = A(Gw)
−1.

The following is an extension of Theorem 2.2 of [9] to the weighted case. If P is

a path we use w(P ) to mean the weight of P , which is the product of the weights of

the edges on P .

Theorem 3.2. Let Gw ∈ Gw with w ∈ WG. Then G+
w exists. Take the permu-

tation matrix P = [pij ] given by the matching, that is, pij = 1 if [i, j] is a matching

edge and 0, otherwise. Then P−1A(G+
w)P ≥ A(Gw).

Proof. First, we define a signature matrix D in the following way. Put d11 = 1.

For i 6= 1, put dii = 1 if any path (hence each path, by Remark 2.3) from 1 to i

contains an even number of nonmatching edges; otherwise we put dii = −1.

Assume that DA(Gw)
−1D � 0, that is, there exist i and j such that

diiA(Gw)
−1
i,j djj < 0. First suppose that A(Gw)

−1
i,j < 0. Then dii = djj . So the

parities of the number of nonmatching edges on any 1-i-path and any 1-j-path are

the same. Hence, any i-j-path must contain an even number of nonmatching edges.

In that case, A(Gw)
−1
i,j must be nonnegative, by Lemma 3.1. A similar contradiction

is obtained if A(Gw)
−1
i,j > 0. Hence DA(Gw)

−1D ≥ 0, that is , G+
w exists.

To prove the next statement, let M = {[uk, u
′
k] : k = 1, . . . , 2n}. Now de-

fine a map f : V (Gw) → V (Gw) such that f(uk) = u′
k and f(u′

k) = uk. Us-

ing the description of A(Gw)
−1 from Lemma 3.1, we see that, for each match-
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ing edge [uk, u
′
k] ∈ E(Gw), the edge [f(uk), f(u

′
k)] = [u′

k, uk] ∈ E(G+
w). In fact,

A(G+
w)u′

k
,uk

= 1. Thus A(G+
w)f(uk),f(u′

k
) = A(Gw)uk,u′

k
.

For any nonmatching edge [u, v] ∈ E(Gw), we have an alternating path P ∗ =

[u′, u, v, v′] of length 3 from u′ to v′. Hence, each alternating path from f(u) = u′ to

f(v) = v′ contains an odd number of nonmatching edges. Using of the description of

A(Gw)
−1 from Lemma 3.1, we see that [u′, v′] = [f(u), f(v)] ∈ E(G+

w) and

A(G+
w)u′,v′ =

∣

∣

∣

∣

∣

∣

∑

P (u′,v′)∈PGw

∏

e∈P (u′,v′)

g(e)

∣

∣

∣

∣

∣

∣

=
∑

P (u′,v′)∈PGw

w(P (u′, v′))

≥ w(P ∗) = w([u, v]) = A(Gw)u,v.

It follows that P−1A(G+
w)P ≥ A(Gw).

The following is another crucial observation.

Lemma 3.3. Let Gw ∈ Gw with w ∈ WG. Let ρ be the spectral radius of Gw.

Then 1/ρ is the smallest positive eigenvalue of Gw if and only if Gw
∼= G+

w .

Proof. By using Theorem 3.2, we see that P−1A(G+
w)P ≥ A(Gw), where P is the

permutation matrix given by the matching. As 1/ρ is the smallest positive eigenvalue

of Gw, we see that ρ is the spectral radius of G+. As G+ is connected, using Perron-

Frobenius theory [13, sec 8.1], we get P−1A(G+
w)P = A(Gw). Hence Gw

∼= G+
w . The

converse is straight forward.

Lemma 3.4. Let Gw ∈ Gw with w ∈ WG, be such that Gw
∼= G+

w . Then Gw is

a simple corona of a weighted, connected, bipartite graph G′
w, where edge weights can

be any positive real number..

Proof. Let Gw ∈ Gw be such that Gw
∼= G+

w . Hence by Remark 2.3, each cycle in

G+
w has an even number of nonmatching edges. Let M = {[uk, u

′
k] : k = 1, . . . , 2n}.

Suppose that there is a matching edge, say [ui, u
′
i], such that neither of ui and u′

i

is a pendant vertex. Then we can find an alternating path [v′, v, u′
i, ui, w

′, w] of length

5. In view of Lemma 3.1 and Remark 2.3, we see that [v′, ui, u
′
i, w, v

′] is a cycle in

G+
w and it contains an odd number of nonmatching edges. We have a contradiction.

Hence, each matching edge must have a pendant endvertex. Noting that the

weight of each matching edge is 1, we see that Gw is a simple corona Hw ◦K1, Hw is

an weighted, connected, bipartite graph.

The following known result will be required in the sequel.

Lemma 3.5. [13] Let G′
w be a weighted, bipartite graph. Let Gw be obtained from

G′
w by adding a new pendant vertex to each vertex of G′

w and by taking the weight of

the new edges to be 1. Then Gw has property SR.
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The following is an extension of Theorem 4.6 in [13]. It is our main result of this

section. It answers the question raised in [13] affirmatively.

Theorem 3.6. Let G ∈ Gw with w ∈ WG. Then the following are equivalent.

1. Gw has property SR.

2. Gw has property R.

3. Gw
∼= G+

w .

4. Gw = G′
w ◦K1 where G′

w is a weighted, connected, bipartite graph where edge

weights can be any positive real number.

Proof. 1)⇒2). It follows from the definition of property R.

2)⇒3). Let ρ be the spectral radius of Gw. Since Gw has property R, so 1/ρ is

the smallest positive eigenvalue of Gw. Then by using Lemma 3.3, we get Gw
∼= G+

w .

3)⇒4). The proof follows by using Lemma 3.4

4)⇒1). The proof follows by using Lemma 3.5.

4. Conclusion. The notion of the graph inverse was defined by C. D. Godsil in

[9] for bipartite graphs with a unique perfect matching. In the same article, author

supplied a class of graphs (which we denoted by G, see, Definition 1.2) which possess

inverses. In this article, we have extended this notion of graph inverse to weighted

graphs keeping the weights of the matching edges 1. The characteristics of the in-

verses of the graphs G ∈ G have never been discussed in general. In this article, we

have supplied some characteristics of the inverses of the graphs G ∈ G. In [13], the

graphs which can occur as the inverse of some nonsingular trees have been charac-

terized. Generalizing their result, we have supplied a constructive characterization of

the inverses of the graphs G ∈ G. In [14], authors showed that for any graph G ∈ G,

we have G ∼= G+ if and only if G is a simple corona of a connected, bipartite graph.

It is clear that, if G is a simple corona, then G+ ∈ G. So, one naturally wonders

whether the simple coronas of bipartite, connected graphs are the only class of graphs

G ∈ G such that G+ ∈ G. We have answered this question affirmatively in Theorem

2.7 and we have seen that the class of graphs G ∈ G such that G+ ∈ G is same as the

class of graphs G ∈ G such that G ∼= G+. We also have shown that for any graph

Gw ∈ Gw with w ∈ WG, the inverse G+
w exists. If we consider the weight function

w ≡ 1, then we get Theorem 2.2 of [9]. As an application of these results, we have

characterized the class of graphs Gw ∈ Gw with w ∈ WG such that Gw has property

R (resp. property SR). This characterization gives the answer to an open problem

which was posed in [13].
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