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OPEN PROBLEMS IN THE THEORY OF COMPLETELY POSITIVE

AND COPOSITIVE MATRICES∗
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Abstract. We describe the main open problems which are currently of interest in the theory

of copositive and completely positive matrices. We give motivation as to why these questions are

relevant and provide a brief description of the state of the art in each open problem.
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1. Introduction. A real symmetric matrix A is called completely positive if it

can be written as A = BBT for some, not necessarily square, nonnegative matrix B.

The set of n×n completely positive matrices forms a proper cone (i.e., closed, convex,

pointed, and full dimensional) which we denote by CPn. A real symmetric n × n

matrix A is called copositive if xTAx ≥ 0 for all x ∈ Rn
+. The set of n× n copositive

matrices also forms a proper cone which we denote by COPn. These cones are dual

to each other under the trace inner product 〈A,B〉 = trace(AB) of the space Sn of

real symmetric n× n matrices.

It is easy to see that any n × n completely positive matrix A is also positive

semidefinite (i.e., A ∈ PSDn) and symmetric entrywise nonnegative (i.e., A ∈ Nn).

Such matrices are called doubly nonnegative, and they also form a proper cone, de-

noted by DNN n. Hence we have CPn ⊆ DNN n. On the copositive side, it is easy

to see that

COPn ⊇ PSDn +Nn.
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For n ≤ 4 we have CPn = DNN n and COPn = PSDn +Nn, whereas for n ≥ 5 the

inclusions are strict, see [19, 49]. An example of a copositive matrix which is not in

PSDn +Nn is the Horn matrix H given by [32]:

H =















1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1















∈ COP5 \ (PSD5 +N5) (1.1)

Copositive and completely positive matrices have many applications, including block

designs, complementarity problems, a model of energy demand, exchangeable prob-

ability distributions, a Markovian model of DNA evolution and maximin efficiency-

robust tests, see [10, pp. 69–70] and the references therein. More recent applications

are in data mining and clustering [25], and in dynamical systems and control [48, 8].

A field where copositive and completely positive matrices have received consider-

able attention in recent years is mathematical optimization: it has been shown that

many combinatorial and nonconvex quadratic optimization problems can be formu-

lated as linear problems over CPn or COPn. In this formulation, the difficulty lies

entirely in the cone constraint, as all the other constraints are linear. This has allowed

for a completely new angle on combinatorial and nonconvex quadratic optimization

problems and has triggered an increased interest in the cones CPn and COPn. For

surveys on copositive programming see [13, 29].

In this paper, we describe some of the open problems related to these cones of

matrices. The open questions are interesting in their own right, but answering them

would also be highly useful for optimization. Our description is divided into four

parts: membership, geometry, factorization, optimization.

2. Checking membership in COPn and CPn. It has been proved in [50] that

checking whether a given matrix is in COPn is a co-NP-complete problem. For the

dual cone, the same complexity is expected, and it was shown in [23] that checking

membership in CPn is NP-hard. It is open whether checking membership in CPn is

also NP-complete. In [9] it was shown that a finite algorithm for deciding whether

a matrix A ∈ Nn is completely positive does exist, but with a highly nonpolynomial

bound on the number of operations required.

For matrices with special structure, the results are obviously better: as shown

in [14], copositivity of tridiagonal matrices can be checked in linear time, and the

same is true for acyclic matrices [40]. Analogous results have been given for complete

positivity in [21].

In view of these complexity results, it is unlikely that an efficient procedure to
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verify membership of a matrix in either COPn or CPn exists. However, any progress

in this question would be useful. Below we outline some known results. We start

with CPn.

As mentioned in the introduction, an obvious necessary condition for A ∈ CPn is

that A ∈ DNN n. This necessary condition is not sufficient, for example

A =















1 1 0 0 1

1 2 1 0 0

0 1 2 1 0

0 0 1 1 1

1 0 0 1 3















∈ DNN 5 \ CP5,

since 〈A,H〉 < 0, with H as in (1.1).

A number of conditions for complete positivity have been given in terms of the

graph of the matrix. Recall that the graph G(A) of an n×n symmetric matrix A has

n vertices and an edge between i and j if and only if i 6= j and aij 6= 0. Conversely,

for a graph G, a doubly nonnegative matrix realization of G is a matrix A ∈ DNN n

such that G(A) = G. With this definition we can state a qualitative condition for the

necessary condition to be sufficient: Every doubly nonnegative matrix realization of

a graph G is completely positive if and only if G does not contain an odd cycle of

length at least 5 (a long odd cycle), see [45, 1, 46]. A new proof was found in [62].

An easily checkable sufficient condition for complete positivity was given in [44]: a

diagonally dominant matrix A ∈ Nn is completely positive. This result was extended

by [28], who showed that if A ∈ Nn and its comparison matrix M(A) is positive

semidefinite, then A is completely positive, where the comparison matrix M(A) is

defined by

M(A)ij =

{

|aii| if i = j

−|aij | if i 6= j.

The converse result is true for n ≤ 2, but for n = 3 the following matrix provides a

counterexample:




1 1 1

1 1 1

1 1 1



 .

In fact, by [28] and [11], triangle-free graphs are exactly the graphs G that have the

following property: A symmetric nonnegative realization A of G is completely positive

if and only if M(A) ∈ PSDn.

Other graph-based characterizations of complete positivity were given in [3, 2, 12,

58]. More sufficient conditions, which are not graph related, were given in [55, 65].
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It would be interesting to obtain additional, graph dependent or not, conditions for

complete positivity.

As for the question of membership in COPn: A matrix A is copositive if and only

if no principal submatrix of A has a positive eigenvector corresponding to a negative

eigenvalue [43]. Unfortunately, this characterization is obviously not practical for

checking copositivity of large matrices. However, spectral information can be useful:

it was shown in [41] that for an indefinite symmetric matrix A with exactly one

positive eigenvalue we have that A ∈ COPn if and only if A ∈ Nn.

There are a couple of simple necessary conditions to keep in mind when checking

copositivity: for A ∈ COPn, we have aii ≥ 0 for all i, and if aii = 0, then aij ≥ 0 for

all j. The matrix A is copositive if and only if its maximal principal submatrix with

positive diagonal is copositive.

If A is a symmetric matrix with a positive diagonal, then there exists a positive

diagonal matrix D such that (DAD)ii = 1 for all i. We have A ∈ COPn if and only

if DAD ∈ COPn. This scaling invariance of COPn was used in [22] to give a full

characterization of COP5:

COP5 = {DAD | D is a positive diagonal matrix, and A is such that the

polynomial
(

∑5

i,j=1
aijx

2
i x

2
j

)(

∑5

k=1
x2
k

)

is a sum of squares}.

A necessary condition for copositivity of matrices A with aii = 1 for all i is that

aij ≥ −1 for all i, j. Moreover, it suffices to consider such matrices whose off-diagonal

entries do not exceed 1, since increasing entries of a copositive matrix does not change

the copositivity.

The {0,±1} copositive matrices were fully characterized in [35] and [39]. The

characterization involves the graph of the −1 entries in the matrix.

Another case for which copositivity is fully characterized is that of symmetric

matrices whose off-diagonal entries are nonpositive. Such a matrix is copositive if

and only if it is positive semidefinite [38]. For what other classes of matrices can

copositivity be fully characterized?

Matrices can be seen as tensors of order 2, so it seems natural to extend the notions

of copositivity and complete positivity to tensors. This was done in [53] and [54],

respectively. In [53] it was shown that any symmetric tensor whose off-diagonal

entries are nonpositive is copositive if and only if it is positive semidefinite. In [64]

a characterization of copositivity in terms of eigenvectors of principal subtensors was

proved, similar to the result for matrices. In [54], the diagonal dominance sufficient

condition for complete positivity was extended to tensors. It would be interesting to

find a characterization of complete positivity in terms of comparison tensors.
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3. Geometry of the cones COPn and CPn.

3.1. Extremal rays. We say that a matrix A ∈ K generates an extreme ray of

a convex cone K, if it cannot be decomposed in a nontrivial manner, i.e., if A = B+C

with B,C ∈ K implies that B and C are multiples of A. The set of extreme rays

spans the cone, so it is of interest to study the extreme rays of COPn and CPn.

It is well known (see, e.g., [10]) that the extreme rays of CPn are given by the

rank-1 matrices xxT with x ∈ Rn
+. By duality, this means that for any x ∈ Rn

+ the

set {Y ∈ Sn | 〈Y, xxT 〉 = 0} is a supporting hyperplane of COPn.

The extreme rays of PSDn and Nn are also well known: The extreme rays of

PSDn are the rank-1 matrices xxT with x ∈ Rn, and the extreme rays of Nn are

the matrices Eij , having all entries equal to 0 except entries ij and ji which are 1

(possibly i = j).

The extreme rays of the doubly nonnegative cone DNN n are not fully understood.

Partial results, which include an explicit description of the extreme rays of DNN n

for n ≤ 6, are given in [67] and [33].

It is an open question to characterize the extreme rays of COPn for n > 5. For

n ≤ 4, it is clear that the extreme rays of COPn equal the extreme rays of PSDn+Nn.

It has been shown in [32] that these are given by

(a1) the extreme rays of Nn, i.e., the matrices Eij described above;

(a2) and the rank-1 matrices xxT where x ∈ Rn has both positive and negative

entries.

The 5×5 case was solved only a few years ago in [37]. For this, it is important to note

that for a given permutation matrix P and a diagonal matrix D with strictly positive

diagonal entries, we have that X is extreme for COPn if and only if DPXPTD is.

It was proved in [37] that COP5 has exactly four types of extremal matrices: the

matrices given in (a1) and (a2) above, matrices of the form DPHPTD, where H is

the Horn matrix from (1.1), and matrices of the form DPS(θ)PTD, where

S(θ) :=















1 − cos θ1 cos(θ1 + θ2) cos(θ4 + θ5) − cos θ5
− cos θ1 1 − cos θ2 cos(θ2 + θ3) cos(θ5 + θ1)

cos(θ1 + θ2) − cos θ2 1 − cos θ3 cos(θ3 + θ4)

cos(θ4 + θ5) cos(θ2 + θ3) − cos θ3 1 − cos θ4
− cos θ5 cos(θ5 + θ1) cos(θ3 + θ4) − cos θ4 1















,

where θ ∈ R5
++ is such that

∑5

i=1
θi < π. The proof of [37] does not easily carry over

to copositive matrices of higher order, as the number of cases to be studied would

grow very fast. Attempts in this direction can be found in [24, 36], but it is likely

that, to tackle the n× n case for n > 5, different techniques are needed.
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We mention that for general n, the extreme matrices of COPn which have entries

from {0,±1} were characterized by [35] and [39].

3.2. Facial structure of COPn and CPn. A question related to characterizing

the extreme rays of COPn and CPn is the question to characterize the faces of both

cones. Recall that a set F ⊆ K is called a face of the closed convex cone K, if any

line segment in K with an interior point in F has both endpoints in F . Clearly, an

extreme ray of K is a face of dimension 1.

The facial structure of COPn and CPn is not yet fully understood. Partial results,

including a description of the maximal faces, are given in [20].

A question related to this is whether CPn is facially exposed. Let K be a closed

convex cone in Sn, and let F 6= ∅ be a face of K. Then F is called an exposed face of K
if it is the intersection of K and a non-trivial supporting hyperplane, i.e., if there exists

A ∈ Sn \ {0} such that K ⊆ {X ∈ Sn | 〈A,X〉 ≥ 0} and F = {X ∈ K | 〈A,X〉 = 0}.
A cone K is called facially exposed if all its faces are exposed.

Facial exposedness of a cone and the related concept of niceness of a cone (see [51])

play a role in optimization, since for nice cones it is possible to design so called facial

reduction algorithms (cf. [52] and references therein).

It is well known (cf. [51]) that both PSDn and Nn are facially exposed. Since the

intersection of facially exposed cones is facially exposed, DNN n is facially exposed.

In [20, Theorem 4.4] it is shown that COPn is not facially exposed, since the

extreme rays Eii of COPn are not exposed. This immediately implies that the cone

PSDn +Nn is not facially exposed. We see from this that it may happen that a cone

is facially exposed whereas its dual is not.

It is unknown whether CPn is facially exposed. In [20, Theorem 4.2] it was shown

that every extreme ray of CPn is also exposed, however the general question remains

open.

3.3. Maximal angle between matrices in COPn. There are different mea-

sures for the size of a convex cone K. One such measure, proposed in [38], is the

maximal angle

θmax(K) := max{arccos〈X,Y 〉 : X,Y ∈ K, ‖X‖ = ‖Y ‖ = 1}.

It is not difficult to see that for all n ≥ 2 we have

θmax(PSDn) = θmax(Nn) = θmax(DNN n) = θmax(CPn) = π/2.

In [38, Prop. 6.13] it was proved that θmax(COP2) = 3π/4, and it was conjectured

that θmax(COPn) = 3π/4 for all n ≥ 2. However, this was disproved in [30], where it
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was shown that

lim
n→∞

θmax(COPn) = π. (3.1)

The proof is based on constructing sequences of matrices Pk ∈ PSDnk
and Nk ∈ Nnk

of increasing order with limk→∞ arccos〈Pk, Nk〉 = π. Since Pk, Nk ∈ COPnk
and

COPn is pointed for all n, this implies (3.1). It remains an open question to compute

θmax(COPn) as well as θmax(PSDn + Nn) for finite n > 2, and to verify whether

these angles are always attained at a pair of matrices P ∈ PSDn and N ∈ Nn.

4. Factorization of completely positive matrices.

4.1. Finding a factorization of a matrix in CPn. Apart from discussing

properties of the cone CPn, it is also interesting to study the factorization of matrices

in this cone: a representation A = BBT with B ≥ 0 is called a cp-factorzation of A.

The basic open problem is: given A ∈ CPn, determine a cp-factorization of A.

In [66], a factorization algorithm was proposed which is based on projections onto

polyhedral inner approximations of CPn. In theory, this algorithm can factorize any

matrix in the interior of CPn, but it generally fails for a matrix on the boundary. What

is more, the computation time is usually quite high, and the resulting factorization

is often not very nice in the sense that the matrix B has far more columns than a

minimal B would have.

A method to factorize a diagonally dominant matrix in Nn is proposed in [44].

This method can be extended to matrices whose comparison matrixM(A) is in PSDn,

by applying a scaling that uses the Perron vector associated with M(A), cf. [28].

Only partial results are known as to finding a factorization of A given that G(A)

has a certain structure. The case of a matrix with a bipartite graph is treated in [6].

The factorization of circular as well as acyclic matrices is solved in [21], where also

some preprocessing strategies are discussed. Other results would be of interest as well.

A slightly different open question concerns the existence of rational factorizations:

Given a matrix A ∈ CPn all of whose entries are integral, does A always have a

rational cp-factorization? By a rational cp-factorization of A ∈ CPn, we mean a

representation of the form

A =

k
∑

i=1

αibib
T
i , where αi ∈ Q, bi ∈ Qn for all i.

This question is related to the open problem of determining whether the membership

problem for CPn is NP-complete, since such a factorization would be a certificate for

A ∈ CPn. It would then be necessary to verify that the coding length of the rational

cp-factorization is polynomially bounded by the coding length of A.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 29, pp. 46-58, September 2015



ELA

Open Problems in the Theory of Completely Positive and Copositive Matrices 53

4.2. Computing the cp-rank. Typically, a completely positive matrix has

many cp-factorizations. The minimal number of columns of a nonnegative B such

that A = BBT is called the cp-rank of A, and denoted here by cpr(A). Finding

the cp-rank of a given completely positive matrix, or estimating it, is a basic open

problem.

A tight upper bound on the cp-rank in terms of the rank is known. For A ∈ CPn

with rank(A) = r, we have

cpr(A) ≤ 1

2
r(r + 1)− 1.

This bound was proved in [4], improving on [34]. The bound is attained by a rank r

completely positive matrix of unknown order.

A similar problem is that of finding a tight upper bound on the cp-rank in terms

of the order, i.e., determining

pn := max{cpr(A) | A ∈ CPn}.

For matrices of small order (n ≤ 4) it is long known that pn = n, see [49]. But for

n > 4 this problem is still not fully resolved, in spite of significant progress in recent

years. In 1994 it was conjectured by [28] that pn = ⌊n2/4⌋ for every n ≥ 4. The proof

of this conjecture (the DJL conjecture) for n = 5 was completed a couple of years

ago in [63], combined with [47]. However, recently the DJL conjecture was refuted

for n ≥ 7 in [17, 16]. By [61] and [16], it is now known that

pn ≤ 1

2
n(n+ 1)− 4 for n ≥ 6,

and

pn ≥ 1

2
n(n+ 1)− 4−

√
2n3/2 + 3

2
n for n ≥ 15.

Determining an exact formula for pn is still an open problem, as is the question

whether the DJL conjecture holds for n = 6. We conjecture the answer to the latter

question is “yes”, but so far it has only been shown in [56] that the DJL bound

on the cp-rank is valid for certain matrices on the boundary of CP6. These include

all the positive nonsingular matrices on the boundary, and since pn is attained at a

nonsingular matrix on the boundary of CPn, cf. [63], it remains to show that the cp-

rank of nonsingular nonpositive 6×6 completely positive matrices is at most 62/4 = 9.

It is an open problem to characterize those matrices for which the DJL bound

holds. Some results of this nature exist, mostly depending on the graph of the matrix.

For a graph G on n vertices, let

cpr(G) := max{cpr(A) | A is a completely positive realization of G}.
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It was proved in [28] that for a triangle-free graph G which is not a tree, cpr(G)

equals the number of edges of G. It is well known that the number of edges in a

triangle-free graph on n vertices is at most ⌊n2/4⌋, thus for any triangle-free graph G

on n ≥ 4 vertices we have cpr(G) ≤ n2/4, which was part of the motivation for the

DJL conjecture. It was then shown in [27] that the same bound on cpr(G) applies

also for graphs with no long odd cycle.

Let tf(G) denote the maximum number of edges in a triangle-free subgraph of G.

It was shown in [57] that tf(G) ≤ cpr(G) for every graph G. If G satisfies cpr(G) =

tf(G), then the inequality cpr(G) ≤ n2/4 holds. In [57] some graph families were

found for which the equality cpr(G) = tf(G) holds whenever tf(G) ≥ n: the no long

odd cycle graphs, graphs that have no triangle-free subgraph with more edges than

vertices, and outerplanar graphs (i.e., graphs that can be drawn in the plane so that

no two edges cross, and all the vertices lie on the boundary of the outer face). Thus

for all such graphs the DJL bound applies. It is an open problem to find a complete

characterization of those graphs for which cpr(G) = tf(G).

Note that in many cases tf(G) may be much smaller than the DJL bound. For any

graph which has no triangle-free subgraph with more edges than vertices, the actual

upper bound is the number of vertices of the graph, cf. [60], and for outerplanar graphs

the actual bound is smaller than the number of edges in a maximal outerplanar graph,

i.e., 2n− 3.

We mention that the DJL bound on the cp-rank holds for all matrices with a

positive semidefinite comparison matrix, even the positive ones [11]. Are there other

graph families for which the DJL bound holds?

The cp-rank is trivially bounded by the rank of a matrix: for any A ∈ CPn, we

have cpr(A) ≥ rank(A). If n ≤ 3 or rank(A) ≤ 2, then cpr(A) = rank(A), cf. [31].

But there exists a matrix A ∈ CP4 with cpr(A) = 4 > 3 = rank(A), see [10, Example

3.1]. Which conditions guarantee equality between the cp-rank and the rank?

Graphs having the property that cpr(A) = rank(A) for every completely positive

realization A of the graph were fully characterized in [58]. These include trees [7],

but also graphs obtained from trees by replacing some of the edges by odd cycles, at

most one of which has 5 or more vertices. Other cases where this equality holds are

discussed in [58] and [65].

A problem related to the cp-rank problem is that of finding a minimal cp-factoriz-

ation of a given completely positive matrix. A minimal cp-factorization is a cp-

factorization A = BBT where the number of columns of B equals cpr(A). Note that a

matrix in the interior of CPn has infinitely many minimal decompositions (e.g., [15]).

Some completely positive matrices on the boundary of CPn also have infinitely many
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minimal cp-factorizations, but some have only a finite number of them [21], or even

a unique one [58].

Some of the theoretical results suggest a method for finding a minimal cp-factoriz-

ation in special cases, e.g., [7, 59, 58]. But only very few algorithms to compute

a minimal cp-factorizations were developed so far. In [42] the case of a completely

positive matrixA which has a diagonal principal submatrix of order rank(A) is treated,

and in [21] linear time algorithms are developed for matrices whose graph is acyclic,

and for matrices whose graph is a cycle.

5. Finding cutting planes for completely positive optimization prob-

lems. As mentioned in the introduction, it has been shown that several combina-

torial and nonconvex quadratic optimization problems can be formulated as linear

problems over the cone CPn. In view of the NP-hardness of the membership problem

for CPn, it is unsurprising that these completely positive optimization problems are

numerically very hard to solve. So they are often approximated by semidefinite prob-

lems, i.e., instead of optimizing over CPn, one optimizes over PSDn or DNN n. The

latter can be done very efficiently, but one usually obtains a solution which is not in

CPn. One algorithmic way to solve this problem is to generate a cutting plane, i.e., a

hyperplane which “cuts off” the inefficient solution. This cutting plane is then added

to the semidefinite problem as an additional linear constraint, and the semidefinite

problem is re-solved, hopefully with an improved solution. In terms of the cone CPn,

the task of generating a cutting plane can be formulated as:

Given X /∈ CPn, construct Y ∈ COPn with 〈X,Y 〉 < 0.

Partial answers to this problem for specific structures of X have been given in [18,

26, 66, 5], but in general it is unclear how such a cut Y can be constructed.
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