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A MATRIX HANDLING OF PREDICTIONS UNDER A GENERAL
LINEAR RANDOM-EFFECTS MODEL WITH NEW OBSERVATIONS∗
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Abstract. Linear regression models that include random effects are commonly used to analyze
longitudinal and correlated data. Assume that a general linear random-effects model y = Xβββ + εεε

with βββ = Aααα+γγγ is given, and new observations in the future follow the linear model yf = Xfβββ+εεεf .
This paper shows how to establish a group of matrix equations and analytical formulas for calculating
the best linear unbiased predictor (BLUP) of the vector φφφ = Fααα+Gγγγ +Hεεε+Hfεεεf of all unknown
parameters in the two models under a general assumption on the covariance matrix among the
random vectors γγγ, εεε and εεεf via solving a constrained quadratic matrix-valued function optimization
problem. Many consequences on the BLUPs of φφφ and their covariance matrices, as well as additive
decomposition equalities of the BLUPs with respect to its components are established under various
assumptions.
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1. Introduction. Throughout this paper, Rm×n stands for the collection of all
m × n real matrices. The symbols A′, r(A) and R(A) stand for the transpose,
the rank and the range (column space) of a matrix A ∈ R

m×n, respectively. Im
denotes the identity matrix of order m. The Moore–Penrose inverse of A, denoted
by A+, is defined to be the unique solution G satisfying the four matrix equations
AGA = A, GAG = G, (AG)′ = AG, and (GA)′ = GA. PA, EA, and FA stand
for the three orthogonal projectors (symmetric idempotent matrices) PA = AA+,
EA = A⊥ = Im −AA+, and FA = In −A+A, where EA and FA satisfy EA = FA′

and FA = EA′ . Two symmetric matrices A and B of the same size are said to satisfy
the Löwner partial ordering A < B if A−B is nonnegative definite.

Consider a general Linear Random-effects Model (LRM) defined by

y = Xβββ + εεε, βββ = Aααα+ γγγ, (1.1)

or marginally,

y = XAααα+Xγγγ + εεε, (1.2)
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where in the first-stage model, y ∈ R
n×1 is a vector of observable response variables,

X ∈ R
n×p is a known matrix of arbitrary rank, εεε ∈ R

n×1 is a vector of unobservable
random errors, while in the second-stage model, βββ ∈ R

p×1 is a vector of unobservable
random variables, A ∈ R

p×k is known matrix of arbitrary rank, ααα ∈ R
k×1 is a vector

of fixed but unknown parameters (fixed effects), γγγ ∈ R
p×1 is a vector of unobservable

random variables (random effects). Concerning the expectation and covariance matrix
of random vectors γγγ and εεε in (1.1), we adopt the following general assumption

E

[
γγγ

εεε

]
= 0, Cov

[
γγγ

εεε

]
=

[
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

]
:= ΣΣΣ, (1.3)

where ΣΣΣ11 ∈ R
p×p, ΣΣΣ12 = ΣΣΣ′

21 ∈ R
p×n, and ΣΣΣ22 ∈ R

n×n are known, while ΣΣΣ ∈
R

(p+n)×(p+n) is non-negative definite (nnd) matrix of arbitrary rank.

One of the ultimate goals of statistical modelling is to be able to predict future
observations based on currently available information. Assume that new observations
of response variables in the future follow the model

yf = Xfβββ + εεεf = XfAααα+Xfγγγ + εεεf , (1.4)

where Xf ∈ R
nf×p is a known model matrix associated with the new observations,

βββ is the same vector of unknown parameters as in (1.1), and εεεf ∈ R
nf×1 is a vector

of measurement errors associated with new observations. Combining (1.2) and (1.4)
yields the following marginal model

ỹ = X̃Aααα+ X̃γγγ + ε̃εε, ỹ =

[
y
yf

]
, X̃ =

[
X
Xf

]
, ε̃εε =

[
εεε

εεεf

]
. (1.5)

In order to establish some general results on prediction analysis of (1.5), we assume
that the expectation and covariance matrix of γγγ, εεε, and εεεf are given by

E



γγγ

εεε

εεεf


 = 0, Cov



γγγ

εεε

εεεf


 =



ΣΣΣ11 ΣΣΣ12 ΣΣΣ13

ΣΣΣ21 ΣΣΣ22 ΣΣΣ23

ΣΣΣ31 ΣΣΣ32 ΣΣΣ33


 := Σ̃ΣΣ, (1.6)

where we don’t attach any further restrictions to the patterns of the submatrices ΣΣΣij

in (1.6), although they are usually taken as certain prescribed forms for a specified
LRM in the statistical literature. In particular, the covariances among the residual or
error vector with other random factors in the model are usually assumed to be zero.
This assumption is ordinarily applied to most practical applications in the biological
sciences when the assumption is invalid.

Linear regression models that include random effects are commonly used to ana-
lyze longitudinal and correlated data, which are available to account for the variability
of model parameters due to different factors that influence a response variable. The
LRM in (1.1) is also called nested model or two-level model in the statistical literature,
where the two equations are called the first-stage model and the second-stage model,
respectively. Statistical inference on LRMs is now an important part in data analysis,
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and a huge amount of literature spreads in statistics and other disciplines. As usual,
a main task in the investigation of LRM is to establish predictors/estimators of all
unknown parameters in the model. Recall that the Best Linear Unbiased Predictors
(BLUPs) of unknown random parameters and the Best Linear Unbiased Estima-
tors (BLUEs) of fixed but unknown parameters in LRMs are fundamental concepts
in current regression analysis, which are defined directly from the requirement of
both unbiasedness and minimum covariance matrices of predictors/estimators of the
unknown parameters. In fact, BLUPs/BLUEs are primary choices in all possible
predictors/estimators due to their simple and optimality properties, and have wide
applications in both pure and applied disciplines of statistical inferences. The theory
of BLUPs/BLUEs under linear regression models belongs to the classical methods
of mathematical statistics. Along with recent development of optimization methods
in matrix theory, it is now easy to deal with various complicated matrix operations
occurring in the statistical inference of (1.5). In [25], the present author established
a group of fundamental matrix equations and analytical formulas for calculating the
BLUPs/BLUEs of all unknown parameters in (1.1) via solving a constrained quadratic
matrix-valued function optimization problem, and also formulated an open problem
of establishing matrix equations and formulas for calculating the BLUPs/BLUEs of
the future yf , Xfβββ, XfAααα, Xfγγγ, and εεεf in (1.4) from the observed response vector y
in (1.1). For convenience of representation, let

R =

[
R1

R2

]
=

[
X In 0
Xf 0 Inf

]
= [ X̃, In+nf

]. (1.7)

Under the general assumptions in (1.3) and (1.6), the covariance matrix of the com-
bined random vector ỹ in (1.5) is given by

Cov(ỹ) =

[
Cov(y) Cov{y,yf}

Cov{yf ,y} Cov(yf )

]
= RΣ̃ΣΣR′ := V, (1.8)

where

Cov(y) = R1Σ̃ΣΣR
′

1 := V11 Cov{y, yf} = R1Σ̃ΣΣR
′

2 := V12, (1.9)

Cov{yf , y} = R2Σ̃ΣΣR
′

1 := V21, Cov(yf ) = R2Σ̃ΣΣR
′

2 := V22. (1.10)

They are all known matrices under the assumptions in (1.1)–(1.6), and will occur in
the statistical inference of (1.5). Assumptions in (1.1)–(1.6) are so general that they
include almost all LRMs with different structures of covariance matrices as their spe-
cial cases. Note from (1.5) that under the general assumptions in (1.1)–(1.6), y and
yf are correlated. Hence, it is desirable to give predictions of the future observations
yf , as well as Xfβββ and εεεf in (1.4) from the original observation vector y in (1.1) under
the assumptions in (1.1)–(1.6). It is of great practical interest to simultaneously iden-
tify the important predictors that correspond to both the fixed- and random-effects
components in LRM. Some previous and recent work on simultaneous estimations and
predictions of combined unknown parameters under regression models can be found
in [3, 17, 21, 25, 26].
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In order to predict/estimate all unknown parameters in (1.5) simultaneously, we
construct a vector containing the fixed effects, random effects, and error terms in (1.5)
as follows

φφφ = Fααα+Gγγγ +Hεεε+Hfεεεf , (1.11)

where F ∈ R
s×k, G ∈ R

s×p, H ∈ R
s×n, and Hf ∈ R

s×nf are known matrices. In this
case,

E(φφφ) = Fααα, Cov(φφφ) = JΣ̃ΣΣJ′, Cov{φφφ, y} = JΣ̃ΣΣR′

1, J = [G, H, Hf ]. (1.12)

Eq. (1.11) contains all possible matrix and vector operations in (1.1)–(1.5) as its spe-

cial cases. For instance, If F = TX̃A, G = TX̃, and [H, Hf ] = T, then (1.11)
becomes

φφφ = TX̃Aααα+TX̃γγγ +Tε̃εε = Tỹ, (1.13)

which contains y, yf , and ỹ as its special cases for different choices ofT. Another well-
known form of φφφ in (1.11) is the following target function discussed in [3, 4, 21, 26],
which allows the prediction of both yf and E(yf ),

τ = λyf + (1− λ)E(yf ) = XfAααα+ λXfγγγ + λεεεf , (1.14)

where λ (0 6 λ 6 1) is a non-stochastic scalar assigning weights to actual and expected
values of yf . Clearly, the problem of predicting a linear combination of the fixed- and
random-effects can be formulated as a special case of the general prediction problem
on φφφ in (1.11). Thus, the simultaneous statistical inference of all unknown parameters
in (1.11) is a comprehensive work, and will play prescriptive role for various special
statistical inference problems under (1.1) from both theoretical and applied points
of view. Note that there are 13 given matrices in (1.1)–(1.6) and (1.11). Hence,
statistical inference of φφφ in (1.11) is not easy task, we will encounter many tedious
matrix operations for the given 13 matrices, as demonstrated in Section 3 below.

The paper is organized as follows. Section 2 introduces the definitions of the
BLUPs/BLUEs of all unknown parameters in (1.5) and (1.6), and gives a variety of
matrix formulas needed to establish the BLUPs/BLUEs. Section 3 derives

(I) equations and formulas for the BLUPs/BLUEs of φφφ and its components;
(II) additive decompositions the BLUPs of φφφ with respect to its components;
(III) various formulas for the covariance matrix operations of the BLUPs/BLUEs

of φφφ and its components.

Section 4 formulates some further work on statistical inferences of LRMs, and de-
scribes how to do prediction analysis from a given linear equation of some random
vectors.

2. Preliminaries. We first introduce definitions of the BLUPs/BLUEs of all
unknown parameters in (1.5). A linear statistic Ly under (1.1), where L ∈ R

s×n, is
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said to have the same expectation with φφφ in (1.11) if and only if E(Ly−φφφ) = 0 holds.
If there exists an L0y −φφφ such that

E(L0y −φφφ) = 0 and Cov(Ly −φφφ ) < Cov(L0y −φφφ ) s.t. E(Ly −φφφ) = 0 (2.1)

hold, where Cov(Ly−φφφ ) = E[(Ly−φφφ )(Ly−φφφ )′] is the matrix mean squared error
(MMSE) of φφφ under E(Ly−φφφ) = 0, then the linear statistic L0y is defined to be the
BLUP of φφφ in (1.11), and is denoted by

L0y = BLUP(φφφ) = BLUP(Fααα+Gγγγ +Hεεε+Hfεεεf ). (2.2)

If G = 0, H = 0, and Hf = 0, in (1.11), the L0y satisfying (2.1) is called the BLUE
of Fααα under (1.1), and is denoted by

L0y = BLUE(Fααα). (2.3)

It should be pointed out that (2.1) can equivalently be converted to certain con-
strained matrix-valued function optimization problem in the Löwner partial order-
ing. This kind of equivalences between covariance matrix minimization problems and
matrix-valued function minimization problems were firstly characterized in [17]; see
also [19]. When A = Ip and ΣΣΣ11 = 0, (1.1) is the well-known general linear fixed-
effects model. In this instance, the work on predictions of new observations was
widely considered since 1970s; see, e.g., [5, 7, 8, 9, 10, 11, 12]. On the other hand,
(1.1) is a special case of general Linear Mixed-effects Models (LMMs), and some pre-
vious results on BLUPs/BLUEs under LMMs can be found in the literature; see, e.g.,
[1, 6, 16, 18, 19].

The following lemma is well known; see [15].

Lemma 2.1. The linear matrix equation AX = B is consistent if and only if
r[A, B ] = r(A), or equivalently, AA+B = B. In this case, the general solution of
the equation can be written in the following parametric form X = A+B+( I−A+A )U,

where U is an arbitrary matrix.

We also need the following known formulas on ranks of matrices; see [13, 22].

Lemma 2.2. Let A ∈ R
m×n, B ∈ R

m×k, and C ∈ R
l×n. Then

r[A, B ] = r(A) + r(EAB) = r(B) + r(EBA), (2.4)

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.5)

r

[
AA′ B
B′ 0

]
= r[A, B ] + r(B). (2.6)
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If R(A′
1) ⊆ R(B′

1), R(A2) ⊆ R(B1), R(A′
2) ⊆ R(B′

2) and R(A3) ⊆ R(B2), then

r(A1B
+
1 A2) = r

[
B1 A2

A1 0

]
− r(B1), (2.7)

r(A1B
+
1 A2B

+
2 A3) = r




0 B2 A3

B1 A2 0
A1 0 0


− r(B1)− r(B2). (2.8)

The following result on analytical solutions of a constrained matrix-valued func-
tion optimization problem was given in [25].

Lemma 2.3. Let

f(L) = (LC+D )M(LC+D)
′

s.t. LA = B, (2.9)

where A ∈ R
p×q, B ∈ R

n×q, C ∈ R
p×m, and D ∈ R

n×m are given, M ∈ R
m×m

is nnd, and the matrix equation LA = B is consistent. Then, there always exists a
solution L0 of L0A = B such that

f(L) < f(L0) (2.10)

holds for all solutions of LA = B. In this case, the matrix L0 satisfying (2.10) is
determined by the following consistent matrix equation

L0[A, CMC′A⊥ ] = [B, −DMC′A⊥ ], (2.11)

while the general expression of L0 and the corresponding f(L0) are given by

L0 = [B, −DMC′A⊥ ][A, CMC′A⊥ ]+ +U[A, CMC′ ]⊥, (2.12)

f(L0) = KMK′ −KMC′(A⊥CMC′A⊥)+CMK′, (2.13)

where K = BA+C+D, and U ∈ R
n×p is arbitrary.

Many optimization problems in parametric statistical inferences, as demonstrated
below, can be converted to the minimization of (2.9) in the Löwner partial ordering,
while analytical solutions to these optimization problems in statistics can be derived
from Lemma 2.3. More results on (constrained) quadratic matrix-valued function
optimization problems in the Löwner partial ordering can be found in [23, 24].

3. Equations and formulas for BLUPs/BLUEs of all unknown param-
eters in LRM. In what follows, we assume that (1.1) is consistent, i.e., y ∈
R[XA, V11 ] holds with probability 1. In this section, we first show how to de-
rive the BLUP of the vector φφφ in (1.11), and then give some direct consequences
under different assumptions.

Lemma 3.1. The vector φφφ in (1.11) is predictable by y in (1.1) if and only if
there exists L ∈ R

s×n such that LXA = F, or equivalently,

R[(XA)′] ⊇ R(F′). (3.1)
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Proof. It is obvious that E (Ly −φφφ) = 0 ⇔ LXAααα−Fααα = 0 for all ααα ⇔ LXA =
F. From Lemma 2.1, the matrix equation is consistent if and only if (3.1) holds.

Theorem 3.2. Assume that φφφ in (1.11) is predictable by y in (1.1), namely,

(3.1) holds, and let X̃, R1, Vij , and J be as given in (1.5), (1.7), (1.9), (1.10), and

(1.12). Also denote X̂ = XA. Then

E(Ly−φφφ ) = 0 and Cov(Ly −φφφ ) = min ⇔ L[ X̂, Cov(y)X̂⊥ ] = [F, Cov{φφφ,y}X̂⊥ ].
(3.2)

The matrix equation in (3.2), called the fundamental equation for BLUP, is consistent
as well under (3.1). In this case, the general solution of L and BLUP(φφφ) can be written
as

BLUP(φφφ) = Ly =
(
[F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U[ X̂, V11X̂
⊥ ]⊥

)
y, (3.3)

where U ∈ R
s×n is arbitrary. In particular,

BLUP(Xβββ) =
(
[ X̂, [X, 0, 0]Σ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U1[ X̂, V11X̂
⊥ ]⊥

)
y, (3.4)

BLUP(Xfβββ) =
(
[XfA, [Xf , 0, 0]Σ̃ΣΣR

′

1X̂
⊥][ X̂, V11X̂

⊥]++U2[ X̂, V11X̂
⊥]⊥

)
y, (3.5)

BLUE(XAααα) =
(
[ X̂, 0 ][ X̂, V11X̂

⊥ ]+ +U3[ X̂, V11X̂
⊥ ]⊥

)
y, (3.6)

BLUE(XfAααα) =
(
[XfA, 0 ][ X̂, V11X̂

⊥ ]+ +U4[ X̂, V11X̂
⊥ ]⊥

)
y, (3.7)

BLUP(Xγγγ) =
(
[0, [X, 0, 0 ]Σ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U5[ X̂, V11X̂
⊥ ]⊥

)
y, (3.8)

BLUP(Xfγγγ) =
(
[0, [Xf , 0, 0 ]Σ̃ΣΣR

′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U6[ X̂, V11X̂
⊥ ]⊥

)
y, (3.9)

BLUP(εεε) =
(
[0, [0, In, 0 ]Σ̃ΣΣR

′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U7[ X̂, V11X̂
⊥ ]⊥

)
y, (3.10)

BLUP(εεεf ) =
(
[0, [0, 0, Inf

]Σ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U8[ X̂, V11X̂
⊥ ]⊥

)
y, (3.11)

where Ui are arbitrary matrices of appropriate sizes, i = 1, 2, . . . , 8. Further, the
following results hold.

(a) r[ X̂, V11X̂
⊥ ] = r[ X̂, R1Σ̃ΣΣ ], R[ X̂, V11X̂

⊥ ] = R[ X̂, R1Σ̃ΣΣ ], and

R(X̂) ∩ R(V11X̂
⊥) = {0}.

(b) L0 is unique if and only if r[ X̂, V11 ] = n.

(c) BLUP(φφφ) is unique with probability 1 if and only if y ∈ R[ X̂, V11 ], i.e.,
(1.1) is consistent.
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(d) BLUP(φφφ) satisfies

Cov[BLUP(φφφ)]

= [F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+V11([F, JΣ̃ΣΣR
′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′, (3.12)

Cov{BLUP(φφφ), φφφ} = [F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1Σ̃ΣΣJ
′, (3.13)

Cov(φφφ)− Cov[BLUP(φφφ)]

= JΣ̃ΣΣJ′ − [F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+V11([F, JΣ̃ΣΣR
′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′, (3.14)

Cov[φφφ − BLUP(φφφ) ]

= ([F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 − J)Σ̃ΣΣ([F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 − J)′.

(3.15)

Proof. By noticing that

Ly − φφφ = LX̂ααα+ LXγγγ + Lεεε− Fααα−Gγγγ −Hεεε−Hfεεεf

= (LX̂ − F)ααα+ (LX−G)γγγ + (L−H)εεε−Hfεεεf ,

we see that the covariance matrix of Ly −φφφ can be written as

Cov(Ly −φφφ ) = Cov[(LX −G)γγγ + (L−H)εεε−Hfεεεf ]

= [LX−G, L−H,−Hf ]Σ̃ΣΣ[LX −G, L−H,−Hf ]
′

= (L[X, In, 0 ]− [G, H, Hf ])Σ̃ΣΣ(L[X, In, 0 ]− [G, H, Hf ])
′

= (LR1 − J)Σ̃ΣΣ(LR1 − J)′ := f(L). (3.16)

In this setting, we see from Lemma 2.3 that the first part of (3.2) is equivalent to

finding a solution L0 of the consistent matrix equation L0X̂ = F such that

f(L) < f(L0) s.t. LX̂ = F (3.17)

holds in the Löwner partial ordering. Further from Lemma 2.3, there always exists
s solution L0 of L0X̂ = F such that (3.17) holds, and the L0 is determined by the
matrix equation

L0[ X̂, V11X̂
⊥ ] = [F, JΣ̃ΣΣR′

1X̂
⊥ ], (3.18)

establishing the matrix equation in (3.2). Solving the equation by Lemma 2.1 gives
the L0 in (3.3). Also from (2.13),

f(L0) = Cov(L0y −φφφ ) = ([F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 − J)Σ̃ΣΣ

×([F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 − J)′,

as required for (3.15). Result (a) is well known.

Results (b) and (c) follow directly from (3.3).
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Taking the covariance matrix of (3.3), and simplifying by (1.9) and R(V11) ⊆

R[ X̂, V11X̂
⊥ ] yield (3.12). From (1.11) and (3.3),

Cov{BLUP(φφφ), φφφ} = Cov{L0y, φφφ}

= Cov

{
[F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1

[
βββ

ε̃εε

]
, J

[
βββ

ε̃εε

]}

= [F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1Σ̃ΣΣJ
′,

establishing (3.13). Eq. (3.14) follows from (1.12) and (3.12).

The matrix equation in (3.2) shows that the BLUPs/BLUEs of all unknown pa-
rameters in (1.5) generally depend on the covariance matrix of the observed random
vector y, and the covariance matrix between φφφ and y. Because the matrix equation
in (3.2) and the formulas in (3.3)–(3.15) are presented by common operations of the
given matrices and their generalized inverses, Theorem 3.2 and its proof in fact pro-
vide a standard procedure of handling matrix operations that occurr in the theory of
BLUPs/BLUEs under general LRMs. From the fundamental equations and formulas
in Theorem 3.2, we are now able to derive many new and valuable consequences on
properties of BLUPs/BLUEs under various conditions.

Corollary 3.3. Let φφφ be as given in (1.11). Then, the following results hold.

(a) If φφφ is predictable by y in (1.1), then Tφφφ is predictable by y in (1.1) as well
for any matrix T ∈ R

t×s, and

BLUP(Tφφφ) = TBLUP(φφφ) (3.19)

holds.
(b) If φφφ is predictable by y in (1.1), then Fααα is estimable by y in (1.1) as well,

and the BLUP of φφφ can be decomposed as the sum

BLUP(φφφ) = BLUE(Fααα) + BLUP(Gγγγ) + BLUP(Hεεε) + BLUP(Hfεεεf ), (3.20)

and the following formulas for covariance matrices hold

Cov{BLUE(Fααα), BLUP(Gγγγ +Hεεε+Hfεεεf )} = 0, (3.21)

Cov[BLUP(φφφ)] = Cov[BLUE(Fααα)] + Cov[BLUP(Gγγγ +Hεεε+Hfεεεf )]. (3.22)

(c) If ααα in (1.1) is estimable by y in (1.1), i.e., r(XA) = k, then φφφ is predictable
by y in (1.1) as well. In this case, the following BLUP/BLUE decomposition
equalities

BLUP




ααα

γγγ

εεε

εεεf


 =




BLUE(ααα)
BLUP(γγγ)
BLUP(εεε)
BLUP(εεεf )


 , (3.23)

BLUP(φφφ) = FBLUE(ααα) +GBLUP(γγγ) +HBLUP(εεε) +HfBLUP(εεεf ) (3.24)

hold.
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Proof. The predictability of Tφφφ follows from R[(XA)′] ⊇ R(F′) ⊇ R(F′T′).
Also from (3.3),

BLUP(Tφφφ) =
(
[TF, TJΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U[ X̂, V11X̂
⊥ ]⊥

)
y

= T
(
[F, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U1[ X̂, V11X̂
⊥ ]⊥

)
y

= TBLUP(φφφ),

where U = TU1, establishing (3.19).

Note that Ly in (3.3) can be decomposed as

Ly = (S1 + S2 + S3 + S4)y = S1y + S2y + S3y + S4y,

where

S1 = [F, 0 ][ X̂, V11X̂
⊥ ]+ +U1[ X̂, V11X̂

⊥ ]⊥,

S2 = [0, [G, 0, 0 ]Σ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U2[ X̂, V11X̂
⊥ ]⊥,

S3 = [0, [0, H, 0 ]Σ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U3[ X̂, V11X̂
⊥ ]⊥,

S4 = [0, [0, 0, Hf ]Σ̃ΣΣR
′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U4[ X̂, V11X̂
⊥ ]⊥,

and

BLUE(Fααα) = S1y, BLUP(Gγγγ) = S2y, BLUP(Hεεε) = S3y, BLUP(Hfεεεf ) = S4y,

establishing (3.20).

We also obtain from (3.3) that

Cov {BLUE(Fααα), BLUP(Gγγγ +Hεεε+Hfεεεf )}

= Cov
{
([F, 0 ][ X̂, V11X̂

⊥ ]+ +U1[ X̂, V11X̂
⊥ ]⊥)y,

([0, JΣ̃ΣΣR′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+ +U2[ X̂, V11X̂
⊥ ]⊥)y

}

= [F, 0 ][ X̂, V11X̂
⊥ ]+V11([0, JΣ̃ΣΣR

′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′. (3.25)

Applying (2.8) to (3.25) and simplifying, we obtain

r(Cov{BLUE(Fααα), BLUP(Gγγγ +Hεεε+Hfεεεf ) })

= r
(
[F, 0 ][ X̂, V11X̂

⊥ ]+V11([0, JΣ̃ΣΣR
′

1X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′
)

= r




0

[
X̂′

X̂⊥V11

] [
0

X̂⊥R1Σ̃ΣΣJ
′

]

[ X̂, V11X̂
⊥ ] V11 0

[F, 0 ] 0 0


− 2r[ X̂, V11X̂

⊥ ]

= r




[
0 0

0 −X̂⊥V11X̂
⊥

] [
X̂′

0

] [
0

X̂⊥R1Σ̃ΣΣJ
′

]

[ X̂, 0 ] V11 0
[F, 0 ] 0 0


− 2r[ X̂, V11 ]
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= r




0 X̂′

X̂ V11

F 0


+ r[ X̂⊥V11X̂

⊥, X̂⊥R1Σ̃ΣΣJ
′ ]− 2r[ X̂, V11 ]

= r

[
X̂
F

]
+ r

[
X̂′

V11

]
+ r[ X̂, V11X̂

⊥, R1Σ̃ΣΣJ
′ ]

−r(X̂)− 2r[ X̂, V11 ] (by (2.4) and (2.6))

= r[ X̂, V11, R1Σ̃ΣΣJ
′ ]− r[ X̂, V11 ]

= r[ X̂, V11 ]− r[ X̂, V11 ] (by Theorem 3.2(a))

= 0,

which implies that Cov{BLUE(Fααα), BLUP(Gγγγ +Hεεε+Hfεεεf ) } is a null matrix, es-
tablishing (3.21). Eq. (3.22) follows from (3.20) and (3.21). Eqs. (3.23), and (3.24)
follow from (1.11), (3.19) and (3.20).

Corollary 3.4. Let

φφφ1 = F1ααα+G1γγγ +H1εεε+Hf1εεεf , φφφ2 = F2ααα+G2γγγ +H2εεε+Hf2εεεf ,

where F1, F2 ∈ R
s×k, G1, G2 ∈ R

s×p, H1, H2 ∈ R
s×n, and Hf1, Hf2 ∈ R

s×nf

are known matrices, and assume that they are predictable by y in (1.1). Then, the
following results hold.

(a) The sum φφφ1+φφφ2 is predictable by y in (1.1), and the BLUP of φφφ1+φφφ2 satisfies

BLUP(φφφ1 +φφφ2) = BLUP(φφφ1) + BLUP(φφφ2). (3.26)

(b) BLUP(φφφ1) = BLUP(φφφ2) ⇔ F1 = F2 and R(R1Σ̃ΣΣJ
′
1 − R1Σ̃ΣΣJ

′
2) ⊆ R(X̂),

where J1 = [G1, H1, Hf1 ] and J2 = [G2, H2, Hf2 ].

Proof. Eq. (3.26) follows from (3.20). From Theorem 3.2, the two equations for
the coefficient matrices of BLUP(φφφ1) = L1y and BLUP(φφφ2) = L2y are given by

L1[ X̂, V11X̂
⊥ ] = [F1, J1Σ̃ΣΣR

′

1X̂
⊥ ], L2[ X̂, V11X̂

⊥ ] = [F2, J2Σ̃ΣΣR
′

1X̂
⊥ ].

The pair of matrix equations have a common solution if and only if

r

[
X̂ V11X̂

⊥ X̂ V11X̂
⊥

F1 J1Σ̃ΣΣR
′
1X̂

⊥ F2 J2Σ̃ΣΣR
′
1X̂

⊥

]
= r[X̂, V11X̂

⊥, X̂, V11X̂
⊥], (3.27)

where by block elementary matrix operations

r

[
X̂ V11X̂

⊥ X̂ V11X̂
⊥

F1 J1Σ̃ΣΣR
′
1X̂

⊥ F2 J2Σ̃ΣΣR
′
1X̂

⊥

]

= r

[
X̂ V11X̂

⊥ 0 0

0 0 F2 − F1 (J2Σ̃ΣΣR
′
1 − J1Σ̃ΣΣR

′
1)X̂

⊥

]

= r[ X̂, V11X̂
⊥] + r[F2 − F1, (J2Σ̃ΣΣR

′

1 − J1Σ̃ΣΣR
′

1)X̂
⊥ ],

r[X̂, V11X̂
⊥, X̂, V11X̂

⊥] = r[X̂, V11X̂
⊥].
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Hence, (3.27) is equivalent to [F2 −F1, (J2Σ̃ΣΣR
′
1 − J1Σ̃ΣΣR

′
1)X̂

⊥ ] = 0, which is further
equivalent to (b) by Lemma 2.1.

As direct consequences of Theorem 3.2 and Corollary 3.3, we next give the BLUPs
under (1.4).

Corollary 3.5. Let R, R1, and R2 be as given in (1.7), and denote Z1 =
Cov{Xfβββ, y} = XfΣΣΣ11X

′ +XfΣΣΣ12 and Z2 = Cov{εεεf , y} = ΣΣΣ31X
′ +ΣΣΣ32. Then, the

following results hold.

(a) The future observation vector yf in (1.4) is predictable by y in (1.1) if and

only if R(X̂′) ⊇ R[(XfA)′]. In this case,

BLUP(yf ) =
(
[XfA, V21X̂

⊥ ][ X̂, V11X̂
⊥ ]+ +U[ X̂, V11 ]

⊥

)
y, (3.28)

and

Cov[BLUP(yf )]

= [XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+V11([XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′, (3.29)

Cov{BLUP(yf ), yf} = [XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+V12, (3.30)

Cov(yf )− Cov[BLUP(yf )]

= V22 − [XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+V11([XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′,

(3.31)

Cov[yf − BLUP(yf ) ] = ([XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 −R2)Σ̃ΣΣ

×([XfA, V21X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 −R2)
′, (3.32)

where U ∈ R
nf×n is arbitrary.

(b) Xfβββ in (1.4) is predictable by y in (1.1) if and only if R(X̂′) ⊇ R[(XfA)′].
In this case,

BLUP(Xfβββ) =
(
[XfA, Z1X̂

⊥ ][ X̂, V11X̂
⊥ ]+ +U1[ X̂, V11X̂

⊥ ]⊥
)
y, (3.33)

and

Cov[BLUP(Xfβββ)]

= [XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+V11([XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′, (3.34)

Cov{BLUP(Xfβββ), Xfβββ} = [XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+Z′

1, (3.35)

Cov(Xfβββ)− Cov[BLUP(Xfβββ)]

= XfΣΣΣ11X
′

f − [XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+V11([XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+)′,

(3.36)

Cov[Xfβββ − BLUP(Xfβββ) ] = ([XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 − [Xf ,0, 0 ])Σ̃ΣΣ

×([XfA, Z1X̂
⊥ ][ X̂, V11X̂

⊥ ]+R1 − [Xf ,0, 0 ])
′. (3.37)

where U1 ∈ R
nf×n is arbitrary.
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(c) εεεf in (1.4) is always predictable by y in (1.1), and

BLUP(εεεf ) =
(
Z2(X̂

⊥V11X̂
⊥)+ +U2[ X̂, V11 ]

⊥

)
y, (3.38)

Cov[BLUP(εεεf )] = Cov{BLUP(εεεf ), εεεf}

= Z2(X̂
⊥V11X̂

⊥)+Z′

2, (3.39)

Cov[εεεf − BLUP(εεεf ) ] = Cov(εεεf )− Cov[BLUP(εεεf )]

= ΣΣΣ33 − Z2(X̂
⊥V11X̂

⊥)+Z′

2, (3.40)

where U2 ∈ R
nf×n is arbitrary.

Finally, we give a group of fundamental decomposition equalities of the BLUPs
of y, yf , and ỹ in (1.5).

Corollary 3.6. The vector ỹ in (1.5) is predictable by y in (1.1) if and only if
R[(XA)′] ⊇ R[(XfA)′]. In this case, the following decomposition equalities

y = BLUP(y) = BLUE(XAααα) + BLUP(Xγγγ) + BLUP(εεε), (3.41)

BLUP(yf ) = BLUE(XfAααα) + BLUP(Xfγγγ) + BLUP(εεεf ), (3.42)

BLUP(ỹ) =

[
BLUP(y)
BLUP(yf )

]
=

[
y

BLUP(yf )

]
(3.43)

always hold.

The additive decomposition equalities of the BLUPs in (3.41) and (3.42) are in
fact built-in restrictions to BLUPs/BLUEs, which sufficiently demonstrate the key
roles of BLUPs/BLUEs in statistical inferences of LRMs. Some previous discussions
on built-in restrictions to BLUPs/BLUEs can be found; e.g., in [2, 14, 19, 20].

4. Remarks. This paper established a general theory on BLUPs/BLUEs un-
der LRM with original and future observations, and obtained many equations and
formulas for calculating BLUPs/BLUEs of all unknown parameters in the LRM via
solving a constrained quadratic matrix-valued function optimization problem in the
Löwner partial ordering. Because the BLUPs/BLUEs in the previous sections are for-
mulated by common operations of the given matrices and their generalized inverses in
LRM, we can easily derive many new mathematical and statistical properties of the
BLUPs/BLUEs under various assumptions. It is expected more interesting results on
statistical inferences of LRMs can be derived from the equations and formulas in the
previous sections. Here we mention a few:

(a) Derive closed-form formulas for calculating the ranks and inertias of the differ-
ence Cov[φφφ−BLUP(φφφ) ]−A, and use them to derive necessary and sufficient
conditions for the following equality and inequalities

Cov[φφφ− BLUP(φφφ) ] = A (≻ A < A, ≺ A, 4 A)

to hold under the assumptions in (1.1)–(1.12), where A is symmetric matrix,
say, A = Cov(φφφ)− Cov[ BLUP(φφφ) ].
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(b) Establish necessary and sufficient conditions for the following decomposition
equalities

Cov[ BLUP(φφφ) ] = Cov[ BLUE(Fααα) ] + Cov[ BLUP(Gγγγ) ]

+Cov[ BLUP(Hεεε) ] + Cov[ BLUP(Hfεεεf ) ],

Cov[φφφ − BLUP(φφφ) ] = Cov[ BLUE(Fααα) ] + Cov[Gγγγ − BLUP(Gγγγ) ]

+ Cov[Hεεε− BLUP(Hεεε) ]

+ Cov[Hfεεεf − BLUP(Hfεεεf ) ]

to hold respectively under the assumptions in (1.1)–(1.12).
(c) Establish necessary and sufficient condition for BLUP(φφφ) = φφφ (like fixed

points of matrix map) to hold. A special case is that BLUP(Ty) = Ty
always holds for any matrix T, and is this case unique?

It is expected that this type of work will bring deep understanding of statistical
inferences of BLUPs/BLUEs from many new aspects.

Finally, we give a general matrix formulation and derivation of BLUPs under
random vector equations. Note that (1.1) is a special case of the following equation
of random vectors

A1y1 +A2y2 +A3y3 = 0, (4.1)

where A1, A2, and A3 are three given matrices of appropriate sizes, and y1, y2 and
y3 are three random vectors of appropriate sizes satisfying

E



y1

y2

y3


 =



b1

b2

b3


, Cov



y1

y2

y3


 =



ΣΣΣ11 ΣΣΣ12 ΣΣΣ13

ΣΣΣ21 ΣΣΣ22 ΣΣΣ23

ΣΣΣ31 ΣΣΣ32 ΣΣΣ33


, (4.2)

in which, b1, b2 and b3 are constant vectors, or fixed but unknown parameter vectors.
In this setting, taking expectation and covariance matrix of (4.1) yields

A1b1 +A2b2 +A3b3 = 0 and [A1, A2, A3 ]



ΣΣΣ11 ΣΣΣ12 ΣΣΣ13

ΣΣΣ21 ΣΣΣ22 ΣΣΣ23

ΣΣΣ31 ΣΣΣ32 ΣΣΣ33





A′

1

A′
2

A′
3


 = 0. (4.3)

Assume now that one of y1, y2 and y3 is observed, say, y1, and the other two are
unobservable, and we want to predict the vector L2y2 + L3y3 from (4.1) and (4.2).
In this case, we let

S = {L1y1 − L2y2 − L3y3 |E(L1y1 − L2y2 − L3y3) = 0} . (4.4)

If there exists matrix L̂1 such that

[
Cov(L1y1 − L2y2 − L3y3 ) < Cov( L̂1y1 − L2y2 − L3y3 )
s.t. L1y1 − L2y2 − L3y3 ∈ S,

(4.5)
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the linear statistic L̂1y1 is defined to the BLUP of L2y2 + L3y3 under (4.1) and is

denoted by L̂1y1 = BLUP(L2y2 + L3y3). Note that

Cov(L1y1 − L2y2 − L3y3 ) = [L1, −L2, −L3 ]



ΣΣΣ11 ΣΣΣ12 ΣΣΣ13

ΣΣΣ21 ΣΣΣ22 ΣΣΣ23

ΣΣΣ31 ΣΣΣ32 ΣΣΣ33






L′
1

−L′
2

−L′
3


 := f(L1).

Thus, (4.5) is equivalent to

f(L1) < f(L̂1) s.t. L1b1 = L2b2 + L3b3. (4.6)

By a similar approach as given in the previous sections, we can establish a group of
equations as follows

A1y1 + BLUP(A2y2) + BLUP(A3y3) = 0 if y1 is obsevable,

BLUP(A1y1) +A2y2 + BLUP(A3y3) = 0 if y2 is obsevable,

BLUP(A2y1) + BLUP(A2y2) +A3y3 = 0 if y3 is obsevable.

Eqs. (4.1)–(4.3) contain almost all linear structures occurred in regression analysis.
It is expected that more valuable results can be obtained on (4.1)–(4.6), which can
serve as a mathematical foundation under various regression model assumptions.
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