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A COMBINATORIAL DETERMINANT DUAL TO THE GROUP

DETERMINANT∗

ASHISH MISHRA† AND MURALI K. SRINIVASAN∗

Abstract. We define the commuting algebra determinant of a finite group action on a finite set, a

notion dual to the group determinant of Dedekind. We show that the following combinatorial example

is a commuting algebra determinant. Let Bq(n) denote the set of all subspaces of an n-dimensional

vector space over Fq. The type of an ordered pair (U, V ) of subspaces, where U, V ∈ Bq(n), is the

ordered triple (dim U, dim V,dim U∩V ) of nonnegative integers. Assume that there are independent

indeterminates corresponding to each type. Let Xq(n) be the Bq(n) × Bq(n) matrix whose entry

in row U , column V is the indeterminate corresponding to the type of (U, V ). We factorize the

determinant of Xq(n) into irreducible polynomials.
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1. Introduction. In this note we revisit certain classical and recent results in

algebraic combinatorics from the viewpoint of determinants, connecting the topic

to the group determinants of Dedekind [2]. Our motivation comes from the paper

Combinatorial matrices by Knuth [8] where the following notion is studied.

For n ∈ N = {0, 1, 2, . . .}, let B(n) denote the set of all subsets of [n] =

{1, 2, . . . , n} and, for 0 ≤ i ≤ n, let B(n)i denote the set of all i-element subsets

of the set [n].

Let i, n ∈ N with i ≤ n/2. Given A,B ∈ B(n)i, the type of the pair (A,B) is

the nonnegative integer |A ∩B|. Knuth [8] studies B(n)i ×B(n)i real matrices with

the property that the entry in row A, column B depends only on the type of (A,B).

This suggests that we consider generic matrices of this type, defined as follows. Let

y0, y1, . . . , yi be independent indeterminates corresponding to the i+1 distinct types

and let Y (n, i) denote the B(n)i × B(n)i matrix whose entry in row A, column B is

given by the indeterminate corresponding to the type of (A,B), i.e., y|A∩B|. We say

that Y (n, i) is a combinatorial matrix of type (n, i). Note that Y (n, i) is symmetric.
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For example, Y (4, 2) is the following matrix:

12 13 14 23 24 34

12

13

14

23

24

34



















y2 y1 y1 y1 y1 y0
y1 y2 y1 y1 y0 y1
y1 y1 y2 y0 y1 y1
y1 y1 y0 y2 y1 y1
y1 y0 y1 y1 y2 y1
y0 y1 y1 y1 y1 y2



















.

There is a natural B(n) × B(n) analog of the matrix Y (n, i) defined above. For

A,B ∈ B(n), define the type of the pair (A,B) to be the triple (|A|, |B|, |A∩B|). For

n ∈ N define

I(n) = {(i, j, t) ∈ N
3 : t, i− t, j − t ≥ 0 and i− t+ t+ j − t = i+ j − t ≤ n}.

It is easy to see that I(n) equals the set of all types (|A|, |B|, |A ∩ B|), where A,B

range over B(n). Clearly, |I(n)| =
(

n+3
3

)

.

Let x(n) = (xi,j,t : (i, j, t) ∈ I(n)) be independent indeterminates corresponding

to the different types and let X(n) denote the B(n)×B(n) matrix whose entry in row

A, column B is given by the indeterminate corresponding to the type of (A,B), i.e.,

x|A|,|B|,|A∩B|. We say that X(n) is a combinatorial matrix of type n. For example,

X(3) is the following matrix:

∅ 1 2 3 12 13 23 123

∅

1

2

3

12

13

23

123



























x0,0,0 x0,1,0 x0,1,0 x0,1,0 x0,2,0 x0,2,0 x0,2,0 x0,3,0

x1,0,0 x1,1,1 x1,1,0 x1,1,0 x1,2,1 x1,2,1 x1,2,0 x1,3,1

x1,0,0 x1,1,0 x1,1,1 x1,1,0 x1,2,1 x1,2,0 x1,2,1 x1,3,1

x1,0,0 x1,1,0 x1,1,0 x1,1,1 x1,2,0 x1,2,1 x1,2,1 x1,3,1

x2,0,0 x2,1,1 x2,1,1 x2,1,0 x2,2,2 x2,2,1 x2,2,1 x2,3,2

x2,0,0 x2,1,1 x2,1,0 x2,1,1 x2,2,1 x2,2,2 x2,2,1 x2,3,2

x2,0,0 x2,1,0 x2,1,1 x2,1,1 x2,2,1 x2,2,1 x2,2,2 x2,3,2

x3,0,0 x3,1,1 x3,1,1 x3,1,1 x3,2,2 x3,2,2 x3,2,2 x3,3,3



























.

Note that X(n) is not symmetric.

In Section 3 we define two additional matrices Yq(n, i) and Xq(n), the q-analogs

of Y (n, i) and X(n) respectively (for a fixed prime power q). This paper is concerned

with the explicit factorization into irreducible complex polynomials of the determi-

nants of these four matrices, especially the determinant of Xq(n), which is a new

result.
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In Section 2 we present the general theory of such determinants. We show that

they arise as commuting algebra determinants of finite group actions on finite sets, a

concept dual to the group determinant of Dedekind [2].

In Section 3, quoting classical and recent results from the literature, we indi-

cate the factorizations of determinants of Y (n, i), Yq(n, i), X(n), Xq(n) into complex

irreducible polynomials. In all cases, it will turn out that the factors have integer

coefficients.

2. Algebra determinant with respect to a basis. The theory of the group

determinant (see [2]) has a simple extension to semisimple modules over an (asso-

ciative) algebra with a distinguished basis. We now discuss this. All our algebras

contain an identity element and algebra homomorphisms preserve the identity.

Let A be a finite dimensional complex algebra with distinguished basis A =

{a1, . . . , an}. Let V be a finite dimensional complex vector space that is a (left) A-

module, the module structure being given by the homomorphism ρ : A → End(V ),

where End(V ) denotes the algebra of linear operators on V . Let x1, . . . , xn be inde-

pendent indeterminates.

Given the above data, we can define the linear form with operator coefficients
∑n

i=1 xiρ(ai) and take its determinant, which is a homogeneous polynomial of degree

dim(V ) in C[x1, . . . , xn]:

D(A,A)(V ) = det

(

n
∑

i=1

xiρ(ai)

)

.

We call D(A,A)(V ) the algebra determinant of the pair (A, V ) with respect to the basis

A of A.

Example 2.1. (The discussion of this example continues until the beginning

of Example 2.2 below.) Let G be a finite group acting on the finite set S and let

V = V (S) denote the complex vector space with S as basis. The action of G on S

gives rise to a permutation representation of G on V . For g ∈ G and v ∈ V , the action

of g on v yields the element g · v of V , which we also denote by gv or g(v). We think

of the elements of V as column vectors with components indexed by S. We represent

elements of End(V ), in the standard basis S, as S×S matrices. For r, c ∈ S, the entry

in row r, column c of a matrix M will be denoted M(r, c). The matrix representing

f ∈ End(V ) is denoted Mf .

Set

A = {Mf : f ∈ EndG(V )}.

So A, the commuting algebra of the action of G on S, is a semisimple algebra of S×S
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matrices acting on V .

Let f : V → V be linear and g ∈ G. Then, for c ∈ S, we have

f(gc) =
∑

r∈S

Mf(r, gc)r and g(f(c)) =
∑

r∈S

Mf(r, c)gr.

It follows that f is G-linear if and only if

Mf (r, c) = Mf (gr, gc), for all r, c ∈ S, g ∈ G,(2.1)

i.e., Mf is constant on the orbits of the action of G on S × S.

Let O = {O1, . . . , Op} be the orbits of G acting on S × S. Given r, c ∈ S, the

type of the pair (r, c) is the unique integer i with (r, c) ∈ Oi. For i = 1, . . . , p, let Mi

be the S × S characteristic matrix of the ordered pairs of type i, i.e, the orbit Oi,

Mi((r, c)) =

{

1 if (r, c) ∈ Oi,

0 otherwise.

Then A = {M1, . . . ,Mp} is a basis of A. We call A the standard basis of the com-

muting algebra A.

We can associate two S × S determinants with the action of G on S.

Let xg, g ∈ G be independent indeterminates. Consider the group algebra CG

with distinguished basis G and consider the CG-module V . The group determinant

of (G,S) is defined by D(CG,G)(V ) ∈ C[xg : g ∈ G]. If we define the S × S generic

group action matrix N by

N(r, c) =
∑

g

xg,(2.2)

where the sum is over all g ∈ G with gc = r, then it is easily seen that D(CG,G)(V ) =

det(N).

Let y1, . . . , yp be independent indeterminates. Consider the algebra A with dis-

tinguished basis A and now consider V as an A-module. The commuting algebra

determinant of (G,S) is defined by D(A,A)(V ) ∈ C[y1, . . . , yp]. If we define the S × S

generic commuting algebra matrix N ′ by

N ′(r, c) = yi,(2.3)

where (r, c) ∈ Oi, then it is easily seen that D(A,A)(V ) = det(N ′). Note that N ′ =

y1M1 + · · ·+ ypMp.

Example 2.2. Consider the action of G on itself by left multiplication. We use

the notation of Example 2.1.
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Now (g1, h1), (g2, h2) ∈ G×G are in the same G-orbit if and only if there exists a

g ∈ G such that gg1 = g2 and gh1 = h2. That is, g2g
−1
1 = h2h

−1
1 or g−1

1 h1 = g−1
2 h2.

So we can consider the G-orbits of G ×G to be parametrized by the elements of G,

the element f ∈ G parametrizing the orbit {(g, h) : g−1h = f}.

It now follows from (2.2) that the generic group action matrix is the G×Gmatrix

with (g, h) entry xgh−1 and it follows from (2.3) that the generic commuting algebra

matrix is the G×Gmatrix with (g, h) entry xg−1h. Since they differ only by a common

permutation of the rows and columns (g → g−1) it follows that the two determinants

are the same.

The next result collects together some basic properties of the algebra determinant.

Theorem 2.3. Let A be a finite dimensional complex algebra with distinguished

basis A = {a1, . . . , an}. Let V,W be finite dimensional complex vector spaces and let

ρ : A → End(V ), τ : A → End(W ) be algebra homomorphisms.

(i) If A is abelian then D(A,A)(V ) factors into linear terms.

(ii) If V and W are isomorphic A-modules then D(A,A)(V ) = D(A,A)(W ).

(iii) If V = V1 ⊕ V2 is a direct sum of two A-submodules V1 and V2 then

D(A,A)(V ) = D(A,A)(V1) D(A,A)(V2).

(iv) If V is an irreducible A-module then D(A,A)(V ) is an irreducible polynomial

in C[x1, . . . , xn] of degree dim(V ).

(v) If V and W are nonisomorphic irreducible A-modules, then D(A,A)(V ) and

D(A,A)(W ) are not proportional in C[x1, . . . , xn].

(vi) Assume V is a semisimple A-module with V1, V2, . . . , Vt the nonisomorphic

irreducible A-modules occuring in V with respective multiplicities m1, m2,

. . . , mt. Then

D(A,A)(V ) =

t
∏

i=1

D(A,A)(Vi)
mi ,

is the factorization of D(A,A)(V ) into powers of distinct irreducibles in the

ring C[x1, . . . , xn].

Proof. (i) Since A is abelian there exists a basis of V such that the matrix of

the operator ρ(a), for any a ∈ A, is upper triangular with respect to this basis. The

result follows.

(ii) and (iii) are clear.

(iv) Fix a basis of V of cardinality k and write down the matrixN = N(x1, . . . , xn)

of
∑n

i=1 xiρ(ai) with respect to this basis. The entries of N are linear polynomials in
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C[x1, . . . , xn]. Denote the entry in row i, column j, 1 ≤ i, j ≤ k, of N by

n
∑

p=1

µi,j,p xp,

where µi,j,p are scalars. Since V is irreducible it follows from Burnside’s theorem

(Corollary 4.1.7 in [7]) that, for every k × k complex matrix M , there exist scalars

α1, . . . , αn ∈ C such that N(α1, . . . , αn) = M . Thus the k2 entries of N are linearly

independent polynomials in C[x1, . . . , xn] of degree 1. Extend them to a basis

{

n
∑

p=1

µi,j,p xp : 1 ≤ i, j ≤ k

}

∪

{

n
∑

p=1

µm,p xp : 1 ≤ m ≤ l

}

,

where l = n− k2, of the vector space of polynomials in C[x1, . . . , xn] of degree 1.

Take independent indeterminates {yi,j : 1 ≤ i, j ≤ k} ∪ {zm : 1 ≤ m ≤ l} and

consider the ring homomorphism

C[yi,j , zm : 1 ≤ i, j ≤ k, 1 ≤ m ≤ l] → C[x1, . . . , xn]

given by yi,j 7→
∑n

p=1 µi,j,p xp and zm 7→
∑n

p=1 µm,p xp. This map is an isomorphism

on the vector space of degree 1 polynomials on both sides and thus takes irreducible

polynomials to irreducible polynomials. Since the determinant of the k × k matrix

(yi,j)1≤i,j≤k is an irreducible polynomial in C[yi,j : 1 ≤ i, j ≤ k] (and hence in

C[yi,j , zm : 1 ≤ i, j ≤ k, 1 ≤ m ≤ l] ) the result follows.

(v) We first show that the trace function of the representation of A on V can be

recovered from D(A,A)(V ) (to show this we do not need the fact that V is irreducible).

Set D(A,A)(V ) = f(x1, . . . , xn) and ρ(ai) = Mi, i = 1, . . . , n. There are scalars

α1, . . . , αn ∈ C such that α1a1 + · · ·+ αnan = 1 and thus α1M1 + · · ·+ αnMn = I.

Fix i ∈ {1, . . . , n}. Now, trace of Mi is the coefficient of xi in

det(I + xiMi) = f(α1, . . . , αi−1, αi + xi, αi+1, . . . , αn).(2.4)

Thus the traces of ρ(ai), for i = 1, . . . , n, and hence the traces of ρ(a), for all a ∈ A

can be recovered from D(A,A)(V ). It follows from (2.4) that the trace functions

of V and W are proportional if D(A,A)(V ) and D(A,A)(W ) are proportional. This

contradicts the fact that trace functions of nonisomorphic irreducible A-modules are

linearly independent (Corollary 4.1.18 in [7]).

The result follows.

(vi) This follows from parts (ii) to (v).
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Our next two lemmas give more detail in the abelian situation.

Lemma 2.4. Let A be a finite dimensional complex algebra with distinguished

basis A. Let V be finite dimensional complex vector space that is a semisimple A-

module, the module structure given by the homomorphism ρ : A → End(V ). Then

D(A,A)(V ) factors into linear terms if and only if ρ(A) is abelian.

Proof. The if part follows from Theorem 2.3 (i). For the only if part, since the

degree of the algebra determinant is the dimension of the underlying vector space

on which the algebra acts it follows from Theorem 2.3 (iv) that V is a direct sum

of irreducible A-modules of dimension 1. Thus there is a common eigenbasis for all

operators in ρ(a), a ∈ A, and hence ρ(A) is abelian.

Lemma 2.5. Let a finite group G act on the finite set S. Preserve the notation

of Example 2.1.

(i) Assume that the generic commuting algebra matrix N ′ is symmetric, i.e.,

each of M1, . . . ,Mp is symmetric. Then A is abelian and the commuting

algebra determinant of (G,S) factors into linear terms.

(ii) A is abelian iff the number of distinct irreducibles in the decomposition of

V (S) as a CG-module is p.

(iii) Assume that A is abelian. The M1, . . . ,Mp are all symmetric if and only if

the eigenvalues of Mi are real, for i = 1, . . . , p.

Proof. (i) Follows from Theorem 2.3 (i) and the fact that a complex algebra of

square matrices that has a basis of symmetric matrices is abelian.

(ii) Let there be t distinct irreducibles in the decomposition of V (S) as a CG-

module with multiplicities m1, . . . ,mt. Now A is a direct sum of matrix algebras of

sizes mi, i = 1, . . . , t. Thus

p = dim(A) =

t
∑

i=1

m2
i .

Since A is abelian if and only if mi = 1 for all i, the result follows.

(iii) The only if part is clear. We now prove the if part. Introduce an inner

product structure on the complex vector space V = V (S) by declaring S to be an

orthonormal basis (we think of V as column vectors with components indexed by S).

Note that this inner product is G-invariant. Since A is abelian it follows that V is a

multiplicity free CG-module. Thus the decomposition

V = V1 ⊕ · · · ⊕ Vp

into irreducible CG-submodules is canonical. Moreover, this decomposition is orthog-

onal. The CG-submodules V1, . . . , Vp are the common eigenspaces of M1, . . . ,Mp.
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Choose orthonormal bases Bi for each Vi, i = 1, . . . , p. Then B = B1 ∪ · · · ∪ Bt

is an orthonormal basis of V . Form a unitary matrix U with columns B. Then

Mi = UDiU
∗, i = 1, . . . , p, with Di real diagonal for all i. It follows that Mi is

symmetric.

3. Combinatorial Examples. In this section we give four combinatorial exam-

ples of commuting algebra determinants and, quoting results from classical and recent

literature, we indicate their factorizations into irreducible complex polynomials.

Our first two examples follow from classical combinatorial results. The symmetric

group Sn acts on B(n)i, 0 ≤ i ≤ n/2. It is easily seen that (A,B), (A′, B′) ∈ B(n)i ×

B(n)i are in the same Sn-orbit if and only if they have the same type. It follows that

Y (n, i) is the generic commuting algebra matrix for the Sn-action on B(n)i. There is

a q-analog of Y (n, i) which we now define.

Fix a prime power q and let Fq denote the finite field with q elements. Let Bq(n)

denote the set of all subspaces of Fn
q , the n-dimensional vector space (of all column

vectors with n components) over Fq. For 0 ≤ i ≤ n, let Bq(n)i denote the set of all

i-dimensional subspaces of Fn
q . The number of k-dimensional subspaces in Bq(n) is

the q-binomial coefficient
[

n
k

]

q
(we take

[

n
k

]

q
to be 0 if n < 0 or k < 0 (or both)) and

the total number of subspaces is the Galois number

Gq(n) =

n
∑

k=0

[

n

k

]

q

.

For 0 ≤ i ≤ n/2, let Yq(n, i) denote the Bq(n)i × Bq(n)i matrix whose entry in row

U , column V , where U, V ∈ Bq(n)i, is given by ydim(U∩V ). We see that Yq(n, i) is the

generic commuting algebra matrix of the GL(n,Fq)-action on Bq(n)i.

We now discuss the factorization of det(Y (n, i)) and det(Yq(n, i)). Let A and

B denote, respectively, the commuting algebras of the actions of Sn on B(n)i and

GL(n,Fq) on Bq(n)i. Since there are i + 1 distinct types and Y (n, i), Yq(n, i) are

symmetric, their determinants factor into linear terms and the standard bases of A,B

are both commuting families of i + 1 real symmetric matrices. It follows that, as

an A-module (respectively, B-module), V (B(n)i) (respectively, V (Bq(n)i)) is a direct

sum of i + 1 common eigenspaces. The dimensions of these eigenspaces of V (B(n)i)

(respectively, V (Bq(n)i)) are
(

n
k

)

−
(

n
k−1

)

(respectively,
[

n
k

]

q
−
[

n
k−1

]

q
), k = 0, . . . , i.

The eigenvalues of the standard basis elements of A and B on these eigenspaces are

also known. These classical results are due to Delsarte [3, 4] and they determine the

factorizations of det(Y (n, i)) and det(Yq(n, i)).
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For i, k, t ∈ {0, 1, . . . , n} define the following integers

γn,t
i,k =

n
∑

u=0

(−1)u−t

(

u

t

) (

i− k

u− k

) (

n− k − u

i− u

)

,

γn,t
i,k (q) =

n
∑

u=0

(−1)u−t q(
u−t

2 )+k(i−u)

[

u

t

]

q

[

i− k

u− k

]

q

[

n− k − u

i− u

]

q

.

To see that γn,t
i,k (q) is an integer note that if i < u then

[

n−k−u
i−u

]

q
= 0.

We now state the factorizations that follow from Delsarte’s results.

Theorem 3.1. We have the following factorizations into powers of distinct irre-

ducible polynomials in C[y0, . . . , yi].

det(Y (n, i)) =
i
∏

k=0

[

i
∑

t=0

γn,t
i,k yt

](nk)−(
n

k−1)

,(3.1)

det(Yq(n, i)) =

i
∏

k=0

[

i
∑

t=0

γn,t
i,k (q) yt

][nk]q−[
n

k−1]q
.(3.2)

Before discussing the next two examples we make a useful observation.

Let G be a finite group acting on the finite set S with generic group action matrix

N , generic commuting algebra matrix N ′, and A the commuting algebra. Suppose

that there are t distinct irreducibles occuring in the CG-module V (S) with dimensions

d1, . . . , dt and respective multiplicitiesm1, . . . ,mt. Write the isotypical decomposition

of V (S) (as a CG-module) as

V (S) = V1 ⊕ · · · ⊕ Vt,(3.3)

with dim(Vi) = midi for all i.

It follows from the double centralizer theorem (see [7, 10]) that (3.3) is also

the isotypical decomposition of V (S) as an A-module. However, the dimensions of

the t distinct A irreducibles are now m1, . . . ,mt and the corresponding multiplicities

d1, . . . , dt. Thus, there is a bijection between the irreducible factors of det(N) and

det(N ′) such that the pair (degree, multiplicity) of an irreducible factor of det(N)

is equal to the pair (multiplicity, degree) of the corresponding irreducible factor of

det(N ′). In our next two examples the number of distinct irreducibles occuring in

V (S) as a CG-module, their dimensions and multiplicity are known and therefore,

these numbers are also known for V (S) as an A-module. We will only quote the

numbers for the commuting algebra A.
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We now come to the two main examples of this paper, the nonabelian analogs

of Y (n, i) and Yq(n, i). Consider the Sn-action on B(n). It is easily seen that

(A,B), (A′, B′) ∈ B(n) × B(n) are in the same Sn orbit if and only if they have

the same type. It follows that X(n) is the generic commuting algebra matrix of

the Sn-action on B(n) and det(X(n)) is a homogeneous polynomial of degree 2n in

C[x(n)]. We now define a q-analog of X(n).

Let Xq(n) denote the Bq(n) × Bq(n) matrix whose entry in row U , column

V , where U, V ∈ Bq(n), is given by xdim(U),dim(V ),dim(U∩V ). We see that Xq(n) is

the generic commuting algebra matrix of the GL(n,Fq)-action on Bq(n) and that

det(Xq(n)) is a homogeneous polynomial in C[x(n)] of degree Gq(n).

We now discuss the factorizations of det(X(n)) and det(Xq(n)). Let A and B

denote, respectively, the commuting algebras for the actions of Sn on V (B(n)) and

GL(n,Fq) on V (Bq(n)). Let us write down the standard bases of A and B.

For 0 ≤ i, j, t ≤ n let Mi,j,t be the B(n)×B(n) matrix given by

Mi,j,t(X,Y ) =

{

1 if |X | = i, |Y | = j, |X ∩ Y | = t,

0 otherwise.

For 0 ≤ i, j, t ≤ n let Mi,j,t(q) be the Bq(n)×Bq(n) matrix given by

Mi,j,t(q)(X,Y ) =

{

1 if dim(X) = i, dim(Y ) = j, dim(X ∩ Y ) = t,

0 otherwise.

It follows that A = {Mi,j,t | (i, j, t) ∈ I(n)} and B = {Mi,j,t(q) | (i, j, t) ∈ I(n)}

are the standard bases of A and B respectively.

The following facts are well known (see [3, 4]):

(i) As an A-module, V (B(n)) has 1 + ⌊n/2⌋ distinct irreducibles occuring in it

and their dimensions and multiplicity are known and are as follows. We can fix

nonisomorphic irreducible A-submodules W0,W1, . . . ,W⌊n/2⌋ of V (B(n)) so that

dimension of Wk = n− 2k + 1, multiplicity of Wk =

(

n

k

)

−

(

n

k − 1

)

,

for k = 0, 1, . . . , ⌊n/2⌋.

(ii) As a B-module, V (Bq(n)) has 1 + ⌊n/2⌋ distinct irreducibles occuring in it

and their dimensions and multiplicity are known and are as follows. We can fix

nonisomorphic irreducible B-submodules U0, U1, . . . , U⌊n/2⌋ of V (Bq(n)) so that

dimension of Uk = n− 2k + 1, multiplicity of Uk =

[

n

k

]

q

−

[

n

k − 1

]

q

,
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for k = 0, 1, . . . , ⌊n/2⌋.

We now need to calculate D(A,A)(Wk) and D(B,B)(Uk), for k = 0, 1, . . . , ⌊n/2⌋.

This in turn requires that we find suitable bases of Wk, Uk with respect to which we

can explicitly write down the matrices representing the action of Mi,j,t and Mi,j,t(q),

for (i, j, t) ∈ I(n). For Wk, this was done in Dunkl [6] and Schrijver [11] and for Uk

this was done in two recent papers of Bachoc, Passuello, and Vallentin [1] and the

second author [12]. For the Uk case, the approach in [1] is motivated by the work of

Dunkl [5] on q-Hahn polynomials (also see Marco and Parcet [9] for a closely related

paper) while the approach in [12] is purely combinatorial and leads to a formulation

that directly reduces to the formulation in [11] for the Wk case in the q → 1 limit.

We shall use the formulations in [11, 12].

For i, j, k, t ∈ {0, 1, . . . , n} define the following integers

γn,t
i,j,k =

n
∑

u=0

(−1)u−t

(

u

t

) (

i − k

u− k

) (

n− k − u

j − u

)

,

γn,t
i,j,k(q) =

n
∑

u=0

(−1)u−t q(
u−t

2 )+k(j−u)

[

u

t

]

q

[

i− k

u− k

]

q

[

n− k − u

j − u

]

q

.

Note that γn,t
i,k = γn,t

i,i,k and γn,t
i,k (q) = γn,t

i,i,k(q).

For 0 ≤ k ≤ ⌊n/2⌋ and k ≤ i, j ≤ n−k, define Ei,j,k to be the n−2k+1×n−2k+1

matrix, with rows and columns indexed by {k, k + 1, . . . , n − k}, and with entry in

row i and column j equal to 1 and all other entries 0.

The following results are proved in [11, 12] (the A-module case in [11] and the

B-module case in [12]).

Theorem 3.2. Let 0 ≤ k ≤ ⌊n/2⌋ and (i, j, t) ∈ I(n). Consider the irreducible

A-submodule Wk of V (B(n)) and the irreducible B-submodule Uk of V (Bq(n)).

(i) If i, j 6∈ {k, . . . , n− k} then the action of Mi,j,t,Mi,j,t(q) on Wk, Uk (respec-

tively) is 0.

(ii) Suppose k ≤ i, j ≤ n−k. There is a basis of Wk such that the matrix Mi,j,t,k

of the action of Mi,j,t on Wk with respect to this basis is given as follows.

It will be convenient to index the rows and columns of Mi,j,t,k by the set

{k, . . . , n− k}. We have

Mi,j,t,k = γn,t
i,j,k Ei,j,k.

(iii) Suppose k ≤ i, j ≤ n−k. There is a basis of Uk such that the matrix Mi,j,t,k(q)

of the action of Mi,j,t(q) on Uk with respect to this basis is given as follows.

It will be convenient to index the rows and columns of Mi,j,t,k(q) by the set
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{k, . . . , n− k}. We have

Mi,j,t,k(q) = γn,t
i,j,k(q) Ei,j,k.

Remark The bases for Wk, Uk given in [11, 12] are not quite the same as those given

in parts (ii) and (iii) of Theorem 3.2. However, these bases differ by a simple scaling.

Let us make this precise. We denote by M ′
i,j,t,k (respectively, Mi,j,t,k(q)

′) the matrix

of the action of Mi,j,t (respectively, Mi,j,t(q)) on Wk (respectively, Uk) with respect

to the basis of Wk (respectively, Uk) given in [11] (respectively, [12]).

Define a n − 2k + 1 × n − 2k + 1 diagonal matrix Z, with rows and columns

indexed by {k, k+1, . . . , n−k}, and with entry in row j and column j, k ≤ j ≤ n−k,

given by
(

n−2k
j−k

)

1
2 . Define a n− 2k + 1× n− 2k + 1 diagonal matrix Z(q), with rows

and columns indexed by {k, k + 1, . . . , n − k}, and with entry in row j and column

j, k ≤ j ≤ n − k, given by q
k(j−k)

2

[

n−2k
j−k

]

q

1
2 . Then it may be easily checked that

Mi,j,k,t = Z−1M ′
i,j,k,tZ and Mi,j,k,t(q) = Z(q)−1Mi,j,k,t(q)

′Z(q).

The main reason for scaling the bases from [11, 12] is so that our matricesMi,j,t,k

and Mi,j,k,t(q) have integer entries.

Let 0 ≤ k ≤ n/2. Define a n − 2k + 1 × n − 2k + 1 matrix M(k, n), with rows

and columns indexed by {k, k + 1, . . . , n− k}, and with entry in row i and column j

given by the following linear polynomial with integer coefficients

n
∑

t=0

γn,t
i,j,k xi,j,t, k ≤ i, j ≤ n− k,

where we take xi,j,t = 0 whenever (i, j, t) 6∈ I(n). Define the homogeneous polynomial

d(k,x(n)) ∈ C[x(n)], with integral coefficients, of degree n − 2k + 1 by d(k,x(n)) =

det(M(k, n)). Being of different degrees d(0,x(n)), . . . , d(⌊n
2 ⌋,x(n)) are mutually

nonproportional.

Let 0 ≤ k ≤ n/2. Define a n − 2k + 1 × n − 2k + 1 matrix Mq(k, n), with rows

and columns indexed by {k, k + 1, . . . , n− k}, and with entry in row i and column j

given by the following linear polynomial with integer coefficients

n
∑

t=0

γn,t
i,j,k(q) xi,j,t, k ≤ i, j ≤ n− k,

where we take xi,j,t = 0 whenever (i, j, t) 6∈ I(n). Define the homogeneous polynomial

dq(k,x(n)) ∈ C[x(n)], with integral coefficients, of degree n− 2k+1 by dq(k,x(n)) =

det(Mq(k, n)). Being of different degrees dq(0,x(n)), . . . , dq(⌊
n
2 ⌋,x(n)) are mutually

nonproportional.
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The following result now follows from Theorems 2.3 and 3.2.

Theorem 3.3.

(i) The polynomials d(0,x(n)), d(1,x(n)), . . . , d(⌊n
2 ⌋,x(n)) are irreducible in the

ring C[x(n)], mutually nonproportional and we have

det(X(n)) =

⌊n
2 ⌋
∏

k=0

d(k,x(n))(
n

k)−(
n

k−1).

(ii) The polynomials dq(0,x(n)), dq(1,x(n)), . . . , dq(⌊
n
2 ⌋,x(n)) are irreducible in

C[x(n)], mutually nonproportional and we have

det(Xq(n)) =

⌊n
2 ⌋
∏

k=0

dq(k,x(n))
[nk]q−[

n

k−1]q .
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