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THE CONVERGENCE RATE OF THE CHEBYSHEV
SEMIITERATIVE METHOD UNDER A PERTURBATION OF THE

FOCI OF AN ELLIPTIC DOMAIN∗

XIEZHANG LI† AND FANGJUN ARROYO ‡

Abstract. The Chebyshev semiiterative method (CHSIM) is a powerful method for finding the
iterative solution of a nonsymmetric real linear system Ax = b if an ellipse excluding the origin
well fits the spectrum of A. The asymptotic rate of convergence of the CHSIM for solving the
above system under a perturbation of the foci of the optimal ellipse is studied. Several formulae
to approximate the asymptotic rates of convergence, up to the first order of a perturbation, are
derived. These generalize the results about the sensitivity of the asymptotic rate of convergence to
a perturbation of a real-line segment spectrum by Hageman and Young, and by the first author. A
numerical example is given to illustrate the theoretical results.
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1. Introduction. Let Ax = b be a nonsingular real linear system. With a
regular splitting A =M −N where M is nonsingular, the above system is written as
an equivalent fixed-point form

x = Tx+ c,(1.1)

where T = M−1N and c = M−1b. Then 1 is not in the spectrum of T, σ(T ). Let
{pm} be a sequence of polynomials with deg pm ≤ m and pm(1) = 1. Assume that
Ω is a compact set excluding the point z = 1 but containing σ(T ) and that the
complement of Ω in the extended complex plane is simply connected. The asymptotic
rate of convergence of the semiiterative method (cf. Varga [11]) induced by {pm} for
Ω is defined by

κ(Ω, {pm}) := limm→∞‖pm‖1/m
Ω ,

and

κ(Ω) := inf
{pm}

κ(Ω, {pm})

is called the asymptotic convergence factor (ACF) for Ω; cf. Eiermann, Niethammer
and Varga [3]. If κ(Ω, {pm}) = κ(Ω) for some {pm}, then the semiiterative method
induced by {pm} is called asymptotically optimal.

If an ellipse excluding 1 well fits σ(T ), then a Chebyshev semiiterative method
(CHSIM) for solving (1.1) is determined by its foci. An adaptive procedure for esti-
mating the foci of the optimal ellipse whose major axis either lies on the real axis or

∗ Received by the editors on 23 April 2002. Final manuscript accepted on 25 April 2002. Handling
Editor: Daniel Hershkowitz.

†Department of Mathematics and Computer Science, Georgia Southern University, Statesboro,
GA 30460, USA (xli@gsu.cs.gasou.edu).

‡Mathematics Department, Coker College, Hartsville, SC 29550, USA (farroyo@pascal.coker.edu).

55

The Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 9, pp. 55-66, May 2002



ELA

56 Xiezhang Li and Fangjun Arroyo

parallel to the imaginary axis based on the power method was developed by Manteuf-
fel [8]. This adaptive dynamic scheme was modified based on the GMRES Algorithm
by Elman at al. [4] and further developed by Golub et al. [2], [5] as application of the
modified moments. The hybrid iterative method relying on an approximation of the
field of values of the coefficient matrix and of its inverse was proposed by Manteuffel
and Starke [9]. All available software for iterative methods based on Chebyshev poly-
nomials, such as Chebycode [1] adaptively seek to determine a good ellipse during the
iterations by computing its foci.

For simplicity, we only discuss the case where the major axis lies along the x-axis
since the other case can be handled analogously. Assume that ∂Ω is an optimal ellipse
for σ(T ) in the sense that the parameters of CHSIM are chosen on the basis of the
foci of ∂Ω for solving (1.1) is asymptotically optimal; cf. Niethammer and Varga [10].
In practice, the exact values of α and β are often not available. It is more realistic
to assume that we are only given estimates, αe and βe, of α and β. The purpose
of this paper is to consider how the convergence behavior changes if a CHSIM is
corresponding to αe and βe.

If the length of the minor axis, denoted by b, is zero, the ellipse reduces to a line
segment [α, β]. This case has been thoroughly studied by Hageman and Young [6]
and Li [7]. Their results are generalized here to the case of an elliptic domain. The
same notation as in [7] is used here.

It is well-known that a unique conformal mapping Φ

Φ(z) =
(
√
z − β +

√
z − α)2

β − α
maps the exterior of [α, β] on the extended z-plane one-one onto the exterior of the
unit circle with ∞ corresponding to ∞ and Ψ′(∞) > 0. If (d, 0) is the center of ∂Ω
then the asymptotic convergence factor for Ω is given by

κ(Ω) =
|Φ(d+ ib)|

|Φ(1)| =
2(a+ b)(√

1− β +
√
1− α)2 ,(1.2)

where

a =
√
b2 + (β − α)/2)2(1.3)

is the length of the major semiaxis.
This paper is organized as follows. A general formula for the sensitivity of the

ACF for a closed ellipse under a perturbation of its foci is introduced at the end of
Section 1. The asymptotic rate of convergence of the CHSIM under a perturbation of
each focus and both of foci are studied in Sections 2 and 3, respectively. These rates
of convergence are compared in Section 4. A numerical example is given in Section 5
to illustrate the theoretical results.

It follows from (1.2) that

∂κ

∂a
=
∂κ

∂b
=

2(√
1− β +

√
1− α)2 ,
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∂κ

∂α
=

2(a+ b)(√
1− β +

√
1− α)3 √

1− α
,

∂κ

∂β
=

2(a+ b)(√
1− β +

√
1− α)3 √

1− β
.

Suppose that α, β and b have increments ∆α, ∆β and ∆b, respectively. We denote
by Ω1 the closed ellipse with foci α + ∆α, β + ∆β and a minor semiaxis of length
b+∆b. Then

∆κ = κ(Ω1)− κ(Ω) = ∂κ

∂α
∆α+

∂κ

∂β
∆β +

∂κ

∂a
∆a+

∂κ

∂b
∆b

+o
(√

∆α2 +∆β2 +∆a2 +∆b2
)
.

With (1.3) and denoting

s =
√
1− β√
1− α ,(1.4)

we have the ACF for the perturbed closed ellipse κ(Ω1) represented by

κ(Ω1) = κ(Ω)
{
1 +

(β − α)(∆β −∆α)
4a(a+ b)

+
∆β + s∆α

s(1 + s)(1− α) +
∆b
a

}

+o
(√

∆α2 +∆β2 +∆b2
)
.(1.5)

The expression (1.5) will be used to estimate the sensitivity of the asymptotic rate of
convergence of a CHSIM to a perturbation of the foci in the following two sections.

2. Perturbation of either α or β. The asymptotic rate of convergence of a
Chebyshev semiiterative method under a perturbation of either α or β is studied in
this section. The size of a perturbation is denoted by a positive parameter ε. There
are four different possible perturbations:

(a) an overestimate for α, αo = α− ε.
(b) an underestimate for α, αu = α+ ε.
(c) an underestimate for β, βu = β − ε.
(d) an overestimate for β, βo = β + ε.
Let καe or κβe be the asymptotic rate of convergence of the CHSIM whose pa-

rameters are selected on the basis of a perturbation of one focus α or β.
Theorem 2.1. The asymptotic rate of convergence of the CHSIM whose param-

eters are selected on the basis of a perturbation of one focus α or β for solving (1.1)
is given by

καo = κ
{
1 +

[−a+ b+ c
2bc

− 1
(1 + s)(1− α)

]
ε+ o(ε)

}
,(2.1)

καu = κ
{
1 +

[
a− b+ c

2bc
+

1
(1 + s) (1− α)

]
ε+ o (ε)

}
,(2.2)
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κβu = κ
{
1 +

[
a− b + c

2bc
− 1
s (1 + s) (1− α)

]
ε+ o (ε)

}
,(2.3)

κβo = κ
{
1 +

[−a+ b+ c
2bc

+
1

s(1 + s)(1− α)
]
ε+ o(ε)

}
,(2.4)

where s is defined in (1.4).
Proof. We only consider the case (d) in detail. The other cases can be shown in

an analogous way. The equation of the ellipse ∂Ω is given by

(x− d)2
a2

+
y2

b2
= 1,(2.5)

where d = (β + α)/2. An ellipse ∂Ω1 with foci α and βo is in the following form

(
x− d− ε

2

)2

a21
+
y2

b21
= 1,(2.6)

where

a21 =
(
c+

ε

2

)2

+ b21 and c =
β − α
2

.(2.7)

It follows from (2.5) and (2.6) that Ω is contained in Ω1, the closed interior of ∂Ω1,
if and only if the following inequality holds

b21

(
1−

(
x− d− ε

2

)2

a21

)
≥ b2

(
1− (x− d)2

a2

)
for x ∈ [d− a, d+ a],

or equivalently,

b21a
2

[
a21 −

(
x− d− ε

2

)2
]
≥ b2a21

[
a2 − (x − d)2] for x ∈ [d− a, d+ a].(2.8)

We are going to find the minimum value of b1 such that (2.8) holds. Let

b1 = b+ ηε.(2.9)

It suffices to find the smallest η ≥ 0 such that (2.8) holds up to the first order of
ε. Substituting a2

1 and b21 from (2.7) and (2.9) into (2.8) and then dropping the o(ε)
term yields

2bηεa4 − (b2 + 2bηε)a2[(x− d)2 − (x− d)ε] ≥ −b2(a2 + 2bηε+ cε)(x− d)2,

or equivalently,

εη[2a4 − 2a2(x− d)2 + 2b2(x− d)2] + εb(x− d)[a2 + c(x− d)] ≥ 0.
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This inequality is equivalent to the following:

η ≥ b(x− d)[a2 + c(x− d)]
2[c2(x− d)2 − a4]

=
b(x− d)

2[c(x− d)− a2]
, x ∈ [d− a, d+ a].(2.10)

The right hand side of (2.10) achieves its maximum value when x = d − a. In
other words, the smallest positive value of η, denoted by η again, is given by

η =
b

2(a+ c)
+O(ε)

and the minimum value of b1, denoted by b1 again, is given by

b1 = b+
bε

2(a+ c)
+ o(ε).

Comparing ∂Ω1 with ∂Ω, we observe that

∆α = 0, ∆β = ε and ∆b =
bε

2(a+ c)
+ o(ε).

Thus, it follows from (1.5) that

κ(Ω1) = κ
{
1 +

[−a+ b+ c
2bc

+
1

s(1 + s)(1− α)
]
ε+ o(ε)

}
,

where s is given by (1.4).
On the other hand, it follows from [10] that the asymptotic rate of convergence

of the CHSIM whose parameters are selected on the basis of foci α and βo, denoted
by κβo , is the same as the ACF for Ω1, i.e.

κβo = κ(Ω1).

This completes the proof.
As b→ 0, Ω reduces to the line segment [α, β] and the limit of (−a+ b+ c)/(2bc)

is 1/(β − α). Then, the two equations in (2.1) and (2.4) reduce to

καo = κ
{
1 +

sε

(β − α) + o(ε)
}

and κβo = κ
{
1 +

ε

s(β − α) + o(ε)
}
,

respectively. These estimates, which extends the results in [6], appeared in [7].

3. Perturbations of both α and β. Perturbations of both foci α and β of ∂Ω
will be studied in this section. There are four different possible perturbations of both
α and β

(a) overestimates for both α and β.
(b) underestimates for both α and β.
(c) an overestimate for α and an underestimate for β.
(d) an underestimate for α and an overestimate for β.
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We only discuss case (a) since the rest of the cases can be treated in a similar,
but much simpler, fashion.

Let αo = α− ε1 and βo = β + ε2, where ε1 > 0 and ε2 > 0. The asymptotic rate
of convergence of the CHSIM for solving (1.1), determined by the ellipse with foci αo

and βo, is denoted by καo,βo . An ellipse ∂Ω1 with foci αo and βo is given by(
x− d− ε2−ε1

2

)2

a21
+
y2

b21
= 1,

where

a21 − b21 =
(
c+

ε1 + ε2
2

)2

and c =
β − α
2

.(3.1)

The requirement that ∂Ω be contained in ∂Ω1 is equivalent to the following inequality

b21a
2

[
a21 −

(
x− d− ε2 − ε1

2

)2
]
≥ b2a21

[
a2 − (x− d)2] , x ∈ [d− a, d+ a].(3.2)

Let

b1 = b+ η(ε1 + ε2).(3.3)

We are going to find the minimum value of b1 or the smallest η ≥ 0 such that (3.2)
holds up to the first order of ε1 and ε2. Substituting a1 and b1 from (3.1) and (3.3)
into (3.2) and dropping the o(ε1) and o(ε2) terms yields

η ≥ −bc(x− d)2(ε1 + ε2)− a2b(x− d)(ε2 − ε1)
2[a4 − c2(x− d)2](ε1 + ε2) , x ∈ [d− a, d+ a].

It is clear that if ε1 = ε2 the minimum nonnegative value of η is 0. Hence b1 = b and
∆b = 0.

Assume that ε1 �= ε2 and let

g(x) =
−bcx2(ε1 + ε2)− a2bx(ε2 − ε1)

2[a4 − c2x2]
, x ∈ [−a, a].

Then

g′(x) =
a2b[−c2(ε2 − ε1)x2 − 2a2c(ε1 + ε2)x − a4(ε2 − ε1)]

2[a4 − c2x2]2
, x ∈ [−a, a].

If we solve g′(x) = 0 for x, we get two solutions:

x1 = −a
2

c

(
ε1 + ε2 − 2

√
ε1ε2

ε2 − ε1

)
and x2 = −a

2

c

(
ε1 + ε2 + 2

√
ε1ε2

ε2 − ε1

)
.

It is clear that x2 /∈ [−a, a]. But x1 ∈ [−a, a] if and only if

a
∣∣√ε2 −√

ε1
∣∣

c
(√
ε2 +

√
ε1

) ≤ 1.(3.4)
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Condition (3.4) is equivalent to

max
{
ε1
ε2
,
ε2
ε1

}
≤

(
1 + e
1− e

)2

,(3.5)

where e = c/a is the eccentricity of the ellipse ∂Ω.
If we assume that (3.5) holds, then x1 is the only critical point of g in the interval

[−a, a]. It easily follows from g(0) = 0 and g(x1) = b(ε1 + ε2 − 2
√
ε1ε2)/(4c) > 0 that

g(x1) is the maximum value of g on [−a, a]. Thus the minimum value of η(ε1 + ε2) is
b(ε1 + ε2 − 2

√
ε1ε2)/(4c) + o(ε1) + o(ε2). It follows from (3.3) that

∆b =
b

4c
(ε1 + ε2 − 2

√
ε1ε2) + o(ε1) + o(ε2).

If we assume that (3.5) does not hold, then x1 /∈ [−a, a] and g′(x) keeps the same
sign as ε1 − ε2 on [−a, a]. The g achieves its maximum at x = −a if ε1 < ε2 and at
x = a if ε1 > ε2. Consequently, the minimum positive value of η is

−c(ε1 + ε2) + a |ε1 − ε2|
2b(ε1 + ε2)

+O(ε1) +O(ε2).

Thus by (3.3) we have

∆b =
−c(ε1 + ε2) + a |ε1 − ε2|

2b
+ o(ε1) + o(ε2).

Once again, we apply (1.5) and the observations from [10]. This completes the proof
of a part of Theorem 3.1 below. The rest of equations can be shown in an analogous
way.

Theorem 3.1. The asymptotic rate of convergence of the CHSIM whose param-
eters are selected on the basis of a perturbation of both foci α and β for solving (1.1)
is given by the following formulas.

If ε1 �= ε2 and max
{

ε1
ε2
, ε2

ε1

}
≤

(
1+e
1−e

)2

, then

καo,βo = κ

{
1 +

[
2a− b
4ac

− 1
(1 + s) (1 − α)

]
ε1 − b

2ac
√
ε1ε2

+
[
2a− b
4ac

+
1

s (1 + s) (1− α)
]
ε2 + o (ε1) + o (ε2)

}
.

If max
{

ε1
ε2
, ε2

ε1

}
>

(
1+e
1−e

)2

, then

καo,βo = κ

{
1 +

[−a+ b
2bc

− 1
(1 + s) (1− α)

]
ε1 +

1
2b

|ε1 − ε2|

+
[−a+ b

2bc
+

1
s (1 + s) (1− α)

]
ε2 + o (ε1) + o (ε2)

}
,
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and

καu,βu = κ

{
1 +

[
a− b
2bc

+
1

(1 + s) (1− α)
]
ε1 +

1
2b

|ε1 − ε2|

+
[
a− b
2bc

− 1
s (1 + s) (1− α)

]
ε2 + o (ε1) + o (ε2)

}
,

καo,βu = κ

{
1 +

[−a+ b+ c
2bc

− 1
(1 + s) (1− α)

]
ε1

+
[
a− b+ c

2bc
− 1
s (1 + s) (1 − α)

]
ε2 + o (ε1) + o (ε2)

}
,

καu,βo = κ

{
1 +

[
a− b + c

2bc
+

1
(1 + s) (1− α)

]
ε1

+
[−a+ b+ c

2bc
+

1
s (1 + s) (1− α)

]
ε2 + o (ε1) + o (ε2)

}
.

In particular, when ε1 = ε2 = ε,

καo,βo = κ
{
1 +

[
a− b
ac

+
1− s

s (1 + s) (1− α)
]
ε+ o (ε)

}
,(3.6)

καu,βu = κ
{
1 +

[
a− b
bc

− 1− s
s (1 + s) (1− α)

]
ε+ o (ε)

}
,(3.7)

καo,βu = κ
{
1 +

[
1
b
− 1
s(1− α)

]
ε+ o (ε)

}
,(3.8)

καu,βo = κ
{
1 +

[
1
b
+

1
s(1− α)

]
ε+ o (ε)

}
.(3.9)

As b→ 0, Ω reduces to the line segment [α, β] . We then have

a− b
ac

→ 2
β − α and

1− s
s(1 + s)(1− α) → (1 + s)

s (β − α) .

Then it follows from (3.6) that

καo,βo = κ
{
1 +

(1 + s)ε
s(β − α) + o(ε)

}
,

which appeared in [7].
As an application of Theorem 3.1, we consider how a perturbation of a point

on ∂Ω affects the asymptotic rate of convergence of the Chebyshev method. For
simplicity, assume that the two vertices of ∂Ω on the real axis and z1 = (x1, y1) on
the up right quarter of ∂Ω are three extreme eigenvalues of T . Let ze = z1 + εeit,
where ε > 0 and 0 ≤ t ≤ π/2, be a perturbation of z1 which lies on the outer normal
vector at z1.
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The ellipse ∂Ωe containing the two vertices of ∂Ω and ze is given by

(x− d)2
a2

+
y2

b2e
= 1,(3.10)

where be = b+ ηε for some η ≥ 0. Substituting ze into (3.10), we then have

η =
b
(
b2 (x1 − d) cos t+ a2y1 sin t

)
a2y21

.

Since the slope of the normal vector at z1 is tan t = a2y1/(b2(x1 − d)), then η =
b/(y1 sin t). Therefore be = b + bε/(y1 sin t) + o(ε). Thus we have

∆b =
b

y1 sin t
ε+ o(ε), ∆α =

b

c
∆b, ∆β = −b

c
∆b.

It follows from (3.7) that the asymptotic rate of convergence of the CHSIM for
solving (1.1) under the perturbation of z1 is given by

καu,βu = κ
{
1 +

b

y1 sin t

[
1

a+ b
− b

c

(
1− s

s (1 + s) (1− α)
)]
ε+ o (ε)

}
.

4. Comparison of the asymptotic rates of convergence. Eight asymptotic
rates of convergence derived above are compared in this section. We have shown the
following inequalities in the case of a line segment spectrum (i.e., b = 0) in [7].

καo ≤ κβo < καo,βo < καu,βu < κβu ≤ καu(or καo,βu) ≤ καu,βo .(4.1)

However, the relationship among those rates of convergence in the case of an elliptic
spectrum domain is more complicated. Notice that all formulas of the asymptotic
rate of convergence derived can be unified by introducing the following notation

κ∗ = κc∗,(4.2)

where the subscript ∗ denotes the type of perturbation, e.g., καo = κcαo. It is trivial
that c∗ > 1. Then we extend Proposition 4 in [7] as follows.

cαo,βu = cαocβu + o(ε),(4.3)
cαu,βo = cαucβo + o(ε),(4.4)

cαu,βu =
cαu

cβo

+ o(ε) =
cβu

cαo

+ o(ε),(4.5)

cαo,βo ≥ cαocβo + o(ε),

where the equality in the last expression holds if and only if b = 0.
The relations (4.3)–(4.5) can be interpreted as the fact that the effect of one

perturbation is the same as the composition of the corresponding two perturbations.
From (2.1)–(2.4), (4.2) and (4.5), we obtain the following theorem.
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Theorem 4.1. The following inequalities hold

καo < κβu(or κβo) < καu and κβu < κβo ⇔ e ≤ 2a
1− α,

where e is the eccentricity of ∂Ω.
Proof. It follows from (2.1)–(2.4) that

καo < καu , καo < κβo and κβu < καu .

The equalities (4.2) and (4.5) imply that

καo < κβu and κβo ≤ καu .

The first part of theorem is proved. With the identity 2c = (1 − α)(1 − s2), one can
easily verify that

κβu ≤ κβo ⇔ s ≤ b

a
⇔ e ≤ 2a

1− α.

This completes the proof of theorem.
In practice, we are only interested in the case of the optimal ellipse close to the

point z = 1. The condition e > 2a/(1− α) means that the ellipse is flat enough. In
this case, the relationship among four rates is consistent with (4.1). We conclude that
an underestimate of α is more sensitive than the either underestimate of overestimate
of β and that an overestimate of α is less sensitive than either underestimate or
overestimate of β. Assume that the ellipse is not so flat (in the sense of e ≤ 2a/(1−
α)). If only β needs to be estimated, then an underestimate of β is better than
the overestimate by an equivalent amount. The example in the following section
illustrates this point.

We can show the following theorem in an analogous way.
Theorem 4.2. The following inequalities hold:

κβo < καo,βo , καu < καu,βo ,

καu,βu < κβu < καo,βu(or καo,βo) < καu,βo, if e <
2a

1− α,

καo,βo < καu,βu < κβu < καo,βu < καu,βo , if e >
2a

1− α.

We remark that divergence will never happen if only α is overestimated, while
a big overestimate of β may cause divergence. An underestimate of α together with
an overestimate of β is the worst case. We suggest in practice that α should never
be underestimated. If several cycles of estimates of foci are needed, one may choose
a fair overestimate of α and an underestimate of β. Then one should make a careful
dynamic estimate of β.
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5. Example. Consider an elliptic partial differential equation of the following
form,

−∆u+ 2p1xux + 2p2yuy − p3u = f,

with constants p1, p2 and p3 ≥ 0 on the unit square [0, 1] × [0, 1] and a boundary
condition u(x, y) = 0, where f is a continuous function of x and y. Using the standard
five-point discretization scheme, a linear system (1.1) with N unknowns is obtained.
Values of p1 = 34, p2 = 26, p3 = 130 and N = 400 are chosen in this example.

For the optimal ellipse fitting σ(T ), the two real foci α = −5.39131, β = −0.01912
and the length of the minor semiaxis, b = 2.47412, are calculated. The asymptotic
rate of convergence of the optimal Chebyshev method is given by κ = 0.97903. The
exact solution x is generated with random numbers chosen from the interval [−1, 1]
and the right hand side f is computed accordingly. The starting vector x0 = 0.

Let the size of the perturbation ε be 0.05. The values of the asymptotic rates of
convergence κ∗ from (2.1)–(2.4) and (3.6)–(3.9), and the values of c∗ corresponding to
different perturbations are shown in Table 1. The ratio of numbers of iterations, RNI
= log κ/ log κ∗, indicates how many extra iterations are proportionately required if
the parameters of a CHSIM are selected on the basis of the perturbed foci αe and/or
βe.

Observe also that both cαu,βu and cαo,βu are very close to cβu. This means that if
β is underestimated then the effect of either an underestimate or an overestimate for α
on the asymptotic rate of convergence of the CHSIM is very small and consequently
can be ignored. It is remarked that an overestimate of α is the best case while
an underestimate of α with an overestimate of β is the worst case. Observe that
e < 2a/(1 − α) holds and therefore, the κ∗ in column 2 satisfy the inequalities of
Theorems 4.1 and 4.2.

All the computations were performed with MATLAB 5.3. The experimental
asymptotic rate of convergence of the optimal Chebyshev iterative method is calcu-
lated as κ1 = 0.97904, which is used to get data in the sixth column of Table 1.

Approximations Experimental Results
Pertur. κ∗ c∗ RNI κ∗ c∗ RNI
αo 0.97911 1.00008 1.004 0.97912 1.00008 1.004
αu, βu 0.97947 1.00045 1.022 0.97945 1.00042 1.020
βu 0.97955 1.00053 1.026 0.97957 1.00054 1.026
αo, βu 0.97963 1.00061 1.030 0.97962 1.00059 1.029
αo, βo 0.99314 1.01441 3.079 0.99345 1.01472 3.223
βo 0.99829 1.01967 12.39 0.99511 1.01641 4.321
αu 0.99873 1.02012 16.68 0.99872 1.02010 16.54
αu, βo 1.01799 1.03979 div. 1.01877 1.04058 div.

Table 1. κ∗, c∗ and RNIs under perturbations of α and β

As can be observed from Table 1, the experimental data matches the approxima-
tion data very well.
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