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Abstract. For a simple digraph G without directed triangles or digons, let β(G) be the size of

the smallest subset X ⊆ E(G) such that G\X has no directed cycles, and let γ(G) be the number of

unordered pairs of nonadjacent vertices in G. In 2008, Chudnovsky, Seymour, and Sullivan showed

that β(G) ≤ γ(G), and conjectured that β(G) ≤ γ(G)/2. Recently, Dunkum, Hamburger, and Pór

proved that β(G) ≤ 0.88γ(G). In this note, we prove that β(G) ≤ 0.8616γ(G).
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1. Introduction. We will follow the notation from [2, 4]. All digraphs G =

(V,E) considered in this note are finite and simple. A digraph G is called 3-free if G

has no directed cycle of length at most three. A digraph is acyclic if it has no directed

cycles. For a digraph G, let β(G) denote the minimum cardinality of a set X ⊂ E(G)

such that G \X is acyclic, and let γ(G) be the number of missing edges of G (that

is, the number of unordered pairs of nonadjacent vertices.) In 2008, Chudnovsky,

Seymour, and Sullivan [2] made the following conjecture.

Conjecture 1.1 (Chudnovsky, Seymour, and Sullivan). If G is a 3-free digraph,

then

β(G) ≤
1

2
γ(G).

In support of the above conjecture, Chudnovsky, Seymour, and Sullivan [2] showed

that β(G) ≤ γ(G). Recently, Dunkum, Hamburger, and Pór [4] improved the result
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to β(G) ≤ 0.88γ(G). Conjecture 1.1 is closely related to the following special case of

a conjecture by Caccetta and Häggkvist [1].

Conjecture 1.2 (Caccetta and Häggkvist). Any digraph on n vertices with

minimum out-degree at least n/3 contains a directed triangle.

Conjecture 1.2 is still open. In fact, the following weaker conjecture is also open

even if a similar in-degree condition is added.

Conjecture 1.3. Any digraph on n vertices with both minimum out-degree and

minimum in-degree at least n/3 contains a directed triangle.

Conjecture 1.3 is from folklore, and some partial results of the conjecture can be

found in [3, 11, 6]. Chudnovsky, Seymour, and Sullivan [2] commented that proving

Conjecture 1.1 may provide some useful information towards proving Conjecture 1.2.

To see this, their partial result (β(G) ≤ γ(G)) on Conjecture 1.1 has been applied by

Hamburger, Haxell, and Kostochka [6] to improve a result of Shen [11] on Conjecture

1.2. Recently, the same partial result was also applied by Hladký, Král’, and Norine [7]

who used the theory of flag algebras to prove the currently best result in this direction,

namely, any digraph on n vertices with minimum out-degree at least 0.3465n contains

a directed triangle.

In this note, we prove that β(G) ≤ 0.8616γ(G). We mention that this result has

been cited by [8, 9, 10] after we uploaded our paper on arXiv in 2009. Lichiardopol

[10] has applied our result to prove the currently best partial result on Conjecture

1.3: for β ≥ 0.343545, any digraph of order n with both minimum out-degree and

minimum in-degree at least βn contains a directed triangle. Liang and Xu have

extended the research to 4- and 5-free digraphs [8] and to the general m-free digraphs

[9]. Fox, Keevash, and Sudakov [5] proved that every m-free digraph satisfies β(G) ≤

cγ(G)/m2, where c is an absolute constant.

2. Proof of the main result. In this section, we follow the ideas in [2, 4]

for partitioning the vertex set of a digraph. For each vertex v in G, let A(v) and

B(v) be the set of out-neighbors and the set of in-neighbors of v, respectively. Then

there are no edges from A(v) to B(v); or else, G would contain a directed triangle.

Let g(v) be the number of missing edges between A(v) and B(v). Denote C(v) :=

V −A(v)−B(v)−{v}. Dunkum, Hamburger, and Pór [4] partitioned V into V1, V2,

{v} such that V1 = B(v) ∪ CB(v) and V2 = A(v) ∪ CA(v), where CA(v) ∪ CB(v) forms

a certain partition of C(v). Given such a partition V1 ∪ V2 ∪ {v} of V , let G[V1] and

G[V2] be the subgraphs induced by V1 and by V2, respectively. The edges which are

missing outside of G[V1] and G[V2] are denoted as missing edges. Note that removing

the set of edges from V2 to V1 destroys all directed cycles outside of G[V1] and G[V2].
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Thus the edges from V2 to V1 are called decycling edges. An easy induction argument

[2, 4] shows that, for any real µ with 0 ≤ µ ≤ 1, if the number of missing edges is at

least (1 + µ) times the number of decycling edges, then γ(G) ≥ (1 + µ)β(G) (see the

proof of Theorem 2.5). The following two lemmas are due to Dunkum, Hamburger,

and Pór [4].

Lemma 2.1 ([4]). If

2γ(G) +
1

2

∑

v∈V (G)

(

|C(v)|

2

)

+
1− µ

4

∑

v∈V (G)

t(v) ≥ µ
∑

v∈V (G)

g(v),

then for some vertex v there exists a partition V1, V2, {v} where the number of missing

edges is at least (1 + µ) times the number of decycling edges.

Lemma 2.2 ([4]). If

g(v) ≥ |C(v)|2(1 + µ)

(

1 + µ+
√

(1 + µ)2 + 1 + µ

2
+

1

4

)

for a vertex v, then there exists a partition V1, V2, {v} where the number of missing

edges is at least (1 + µ) times the number of decycling edges.

Let e(v) be the number edges from CA(v) to CB(v). The next lemma is a modifica-

tion of Lemma 2.2. The proof of Lemma 2.3 is quite similar to the proof of Lemma 2.2

in [4]. To make the note self-contained, we include a proof.

Lemma 2.3. If

g(v) ≥ |C(v)|2(1 + µ)





1 + µ+
√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
+

e(v)

|C(v)|2





for a vertex v, then there exists a partition V1, V2, {v} where the number of missing

edges is at least (1 + µ) times the number of decycling edges.

Proof. Following the ideas in [4], we partition the vertex set of G into V1, V2, {v}

as follows. First let B(v) ⊆ V1 and A(v) ⊆ V2. Second, for any u ∈ C(v), let kv(u)

(resp. lv(u)) be the number of vertices w ∈ A(v) (resp. w ∈ B(v)) with wu ∈ E(G)

(resp. uw ∈ E(G)), and further let u ∈ V1 if lv(u) > kv(u) and let u ∈ V2 otherwise.

Denote the two subsets of C(v) by CA(v) and CB(v); that is, CA(v) = C(v) ∩ V2 and

CB(v) = C(v) ∩ V1. Denote mv(u) := min{kv(u), lv(u)} and M :=
∑

v∈C(v) mv(u).

For each u ∈ C(v), there are kv(u) and lv(u) edges from A(v) to v and from

v to B(v), respectively. Denote the two sets by Kv(u) ⊆ A(v) and Lv(u) ⊆ B(v).

Any edge from Lv(u) to Kv(u) would form a directed triangle together with v. Thus
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these kv(u)lv(u) edges between Kv(u) and Lv(u) are missing. Each missing edge

between A(v) and B(v) can be counted with multiplicity at most |C(v)| in the sum
∑

u∈C(v) kv(u)lv(u). This yields a lower bound for the number of missing edges g(v)

between A(v) and B(v):

g(v) ≥
1

|C(v)|

∑

u∈C(v)

kv(u)lv(u) ≥
1

|C(v)|

∑

u∈C(v)

m2
v(u) ≥











∑

u∈C(v)

mv(u)

|C(v)|











2

.

Recall that M =
∑

u∈C(v) mv(u). Thus

g(v) ≥
M2

|C(v)|2
.(2.1)

To count the number of decycling edges, we see that there are three types of decycling

edges: edges from A(v) to CB(v), edges from CA(v) to B(v), and edges from CA(v) to

CB(v). The number of decycling edges of the first two types is M . Recall that e(v) is

the number of edges from CA(v) to CB(v). So the total number of decycling edges is

M + e(v). If

M ≤
1 + µ+

√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
|C(v)|2,

then g(v) is at least

|C(v)|2(1 + µ)





1 + µ+
√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
+

e(v)

|C(v)|2



 ≥ (1 + µ)(M + e(v))

and we are done. Now we may suppose

M ≥
1 + µ+

√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
|C(v)|2,

which implies

M2

|C(v)|4
−

(1 + µ)M

|C(v)|2
−

(1 + µ)e(v)

|C(v)|2
≥ 0.(2.2)

By (2.1) and (2.2),

g(v) ≥
M2

|C(v)|2
≥ (1 + µ)(M + e(v)),

from which Lemma 2.3 follows.

Theorem 2.4. Let µ be a positive real satisfying the four inequalities:
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(I) 4µ2 + 5µ− 1 ≤ 0,

(II) 24µ4 + 49µ3 + 8µ2 − 19µ+ 2 ≤ 0,

(III) 8µ3 + 20µ2 + 13µ− 5 ≤ 0, and

(IV) 32µ4 − 8µ3 − 159µ2 − 130µ+ 25 ≥ 0.

Then there exists a vertex v and a partition V1, V2, {v} where the number of missing

edges is at least (1 + µ) times the number of decycling edges.

Proof. Since 2γ(G) =
∑

v∈V (G) |C(v)|, by Lemmas 2.1, we may assume that

∑

v∈V (G)

|C(v)|+
1

2

∑

v∈V (G)

(

|C(v)|

2

)

+
1− µ

4

∑

v∈V (G)

t(v) < µ
∑

v∈V (G)

g(v).

Thus

1

4

∑

v∈V (G)

|C(v)|2 +
1− µ

4

∑

v∈V (G)

t(v) < µ
∑

v∈V (G)

g(v),

which implies that there exists some vertex v such that

1

4
|C(v)|2 +

1− µ

4
t(v) < µg(v).(2.3)

By Lemma 2.3, we may also assume that

g(v) < |C(v)|2(1 + µ)





1 + µ+
√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
+

e(v)

|C(v)|2



(2.4)

Combining (2.3) with (2.4),

1

4
|C(v)|2+

1− µ

4
t(v) < |C(v)|2µ(1+µ)





1 + µ+
√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
+

e(v)

|C(v)|2





Since e(v) ≤ t(v), we obtain

1

4
< µ(1 + µ)

1 + µ+
√

(1 + µ)2 + 4(1+µ)e(v)
|C(v)|2

2
+

4µ2 + 5µ− 1

4
·

t(v)

|C(v)|2
.(2.5)

The proof is now broken into two cases:

Case 1: t(v) ≥ |C(v)|2/4. Recall that 4µ2 + 5µ− 1 ≤ 0. Since

e(v) ≤ |CA(v)| · |CB(v)| = |CA(v)| · (|C(v)| − |CA(v)|) ≤ |C(v)|2/4,

(2.5) implies that

1

4
< µ(1 + µ)

1 + µ+
√

(1 + µ)2 + 1 + µ

2
+

4µ2 + 5µ− 1

16
.(2.6)
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Case 2: t(v) ≤ |C(v)|2/4. Since e(v) ≤ t(v), (2.5) implies that

1

4
< µ(1 + µ)

1 + µ+
√

(1 + µ)2 + 4(1+µ)t(v)
|C(v)|2

2
+

4µ2 + 5µ− 1

4
·

t(v)

|C(v)|2
.

Define

f(x) = µ(1 + µ)
1 + µ+

√

(1 + µ)2 + 4(1 + µ)x

2
+

(4µ2 + 5µ− 1)x

4
,

where 0 ≤ x = t(v)/|C(v)|2 ≤ 1/4. Taking the derivative of f(x),

f ′(x) =
µ(1 + µ)2

√

(1 + µ)2 + 4(1 + µ)x
+
4µ2 + 5µ− 1

4
≥

µ(1 + µ)2
√

(1 + µ)2 + 1 + µ
+
4µ2 + 5µ− 1

4
.

It is easy to check that when 4µ2 + 5µ− 1 ≤ 0 we have

µ(1 + µ)2
√

(1 + µ)2 + 1 + µ
+

4µ2 + 5µ− 1

4
≥ 0 iff 24µ4 + 49µ3 + 8µ2 − 19µ+ 2 ≤ 0.

Thus f ′(x) ≥ 0, which implies that f(x) is increasing. Thus

1

4
< f(x) ≤ f

(

1

4

)

= µ(1 + µ)
1 + µ+

√

(1 + µ)2 + 1 + µ

2
+

4µ2 + 5µ− 1

16
.

By combining the above two cases, we always have (2.6). Furthermore it is easy to

check that, when 8µ3+20µ2+13µ−5 ≤ 0, (2.6) is equivalent to 32µ4−8µ3−159µ2−

130µ+ 25 < 0, a contradiction.

Theorem 2.5. If G is a 3-free digraph, then β(G) < 0.8616γ(G).

Proof. We prove the theorem by induction on the number of vertices of G. Set µ =

0.16065. Then 1/(1+µ) < 0.8616 and µ satisfies all four inequalities in Theorem 2.4.

By Theorem 2.4 there exists a vertex v and a partition V1, V2, {v} where the number

of missing edges, denoted ρ, is at least (1 + µ) times the number of decycling edges,

denoted τ ; that is, τ < ρ/(1 + µ). Obviously β(G) ≤ β(G[V1]) + β(G[V2]) + τ . By

induction hypothesis, β(G[V1]) < 0.8616γ(G[V1]) and β(G[V2]) < 0.8616γ(G[V2]).

Putting all these together yields

β(G) ≤ β(G[V1]) + β(G[V2]) + τ

< 0.8616γ(G[V1]) + 0.8616γ(G[V2]) + ρ/(1 + µ) ≤ 0.8616γ(G).
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