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BOUNDING THE CP-RANK BY GRAPH PARAMETERS∗
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Abstract. The cp-rank of a graph G, cpr(G), is the maximum cp-rank of a completely positive

matrix with graph G. One obvious lower bound on cpr(G) is the (edge-) clique covering number,

cc(G), i.e., the minimal number of cliques needed to cover all of G’s edges. It is shown here that

for a connected graph G, cpr(G) = cc(G) if and only if G is triangle free and not a tree. Another

lower bound for cpr(G) is tf(G), the maximum size of a triangle free subgraph of G. We consider

the question of when does the equality cpr(G) = tf(G) hold.
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1. Introduction. A square matrix A is completely positive if it has a factoriza-

tion

A = BBT , B ≥ 0, (1.1)

where B is not necessarily square. The set of all n× n completely positive matrices

is denoted by CPn. For A 6= 0, the minimal number of columns in such a B is the

cp-rank of A, denoted here by cpr(A). The factorization (1.1) is a cp-factorization of

A; if the number of columns of B is cpr(A), (1.1) is a minimal cp-factorization. For

a matrix of order n ≤ 4, cpr(A) ≤ n. In general, however, estimating the cp-rank

of completely positive matrices is an open problem. A tight upper bound on the

cp-rank of a rank r, r ≥ 2, completely positive matrix (of any order) is known [1, 8]:
r(r+1)

2 − 1, see also [3, Section 3.2]. This yields the upper bound n(n+1)
2 − 1 on the

cp-ranks of n× n matrices, but this bound is not tight: in [14] it was shown that for

n ≥ 5 the least upper bound on the cp-ranks of n× n completely positive matrices is

not greater than n(n+1)
2 − 4.

It was conjectured by Drew, Johnson and Loewy in 1994 that cprA ≤ ⌊n2

4 ⌋ for

every n × n matrix, n ≥ 4 [7]. This bound holds for n = 5 [10, 13]. However,

recently this conjecture (the DJL conjecture) was disproved by Bomze, Schachinger
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and Ullrich, who presented counter examples for any n ≥ 7, and showed that the

correct tight upper bound is of the order n2

2 [4, 5]. Finding an exact tight upper

bound on the cp-ranks of n× n matrices of order n ≥ 6 is still an open problem, and

it is not known whether the DJL bound holds for n = 6.

We denote

pn = max{cpr(A)|A is an n× n completely positive matrix},

and for a (simple, undirected) graph G on n vertices the cp-rank of G, cpr(G), is

defined by

cpr(G) = max{cpr(A)|A is completely positive and G(A) = G},

where, as usual, the graph G(A) of an n× n symmetric matrix A is the simple graph

on n vertices, such that for i 6= j, ij is an edge if and only if aij 6= 0. It can be shown

that if G′ is a subgraph of G, then cpr(G′) ≤ cpr(G) (see Lemma 3.2(a) below).

In particular, pn = cpr(Kn), where Kn is the complete graph on n vertices. Thus

cpr(Kn) is the tight upper bound on the cp-ranks of all n × n completely positive

matrices, and for an n × n matrix A which is not positive, cpr(A) ≤ cpr(G(A))

may provide a better estimate on cpr(A). Moreover, bounds of the cp-rank involving

graphs can be used to estimate the cp-ranks of certain positive matrices, e.g. [13,

Theorem 4.1]. Therefore it is useful to study the bounds on the cp-rank in terms

of graphs. A result of this kind was obtained in [11], where graphs G on n vertices

such that cpr(G) = n were characterized. (Note that the number of vertices of a

graph G is a lower bound on cpr(G), since a nonsingular completely positive matrix

with graph G always exists, and cpr(A) ≥ rank(A) for every completely positive

matrix A [3, Proposition 3.2].) In this paper we consider the question of equality

between cpr(G) and two other (purely graph theoretic) graph parameters: cc(G),

the minimum number of cliques needed to cover G’s edges, and tf(G), the maximum

number of edges in a triangle free subgraph of G. Both these parameters are lower

bounds on cpr(G) (see Sections 4 and 5). We will show that cpr(G) = cc(G) if and

only if G is a triangle free graph with no tree component. In the course of the proof

we also show that tf(G) ≥ cc(G), i.e., the lower bound tf(G) on cpr(G) is tighter than

cc(G). We then consider the question when is cpr(G) = tf(G). We will show that a

necessary condition for this equality to hold is that each component of G has a block

on more than 3 vertices, and that cpr(G) = tf(G) for graphs satisfying this necessary

condition that belong to certain classes of graphs, including graphs with no odd cycle

on 5 vertices or more and outerplanar graphs. The graph-associated bounds tf(G)

and cc(G) on the cp-rank may be used to bound the cp-ranks of certain completely

positive matrices that lie on the boundary of the completely positive cone (and may

be positive!). This will be demonstrated in a separate paper on 6 × 6 completely

positive matrices.
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The paper is organized as follows: in Section 2 we discuss terminology and

background, and in Section 3 some basic facts about the cp-rank and minimal cp-

factorizations. In Section 4 we characterize all graphs for which cpr(G) = cc(G), and

in Section 5 we discuss tf(G) and graphs which satisfy cpr(G) = tf(G).

2. Terminology and Background. Our graph notations and terminology

mostly follow [6], but we mention a few of these here. We consider only simple

graphs. Given a graph G = (V,E), we refer to G’s vertex set V also as V (G), and

to its edge set E as E(G). The size of G is the number of its edges |E(G)|. A graph

G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E (notation: G′ ⊆ G). The sub-

graph G′ is induced if E′ consists of all the edges of G which have both ends in V ′. A

clique of G is the vertex set of a complete subgraph. For e ∈ E(G), G− e denotes the

graph obtained from G by deleting the edge e, and for G′ ⊆ G and e ∈ E(G) \E(G′),

G′ + e denotes the graph obtained from G′ by adding the edge e and its vertices. For

v ∈ V (G), G − v denotes the graph obtained from G by deleting the vertex v and

its incident edges. More generally, for U ⊆ V (G), G − U denotes the subgraph of G

induced on the complement of U , V (G)\U . For U ⊆ V (G), G[U ] denotes the induced

subgraph of G with vertex set U . The union of two graphs G1 ∪G2 is the graph with

vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2). Similarly G1 ∩G2 has vertex

set V (G1) ∩ V (G2) and edge set E(G1) ∩ E(G2). For a vertex v, d(v) denotes the

degree of v, i.e., the number of edges incident with v.

A cut-vertex is a vertex whose deletion disconnects a (connected) component of

G. A graph is 2-connected if it has at least 3 vertices, and no cut-vertex. A block

of G is a connected subgraph that does not have a cut-vertex, and is maximal with

respect to this property (so each block is either an isolated vertex, or an edge or a

2-connected subgraph of G).

The complete graph on n vertices is denoted by Kn, and the complete bipartite

graph with partition classes of sizesm and k by Km,k. A cycle on n vertices is denoted

by Cn. The graph obtained by adding to C2k a chord from every even vertex to the

subsequent even vertex (including vertex 2k to 2, and assuming the vertices of C2k

are labeled consecutively), is denoted by S2k. The graph on n vertices consisting of

n− 2 triangles sharing a common base is denoted by Tn.

Figure 1: S6 Figure 2: T5
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A completely positive matrix A such that G(A) = G is called a cp-realization of

G. A matrix which is both positive semidefinite and (entrywise) nonnegative is called

doubly nonnegative. Every completely positive matrix is doubly nonnegative, but for

matrices of order 5 or more the reverse implication does not hold. A graph G is

completely positive if every doubly nonnegative matrix with this graph is completely

positive. The following characterization of completely positive graphs was obtained

in a series of papers by Maxfield and Minc, Berman and Hershkowitz, Berman and

Grone, Kogan and Berman and Ando, see [3] and the reference therein.

Proposition 2.1. Let G be a graph. Then the following are equivalent:

(a) G is completely positive.

(b) G contains no odd cycle of length 5 or more.

(c) Each block of G either has at most 4 vertices, or is bipartite, or is a Tk for

some k.

We refer to an odd cycle of length 5 or more as a long odd cycle.

Figure 3: A graph with no long odd cycle

We also recall here the known characterizations of graphs G for which cpr(G) is

minimal (i.e., equal to |V (G)|), and of graphs G which have the property that every

cp-realization A of G has minimal cp-rank (i.e., cpr(A) = rank(A)).

Proposition 2.2. [11] The following are equivalent for a connected graph G on

n vertices:

(a) cpr(G) = n.

(b) |V (G′)| ≥ |E(G′)| for every triangle free subgraph G′ of G.

(c) Each block of G is either a K4 or a subgraph of S2k for some k ≥ 3, and at

most one block has more than 3 vertices.
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Figure 4: A graph G with cpr(G) = |V (G)|

Proposition 2.3. [11] The following are equivalent for a connected graph G on

n vertices:

(a) cpr(A) = rank(A) for every cp-realization A of G.

(b) Each block of G is either an edge or an odd cycle, and at most one block has

more than 3 vertices.

Figure 5: A graph G s.t. cpr(A) = rank(A) for every cp-realization A of G

In particular, cpr(A) = rank(A) for every completely positive matrix A of order

at most 3. Propositions 2.2 and 2.3 rely on the following earlier results:

Proposition 2.4. If G is a connected triangle free graph on n ≥ 4 vertices and

A is a CP matrix realization of G, then:

(a) [2] If G is a tree, cprA = rankA.

(b) [7] If G is not a tree, cprA = |E(G)|.

Some additional notations: the nonnegative orthant of Rn is denoted by Rn
+, and

for x ∈ Rn
+, the support of x is suppx = {1 ≤ i ≤ n |xi 6= 0}. We often use the fact

that when B = [b1| . . . |bk], (1.1) is equivalent to

A =
k

∑

i=1

bib
T
i , bi ∈ Rn

+ . (2.1)

The sum (2.1) is called a cp-decomposition of A (a minimal cp-decomposition if

cpr(A) = k). The vectors e1, . . . , en denote the standard basis vectors in Rn (i.e.,

every entry of ei is zero, except for entry i, which is 1).

We denote by Rm×n the space of all m× n real matrices, and by Rm×n
+ the cone

of nonnegative matrices in Rm×n. The matrix Eij denotes the n× n matrix with all

entries zero except for the ij entry, which is equal to 1. Other matrix notations: In
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and Jn are the identity matrix of order n × n and the all ones matrix of that order,

respectively. For A ∈ Rn×n and α ⊆ {1, . . . , n}, A[α] denotes the principal submatrix

of A on rows and columns α. We abbreviate A[{i1, . . . , ik}] as A[i1, . . . , ik]. For

M ∈ Rm×m and N ∈ Rn×n, M ⊕N is the direct sum of M and N .

3. Basic results on cpr(G) and minimal cp-factorization. In this section

we collect some basic properties of the parameter cpr(G), and some technical lemmas

about it and about minimal cp-factorizations (some cp-rank results depend on the

existence of special minimal cp-factorizations). We begin with the following observa-

tion:

Lemma 3.1. Let G = G1 ∪ G2, where Gi = (Vi, Ei), i = 1, 2, are induced

subgraphs of G. Let A be a cp-realization of G. Then A can be represented as A =

A1+A2, where each Ai is a completely positive matrix, which is zero except for Ai[Vi],

G(Ai[Vi]) ⊆ Gi, i = 1, 2, and

cpr(A) = cpr(A1) + cpr(A2).

If |V1 ∩ V2| ≥ 1 and all the blocks of G1 are edges and triangles, then A1[V1] can be

chosen to be singular.

Proof. Let A = BBT , B = [b1| . . . |bk] ∈ Rn×k
+ , be a minimal cp-factorization of

A. Define

Ω1 = {1 ≤ i ≤ k | suppbi ⊆ V1}, and Ω2 = {1, . . . , k} \ Ω1.

Let Ai =
∑

j∈Ωi
bjb

T
j , i = 1, 2. Then A1 and A2 are completely positive and

G(Ai[Vi]) ⊆ Gi, i = 1, 2. Clearly, cpr(A) = |Ω1| + |Ω2|, and by the minimality

of the cp-factorization of A, cpr(Ai) = |Ωi|, i = 1, 2. Thus

cpr(A) = |Ω1|+ |Ω2| = cpr(A1) + cpr(A2). (3.1)

If |V1∩V2| ≥ 1 and all of the blocks of G1 are triangles and edges, then A1 defined

above satisfies cpr(A1) = rank(A1) by Proposition 2.3. If A1[V1] is nonsingular, let

m ∈ V1∩V2, and let δ > 0 be the maximal positive number such that Q1 = A1−δEmm

is positive semidefinite. Then Q1 is doubly nonnegative, rank(Q1) = rank(A1) − 1

and G(Q1) = G(A1) ⊆ G1. By Proposition 2.1, Q1 is completely positive, and by

Proposition 2.3,

cpr(Q1) = rank(Q1) = rank(A1)− 1 = cpr(A1)− 1.

Let Q2 = A2 + δEmm. Then A = Q1 +Q2, cpr(Q2) ≤ cpr(A2) + 1, G(Qi) = G(Ai) ⊆
Gi, i = 1, 2. This yields

cpr(A) ≤ cpr(Q1)+cpr(Q2) ≤ cpr(A1)−1+cpr(A2)+1 = cpr(A1)+cpr(A2) = cpr(A).
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Thus the middle inequalities are actually equalities, and A = Q1 + Q2 satisfies the

last assertion.

Note that Lemma 3.1 includes the case that G has a cut-vertex (G1 ∩ G2 is a

single vertex). Some basic facts on cpr(G) are stated in the next lemma.

Lemma 3.2. Let G be a graph on n vertices.

(a) If G′ is a subgraph of G, then cpr(G′) ≤ cpr(G).

(b) If G = G1∪G2, where G1 and G2 are induced subgraphs of G, then cpr(G) ≤
cpr(G1) + cpr(G2).

(c) If G is the disjoint union of graphs G1 and G2, then cpr(G) = cpr(G1) +

cpr(G2).

Proof. Part (a) was proved in [11], and we include a short proof here for com-

pleteness: Suppose |V (G)| = n and |V (G′)| = m. Every cp-realization A′ of G′ can

be extended to a cp-realization Aε of G for every ε > 0, by setting

(Aε)ij =















(A′)ij if ij ∈ E(G′)

ε if ij ∈ E(G) \ E(G′)

(A′)ii + (n−m)ε if j = i and i ∈ V (G′)

nε if j = i and i ∈ V (G) \ V (G′)

Then Aε is completely positive as a sum of the completely positive matrix A′ ⊕ 0 and

a diagonally dominant nonnegative matrix. For every ε > 0, cpr(Aε) ≤ cpr(G), and

since limε→0+ Aε = A′ ⊕ 0, we get that for every cp-realization A′ of G′, cpr(A′) ≤
lim infε→0+ cpr(Aε) ≤ cpr(G). Thus cpr(G′) ≤ cpr(G).

Part (b) follows by combining part (a) and Lemma 3.1.

Part (c): If A = A′ ⊕ A′′, where both A′ and A′′ are completely positive, then

cpr(A) = cpr(A′) + cpr(A′′) (see, e.g., [13, Proposition 2.2]).

The bound on cpr(G) in part (b) of Lemma 3.2 may be tightened when G1 ∩G2

is a cut-vertex of G, and G1 is very small:

Lemma 3.3. Let G = G1 ∪ G2, where V (G1) ∩ V (G2) is a single vertex v, and

G1 is connected and has m vertices, m = 2 or 3, Then cpr(G) = m− 1 + cpr(G2).

Proof. Without loss of generality assume V1 = V (G1) = {1, . . . ,m} and V2 =

V (G2) = {m, . . . , n}. Let A be a cp-realization of G such that cpr(A) = cpr(G). By

Lemma 3.1, A = A1 +A2, cpr(A) = cpr(A1) + cpr(A2), where each Ai is completely

positive and zero except for Ai[Vi], G(Ai[Vi)]) ⊆ Gi, and A1[V1] is singular. Since

m ≤ 3, by Proposition 2.3, cpr(A1) = rank(A1) ≤ m− 1 and thus

cpr(G) = cpr(A) = cpr(A1) + cpr(A2) ≤ m− 1 + cpr(G1).
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To prove the reverse inequality, let Q1 be zero except for its leading m × m

principal submatrix. If m = 2 let that leading 2 × 2 submatrix be J2, and if m = 3

let the leading 3× 3 submatrix be





1 1 1

1 2 1

1 1 1



 (if G1 is a triangle) or





1 1 0

1 2 1

0 1 1



 (if G1 is a path).

In all these cases, Q1 is completely positive and cpr(Q1) = rank(Q1) = m − 1. Let

Q2 have zero m− 1 first rows and columns with Q2[m, . . . , n] a cp-realization of G2

such that cpr(Q2) = cpr(G2). Let A = Q1 + Q2. Decompose A as in Lemma 3.1:

A = A1 + A2, where cpr(A) = cpr(A1) + cpr(A2) and A1[V1] is singular. Then A1

is equal to Q1 in all entries except possibly the mm entry. Since A1[V1] is singular,

rank(A1) ≤ m − 1. Since the first m − 1 rows of A1 are equal to the corresponding

rows of Q1, and are linearly independent, rank(A1) = m − 1 and A1 = Q1. Thus

A2 = Q2. We therefore have cpr(A1) = m− 1, cpr(A2) = cpr(G2), yielding that

cpr(G) ≥ cpr(A) = cpr(A1) + cpr(A2) = m− 1 + cpr(G2).

The following known result follows similarly from Lemma 3.1.

Lemma 3.4. [3, Lemma 3.3] Suppose a graph G has a non-isolated vertex v with

d(v) ≤ 2. Then

cpr(G) ≤ d(v) + cpr(G− v).

The remaining results in this section consider the existence of special minimal

cp-factorizations. The following useful observation will be used:

Lemma 3.5. [10, Observation 1] Let b,d ∈ Rn
+ such that suppb ⊆ suppd. Then

there exist vectors b̃, d̃ ∈ Rn
+ such that b̃b̃T + d̃d̃T = bbT + ddT , supp d̃ = suppd,

supp b̃ ⊆ supp d̃, suppd \ suppb ⊆ supp b̃, and for at least one i ∈ suppb, i /∈
supp b̃.

We first consider minimal cp-factorizations of nonsingular cp-realizations of trees.

Lemma 3.6. Let G be a tree on n vertices, and let A be a nonsingular completely

positive matrix whose graph is G. Then for every vertex 1 ≤ i ≤ n there exists a

minimal cp-factorization A = BBT where B ∈ Rn×n
+ , the supports of n − 1 of the

columns of B are the n− 1 edges of G, and the support of one column is {i}.

Proof. By relabeling the vertices we may assume for convenience that i = n.

Let δ > 0 be the maximal such that A0 = A − δEnn is positive semidefinite. Then
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A0 is a singular doubly nonnegative matrix whose graph is G. Thus cprA0 = n − 1

(Proposition 2.4(a) and the paragraph preceding that proposition). Let A0 = B0B
T
0

where B0 ∈ R
n×(n−1)
+ . Since the support of each column of B0 is a clique in G(A0),

which is triangle free and has n− 1 edges, the n− 1 columns of B0 are supported by

the n− 1 edges of G. Thus A = BBT , where B = [B0

√
δen] ∈ Rn×n

+ .

For 2× 2 matrices this implies

Corollary 3.7. Let A ∈ CP2. Then for every 1 ≤ i ≤ 2 there exists a minimal

cp-factorization of A, A = BBT , in which i is in the support of at most one column

of B.

Proof. If A is singular, rank(A) = 1 and thus cpr(A) = 1, which implies the

result. If A is nonsingular, either A is diagonal, in which case the result is obvious, or

G(A) is a tree. In the latter case, assume without loss of generality that i = 1, and

apply Lemma 3.6 for the vertex 2.

For 3× 3 matrices we have the following:

Lemma 3.8. Let A ∈ CP3. Then

(a) For every 1 ≤ i < j ≤ 3 such that aij > 0, there exists a minimal cp-

factorization of A, A = BBT , in which there is exactly one column of B

whose support contains {i, j}.
(b) For every 1 ≤ i ≤ 3 such that aii > 0, there exists a minimal cp-factorization

of A, A = BBT , in which at least one column and at most two columns have

i in their support.

Proof. By simultaneously permuting the rows and columns of A we may assume

in (a) that i = 1 and j = 2, and in (b) that i = 1. If A has a zero diagonal entry,

then it has a zero row (and column), so A is a direct sum of A′ ∈ CP2 and a 1 × 1

zero matrix. In that case, (b) is trivially true (since p2 = 2), and (a) easily follows

from Lemma 3.6 if A′ is nonsingular. Otherwise, A′ is singular, rankA′ = 1 then

cprA = cprA′ = 1, and again (a) holds.

So suppose A ∈ CP3 and all the diagonal entries of A are nonzero. Then in every

cp-factorization 1 is in the support of at least one column. By [3, Corollary 2.13],

either A = LLT , where L is a lower triangular nonnegative matrix , or A = UUT ,

where U is an upper triangular nonnegative matrix. In the first case, 1 is in the

support of exactly one column of L (the first), i.e. (b) holds. Also, {1, 2} is contained

in the support at most one column of L (again, the first column). If a12 > 0, it is also

true that {1, 2} is contained in the support of at least one column of L. This proves

(a) and (b) in this case.

In the second case, if both the supports of the second and last column of U contain
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{1, 2}, then U has the following pattern:





∗ + +

0 + +

0 0 +



 ,

where ∗ is either positive or zero (u33 > 0 since A has no zero row). By Lemma 3.5

the last two columns in U may be replaced by two columns with the pattern

∗ +

∗ +

+ +

,

where at least one of the ∗’s is zero. The nonnegative matrix Ū resulting from this

replacement satisfies Ū ŪT = UUT = A, and the supports of its first two columns

do not contain {1, 2}, which proves (a). As for (b), if only two columns in U have

a nonzero first entry, the claim is obviously true. Otherwise, U has the following

pattern





+ + +

0 ∗ ∗
0 0 +



 .

Using Lemma 3.5 on columns 1 and 3 of U we get a nonnegative matrix Ū in which

the first entry on the first column is 0, implying (b).

4. Graphs with cpr(G) = cc(G). Let A be a cp-realization of a graph G with

cpr(A) = cpr(G). If A =
∑k

i=1 bib
T
i , k = cpr(G), is a minimal cp-decomposition,

then the graphs G(bib
T
i ), i = 1, . . . , k, are complete subgraphs of G = G(A) covering

the whole graph, and thus cc(G) ≤ cpr(G). In this section we characterize all graphs

for which cpr(G) = cc(G). If G is a disjoint union of G1 ∪ G2, then clearly cc(G) =

cc(G1)+cc(G2). Combined with Lemma 3.2(c), this means that it suffices to consider

connected graphs. Note that a graph G consisting of a single vertex is considered to

be a (trivial) tree with zero edges, and has cpr(G) = 1.

Theorem 4.1. A connected graph G satisfies cpr(G) = cc(G) if and only if G is

triangle free, but not a tree.

Proof. Let G have n vertices. If G is triangle free, then the maximal cliques

of G are G’s edges, and cc(G) = |E(G)|. By Proposition 2.2 cprA = n. Thus

cpr(G) = n > n − 1 = |E(G)| = cc(G). If G is triangle free and not a tree, then

n ≥ 4, and Proposition 2.4(b) implies that cpr(G) = |E(G)|, and thus cpr(G) = cc(G).

To show that equality does not hold for graphs which are not triangle free, let

tc(G) be the minimal number of triangles and edges of G needed to cover all of the
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edges of G. Lehel and Tuza proved in [9] that tc(G) ≤ tf(G), and equality holds if

and only if G is triangle free. In addition, it is obvious that cc(G) ≤ tc(G) holds for

every graph G. That is, for every graph G

cc(G) ≤ tc(G) ≤ tf(G),

and if G is not triangle free, the right inequality is strict. Hence if G is not triangle

free, there exists a triangle free subgraph G′ of G such that tf(G) = |E(G′)| > cc(G),

implying that

cpr(G) ≥ cpr(G′) = |E(G′)| > cc(G).

In the course of the proof of Theorem 4.1 we have also shown that among the two

lower bounds on cpr(G), cc(G) and tf(G), the latter is tighter, i.e., we have proved:

Theorem 4.2. For every connected graph G, tf(G) ≥ cc(G).

5. Graphs with cpr(G) = tf(G). Let G′ be a triangle free subgraph of a

maximum size of a graph G. Then tf(G) = |E(G′)|, and by Proposition 2.4, cpr(G′) ≥
|E(G′)|. Since cpr(G′) ≤ cpr(G) we get that tf(G) ≤ cpr(G). By Turan’s Theorem,

the number of edges in a triangle free graph on n vertices is at most ⌊n2

4 ⌋ (and

this bound is attained when the graph is complete bipartite, with the independent

bipartition sets being as balanced as possible). Thus tf(G) ≤ ⌊n2

4 ⌋ for every graph on

n vertices. The examples disproving the DJL conjecture in [4, 5] show that for n ≥ 7,

cpr(Kn) = pn > ⌊n2

4 ⌋ = tf(Kn). That is, cpr(G) may be strictly greater than tf(G).

We now consider the question when does equality hold between these two parameters.

We begin with some trivial observations regarding tf(G).

Lemma 5.1. Let G be a graph, G = G1 ∪G2.

(a) If the union is disjoint, then tf(G) = tf(G1) + tf(G2).

(b) If V (G1) ∩ V (G2) is an independent set of G, then tf(G) = tf(G1) + tf(G2).

(c) If V (G1) ∩ V (G2) is a single vertex and G1 is a Km, m = 2 or 3, then

tf(G) = m− 1 + tf(G2).

Proof. Parts (a) and (b) are trivial. Part (c) is a special case of part (b), using

the fact that tf(Km) = m− 1 when m = 2 or 3.

The proofs of the next two theorems (Theorems 5.3 and 5.4) are implicit in

Propositions 2.1 and 2.2, and rely also on the following observation.

Lemma 5.2. If G′ is a triangle free subgraph of a connected graph G, then there

exists a spanning triangle free subgraph of G which has |E(G′)| + |V (G)| − |V (G′)|
edges.
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Proof. If V (G′) ( V (G), then there exists an edge e = xy, x ∈ V (G′) and

y ∈ V (G) \ V (G′), since G is connected. Then G′ + e is a triangle free subgraph of

G. This step can be repeated |V (G)| − |V (G′)| times until a spanning triangle free

subgraph is obtained.

In particular, any triangle free subgraph of G of maximal size is necessarily span-

ning. Since every connected graph on n vertices has a spanning tree, tf(G) ≥ n−1 for

every connected graph G on n vertices. The next theorem characterizes the connected

graphs for which equality holds.

Theorem 5.3. A connected graph G on n vertices has tf(G) = n− 1 if and only

if each block of G is either an edge or a triangle.

Proof. By Lemma 5.2, if tf(G) = |V (G)| − 1, then every triangle free subgraph

G′ of G is a tree. In particular, no block of G has more than 3 vertices. Conversely,

suppose G is a connected graph on n vertices with blocks G1, . . . , Gk, and |V (Gi)| =
ni, 1 ≤ i ≤ k, ni ∈ {2, 3}. Then

n =
k

∑

i=1

ni − (k − 1) = 1 +
k

∑

i=1

(ni − 1) = 1 +
k
∑

i=1

tf(Gi) = 1 + tf(G),

since tf(Km) = m− 1 if m = 2 or m = 3.

The next theorem characterizes the graphs G with tf(G) = |V (G)|.

Theorem 5.4. A connected graph G on n vertices has tf(G) = n if and only if

G has exactly one block on more than 3 vertices, and this block is a K4 or a subgraph

of S2k for some k ≥ 3.

Proof. By Lemma 5.2, if tf(G) = |V (G)|, G cannot contain a triangle free sub-

graph G′ with more edges than vertices, otherwise G′ could be extended to a spanning

triangle free subgraph of size greater than n by adding |V (G)| − |V (G′)| edges, which
would imply that tf(G) > |V (G)|. Thus, by the equivalence of part (b) and (c) in

Proposition 2.2, each block of G is either a K4, or a subgraph of S2k for some k ≥ 3,

with at most one block on more than 3 vertices. On the other hand, Theorem 5.3

guarantees the existence of at least one such block.

The converse also follows from Proposition 2.2 and Theorem 5.3: If G has the

block structure described in the theorem, then tf(G) > n− 1 by Theorem 5.3 and, by

Proposition 2.2, any spanning triangle free subgraph G′ of G of maximal size has at

most |V (G′)| = n edges. Thus tf(G) ≤ n.

We can now consider the question which graphs satisfy the equality tf(G) =

cpr(G). Note that by Lemmas 3.2(c) and 5.1(a), a graph satisfies this equality if and

only if each of its components does. It therefore suffices to consider connected graphs.
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From Lemma 5.1(c) and Lemma 3.3 we can deduce the following:

Lemma 5.5. Let G be a connected graph. If each block G′ of G that has more

than 3 vertices satisfies cpr(G′) = tf(G′), and G has at least one such block, then

cpr(G) = tf(G).

Proof. The proof uses induction on the number of blocks. For G consisting of

one block there is nothing to prove. Assume that G satisfies the assumptions and has

k ≥ 2 blocks, and that the claim holds for graphs with less than k blocks.

Suppose G = G1 ∪ G2, where G1 and G2 are connected and G1 ∩ G2 is a single

vertex, G1 is either a K2 or a K3, and G2 has k − 1 blocks, at least one of which has

more than 3 vertices. In that case,

tf(G) = m− 1 + tf(G2) = m− 1 + cpr(G2) = cpr(G)

by Lemma 5.1(c), the induction hypothesis, and Lemma 3.3.

Otherwise, G = G1 ∪G2, where G1 and G2 are connected and G1 ∩G2 is a single

vertex, G1 has more than 3 vertices, and G2 has k − 1 blocks, at least one of which

on more than 3 vertices. By Lemma 3.2(b), the induction hypothesis, and Lemma

5.1(b),

tf(G) ≤ cpr(G) ≤ cpr(G1) + cpr(G2) = tf(G1) + tf(G2) = tf(G),

implying that cpr(G) = tf(G).

A graph G such that tf(G) = |V (G)| − 1 clearly does not satisfy tf(G) = cpr(G).

Here are some graphs that satisfy tf(G) = cpr(G):

Theorem 5.6. If a connected graph G is one of the following graphs, then

cpr(G) = tf(G).

(a) A triangle free graph, which is not a tree.

(b) A graph that has no long odd cycle, which has a cycle on more than 3 vertices.

(c) A graph that has exactly one block on more than 3 vertices, and this block is

a K4 or a subgraph of S2k for some k ≥ 3.

Proof. In case (a), tf(G) = |E(G)| by definition, and cpr(G) = |E(G)| by Propo-

sition 2.4.

In case (b), by the structure of a graph with no long odd cycle (Proposition 2.1),

each block G′ of G on more than 3 vertices is either a K4 (in which case tf(G′) =

cpr(G′) = 4), or bipartite (in which case tf(G′) = cpr(G′) by (a)), or a Tk (in which

case cpr(Tk) = 2k−4, by [3, Theorem 3.9], and tf(Tk) = 2k−4, since its maximal size

triangle free subgraph is K2,k−2). Thus by Lemma 5.5 such G has tf(G) = cpr(G).
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In case (c),

n = tf(G) ≤ cpr(G) = n.

(The left equality by Theorem 5.4 and the right one by Proposition 2.2.)

Next we show that every connected outerplanar graph G that has at least one

block on more than 3 vertices also satisfies cpr(G) = tf(G). This generalizes (c) of the

previous theorem. An outerplanar graph is a graph that can be drawn in the plane so

that no two edges cross, and all the vertices lie on the boundary of the outer face. We

use the well known facts that every subgraph of an outerplanar graph is outerplanar,

has a vertex of degree at most 2, and if it is 2-connected, it has a unique Hamiltonian

cycle.

Theorem 5.7. Every connected outerplanar graph G on n vertices with tf(G) ≥ n

satisfies tf(G) = cpr(G).

Proof. We prove the theorem by induction on n. By the assumption that tf(G) ≥
n, we have n ≥ 4. If n = 4, then 4 ≤ tf(G) ≤ cpr(G) = 4 implies the desired result.

Let n > 4 and assume the claim holds for graphs with fewer than n vertices.

If G is not 2-connected, each of its blocks on more than 3 vertices satisfies the

equality by the induction hypothesis, and there has to be at least one such block by

Theorem 5.3. Hence by Lemma 5.5 G also satisfies tf(G) = cpr(G). Thus it suffices

to consider the case that G is 2-connected. In that case, G has a unique Hamiltonian

cycle, and a vertex v of degree exactly 2.

Case 1: The two vertices adjacent to v are not adjacent to each other.

If G− v has only blocks that are edges and triangles, then G itself is a subgraph

of S2k for some k ≥ 3 and, by Theorem 5.4 and Proposition 2.2, tf(G) = cpr(G) = n.

Otherwise, G− v satisfies the induction hypothesis, and thus

tf(G) ≤ cpr(G) ≤ 2 + cpr(G− v) = 2 + tf(G− v) = tf(G),

where the second inequality follows from Lemma 3.4, and the last equality from

Lemma 5.1(b).

Case 2: The vertices u and w that are adjacent to v are also adjacent to each

other.

Without loss of generality let u = 1, v = 2 and w = 3. Since the graph is

Hamiltonian, there exists an additional vertex which is adjacent to 3 other than 1

and 2, label this vertex 4. (The vertex 4 may or may not be adjacent to 1, and there

is at least one more vertex on the Hamiltonian cycle.)
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3

2

4

1

Figure 3: Case 2

Let α1 = {1, . . . , 4}, α2 = {1, 4, . . . , n} and Gi = G[αi], i = 1, 2. Let A be a

completely positive matrix such that G(A) = G and cpr(A) = cpr(G), and let A =

A1+A2, whereG(A1[α1]) ⊆ G1 andG(A2[α2]) ⊆ G2, and cpr(A) = cpr(A1)+cpr(A2).

Now set

t = min
1≤j≤3

a1j
a2j

.

Suppose t is attained at j = m. Since A is positive semidefinite and its first two rows

are linearly independent by their sign pattern, m cannot be equal to 1, so m = 2 or

m = 3. Let S = I − tE12. Then SA1S
T is doubly nonnegative and, compared to A1,

has one or two additional zero entries in the first row, in position 1, 2 or in position

1, 3. Because row 2 of A2 is zero, SA2S
T = A2. Every 4 × 4 doubly nonnegative

matrix is completely positive, hence SA1S
T is completely positive, and so is SAST =

SA1S
T +A2. The graph of SAST is a subgraph of G, and thus cpr(SAST ) ≤ cpr(G).

But since S−1 ≥ 0, we have that cpr(G) = cpr(A) ≤ cpr(SAST ) (see [3, Proposition

3.3]). Thus cpr(SAST ) = cpr(G).

Denote the edge {1, 2} by e1 and the edge {1, 3} by e2. By Lemma 5.5 and the

induction hypothesis cpr(G − e1) = tf(G − e1), since the block of G− e1 on vertices

{1, 3, 4, . . . , n} is 2-connected and has at least 4 vertices. Thus if G(SAST ) = G− e1
we have

tf(G) ≤ cpr(G) = cpr(SAST ) ≤ cpr(G− e1) = tf(G − e1) ≤ tf(G),

and the equality cpr(G) = tf(G) follows.

Since cpr(G − e2) = tf(G − e2) by Case 1, a similar argument shows that if

G(SAST ) = G− e2 then cpr(G) = tf(G).

Finally, suppose G(SAST ) = G − {e1, e2}. If G − {e1, e2} has only K2 and K3

blocks, then G is a 2-connected subgraph of S2k for some k ≥ 3, and thus cpr(G) =

n = tf(G) by Proposition 2.2 and Theorem 5.6(c). Otherwise, cpr(G − {e1, e2}) =

tf(G− {e1, e2}) by the induction hypothesis and Lemma 5.5.

A particular example of an outerplanr graph is the fan on n vertices, Fn: a graph

on n vertices, consisting of a path on n−1 vertices and a vertex adjacent to all vertices
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of the path (i.e., a suspended path).

1

2 3

4

5

Figure 4: F5

Corollary 5.8. For n ≥ 4,

cpr(Fn) =



















3n− 5

2
n is odd

3n− 4

2
n is even

.

Proof. Since n ≥ 4, Fn is a 2-connected outerplanar graph on more than 3 vertices,

so cpr(Fn) = tf(Fn). It is easy to see that the triangle free subgraph consisting of the

spanning n-cycle and every other chord is a maximum size triangle free subgraph of

Fn. (More explicitly: Label the path vertices consecutively by 1, . . . , n − 1 and the

vertex of degree n− 1 by n. The triangle free subgraph consists of the Hamiltonian

cycle on all n vertices, and the chords jn, j = 2k + 1, k = 2, . . . , ⌊(n− 3)/2⌋.)

Finally, let Wn be the wheel : a graph on n vertices, which consists of the cycle

on n − 1 vertices, and a vertex adjacent to all the cycle vertices (i.e., a suspended

cycle). The wheel is a planar graph, but for n ≥ 4 it is not an outerplanar one, and

for n ≥ 5 it does not belong to any of the graph classes mentioned in Theorem 5.6.

Theorem 5.9. For n ≥ 4,

cpr(Wn) = tf(Wn) =



















3n− 3

2
n is odd

3n− 4

2
n is even
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1

2 3

4

56

7

Figure 5: W7

Proof. Since cpr(G) = 4 for every graph G on 4 vertices, we have cpr(W4) = 4 as

claimed. For n ≥ 5, label the vertices of the (n−1)-cycle consecutively by 1, . . . , n−1,

and the vertex of degree n−1 by n. It is easy to see that the subgraph ofWn consisting

of the cycle on vertices 1, . . . , n−1 and every other edge adjacent to n (more explicitly:

the edges jn, j = 2k − 1, k = 1, . . . , ⌊(n− 1)/2⌋) is a triangle free subgraph of Wn of

maximal size, so that

tf(Wn) =



















3n− 3

2
n is odd

3n− 4

2
n is even

. (5.1)

Let A be a cp-realization of Wn attaining maximum cp-rank. Let αi = {i, i + 1, n},
i = 1, . . . , n − 1 (where i + 1 ∈ {1, . . . , n − 1} is the sum modulo n − 1). Then (by

repeated use of Lemma 3.1) A =
∑n−1

i=1 Ai, where Ai is completely positive, and is

zero except for Ai[αi], and cpr(A) =
∑n−1

i=1 cpr(Ai). By Lemma 3.8(a), for each i there

exists a cp factorization Ai = BiB
T
i , in which the support of exactly one column of

Bi contains {i, i + 1}. Suppose the column of B1 whose support contains {1, n− 1}
is b. Then A = bbT +Q, where G(Q) ⊆ Fn. Thus

cpr(Wn) ≤ 1 + cpr(Fn)

For odd n combine (5.1) and Corollary 5.8 to get

3n− 3

2
= tf(Wn) ≤ cpr(Wn) ≤ cpr(Fn) + 1 =

3n− 3

2
.

In particular, cpr(Wn) = tf(Wn).

For even n, the same calculation yields

3n− 4

2
= cpr(Fn) ≤ cpr(Wn) ≤ cpr(Fn) + 1 =

3n− 2

2
. (5.2)

We now show that the upper bound on the right hand side of (5.2) can be reduced by

1, yielding the desired equality. Let Ai and Bi be as above. Suppose each 1 ≤ i ≤ n−1

is in the support of at least 3 different columns of B1, . . . , Bn−1. Then there are at
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least 2(n − 1) different columns containing the vertices of the n − 1 cycle: n − 1

columns whose supports contain the cycle edges, and at least one more column for

each i = 1, . . . , n − 1. Thus cpr(A) ≥ 2(n − 1) > 3n−2
2 . But this contradicts (5.2).

Thus there is at least one vertex i which belongs to at most two of the columns of

B1, . . . , Bn−1. Suppose without loss of generality that i = 1, and the two columns are

b1 and b2. Then A = b1b
T
1 + b2b

T
2 +Q, where Q = 0⊕Q1 is a completely positive

matrix and G(Q1) is a subgraph of Fn−1. Thus

3n− 4

2
≤ cpr(Wn) = cpr(A) ≤ cpr(Fn−1) + 2 =

3(n− 1)− 5

2
+ 2 =

3n− 4

2
.

Theorems 5.7 and 5.9, and some other results of this paper, may be used to

partially prove the DJL conjecture for n = 6, see [12].
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