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Abstract. Let G be a graph and let A and D be the adjacency matrix of G and diagonal matrix

of vertex degrees of G respectively. If each vertex degree is positive, then the normalized adjacency

matrix of G is Â = D−1/2AD−1/2. A classification is given of those graphs for which the all

eigenvalues of the normalized adjacency matrix are integral. The problem of determining those

graphs G for which λ ∈ Q for each eigenvalue λ of Â(G) is considered. These graphs are called

normalized rational. It will be shown that a semiregular bipartite graph G with vertex degrees r and

s is normalized rational if and only if every eigenvalue of A is a rational multiple of
√
rs. This result

will be used to classify the values of n for which the semiregular graph (with vertex degrees 2 and

n− 1) obtained from subdividing each edge of Kn is normalized rational. Necessary conditions for

the k-uniform complete hypergraph on n vertices to be normalized rational are also given. Finally,

conditions for the incidence graphs of Steiner triple and quadruple systems to be normalized rational

are given.
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1. Introduction. Let G be a graph, A = A(G), D = D(G), and L = L(G) =

D−A its adjacency matrix, diagonal matrix of vertex degrees, and Laplacian matrix

respectively. The normalized adjacency matrix of G is Â = Â(G) = D−1/2AD−1/2

and the normalized Laplacian matrix is L̂ = L̂(G) = D−1/2LD−1/2. If v is a vertex

of degree 0 in G, then Dvv = 0. In that case, D−1 and D−1/2 are not defined.

Therefore, we assume throughout that G has no vertices of degree 0 or, equivalently,

that G contains no isolated vertices.

G is called adjacency integral if every eigenvalue of A is an integer and Laplacian

integral if every eigenvalue of L is an integer. The problems of determining which

graphs are adjacency integral graphs began with Harary and Schwenk [8] in 1974.

Later, Grone and Merris considered Laplacian integral graphs [7]. Balińska et al

[1] provide a survey on graphs with adjacency and Laplacian integral eigenvalues.

More recent results on these topics include [2], [9], and [10]. Since these problems
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continue to generate interest and Â and L̂ have received more attention in recent

years (For example, [5] and [4]), it may be worthwhile to consider the analogues for

these matrices to the adjacency and Laplacian integral problems.

The natural analogues are to determine those graphs for which every eigenvalue

of either Â or L̂ is an integer. Since L̂ = I − A, 1 − λ is an eigenvalue of Â if and

only if λ is an eigenvalue of Â. Therefore, the problems are equivalent. Since Â is

similar to the stochastic matrix AD−1, we know that the eigenvalues of Â are in the

interval [−1, 1], so the only possibly integer eigenvalues of Â are −1, 0, and 1. This

restriction makes it easy to classify the graphs for which the normalized matrices have

only integer eigenvalues. They are graphs whose connected components are complete

bipartite graphs. We prove this in Section 2.

We consider instead the problem of determining those graphs for which every

eigenvalue of Â is a rational number. As in the case of integer eigenvalues, the

corresponding problem for L̂ is equivalent. Therefore we say that G is normalized

rational if every eigenvalue of Â is a rational number.

If G = Km,n, then the vertex degree is constant in each vertex part. More

generally, if G is bipartite with vertex parts R and S, each vertex in R has degree r,

and each vertex in S has degree s, then we say that G is (r, s)-semiregular. In section

3, we will study normalized rational (r, s)-semiregular graphs that are derived from

regular graphs by subdividing edges and from uniform regular hypergraphs.

2. Normalized Integral and Normalized Rational Graphs. In this section,

we classify those graphs for which every eigenvalue of the adjacency matrix is an

integer. In both of the of the following lemmas, we use Sylvester’s Law of Inertia [12,

sec. IV.17], which states that if matrices A and B are congruent, then A and B have

the same numbers of positive, negative, and zero eigenvalues.

Lemma 2.1. Suppose G has integral normalized adjacency eigenvalues. Then the

eigenvalues of Â are 1, 0 and −1. The multiplicity of the eigenvalue 1 is the number

of connected components of G.

Proof. The first part of the lemma follows from the fact that Â is similar to AD−1,

a stochastic matrix whose eigenvalues must therefore be in the interval [−1, 1].

Because L̂ and L are congruent, the multiplicity of 0 as an eigenvalue of L̂ is same

as that of L, and because L̂ = I − Â, this is the multiplicity of 1 as an eigenvalue

of Â. But the multiplicity of the eigenvalue 0 of L is just the number of connected

components of G [6, sec. 13.1]. The second assertion follows.

Lemma 2.2. Â(G) has only integral eigenvalues if and only if the connected

components of G are complete bipartite.
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Proof. If A is the adjacency matrix of Km,n, then the normalized adjacency

matrix of Km,n is Â = 1√
mn

A. The eigenvalues of A are ±√
mn with multiplicity 1

and 0 with multiplicity n− 2. It follows that the eigenvalues of Â are ±1 and 0 with

the respective multiplicities. Thus if the components of G are complete bipartite,

then Â(G) has only integral eigenvalues.

Now suppose that Â(G) has only integral eigenvalues. By Lemma 2.1, the eigen-

values of Â are −1, 0, or 1 and if H is a connected component of G, then the multi-

plicity of the eigenvalue 1 is 1. The trace of Â(H) is 0, so the sum of the eigenvalues

is 0 and H has at least 1 negative eigenvalue. Since all eigenvalues are integral that

eigenvalue must be −1, and because the sum of eigenvalues is 0, the multiplicity must

be 1. The remaining eigenvalue is 0 with multiplicity n− 2.

It is well known that a graph with exactly 1 positive adjacency eigenvalue and

exactly 1 negative adjacency eigenvalue is complete bipartite. Since A is congruent

to Â for any graph, it is equivalent to say that a graph with exactly 1 positive and

exactly 1 negative normalized adjacency eigenvalue must be complete bipartite. In

particular, the components of G are complete bipartite.

So, in contrast to adjacency or Laplacian integral graphs, the problem of deter-

mining which graphs have integral normalized adjacency eigenvalues is easy.

Now suppose M is a square matrix. Then the coefficient of the highest degree

term in the characteristic polynomial φM (λ) = (λI−M) of M is 1. Furthermore, if M

is integral, then φM will have only integral coefficients. It follows from the Rational

Roots Theorem that if M has only integer entries, then any rational eigenvalues of M

will be also be integers. In particular, all rational eigenvalues of the adjacency and

Laplacian matrices are integral. However, the matrix AD−1 can have nonintegral

rational entries (and usually does), so there can be nonintegral rational eigenvalues.

Thus, we consider the problem of determining those graphs for which every eigenvalue

of normalized adjacency matrix is rational. Since (1− λ) is an eigenvalue of L̂ if and

only if λ is an eigenvalue of Â, G has only rational normalized Laplacian eigenvalues

if and only if it has only normalized rational eigenvalues. Therefore, call a graph G

normalized rational if all of the eigenvalues of Â(G) are rational.

3. Normalized rational semiregular graphs. A bipartite graph G with ver-

tex parts X and Y is called (r, s)-semiregular if each vertex in X has degree r and

each vertex in Y has degree s. If G is (r, s)-semiregular, then ±√
rs are eigenvalues

of A and they are the largest in absolute value.

Lemma 3.1. Suppose that G is an (r, s)-semiregular graph. Then G is normalized

rational if and only if every eigenvalue of A is a rational multiple of
√
rs.
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Proof. By permuting vertices if necessary, we can write

Â(G) =

[

O 1√
rs
B

1√
rs
BT O

]

=
1√
rs

A

so λ/
√
rs is an eigenvalue of Â if and only if λ is an eigenvalue of A. Therefore, λ/

√
rs

is rational if and only if λ is a rational multiple of
√
rs.

Corollary 3.2. If G is adjacency integral and rs is a square in Z, then G is

normalized rational.

The complete bipartite graph Km,n is (m,n)-semiregular with adjacency eigen-

values ±√
mn and 0. Thus, by the preceding theorem, Km,n is normalized rational.

One infinite family of graphs satisfying the conditions of the preceding corollary will

be given in the next section. Another sporadic example is given by the bipartite

subdivision G = S(T (11)) (defined below) of the triangular graph T (11) (triangular

graphs are defined in [6, Ch. 10]). G is a (2, 18)-semiregular graph with eigenvalues

±6,±5, and ±4. For this graph, rs = 36, which is a square in Z. It follows from

the corollary that G is normalized rational. A search of the literature on adjacency

integral graphs did not reveal any other examples.

3.1. Bipartite subdivisions of complete graphs. The bipartite subdivision

of a graph G is the graph S(G) obtained by replacing each edge of G by a path of

length 2. If x is a vertex in S(G) that is not in G, then x is adjacent to exactly two

vertices, so the degree of x in S(G) is 2. If x is in both G and S(G), then the degree

of x is the same in both. In particular, if G is a k-regular graph, then every vertex in

both G and S(G) has degree k, so S(G) is a (2, k)-semiregular graph.

Lemma 3.3. Let G be a k-regular graph. Then ±
√
λ+ k is an eigenvalue of

A(S(G)) whenever λ is an eigenvalue of A(G). The remaining eigenvalues of A(S(G))

(if any) are 0.

Proof. If M is the incidence matrix of G, then the adjacency matrix of S(G) is

A(S(G)) =

[

O M

MT O

]

The n singular values of M and their negatives are eigenvalues of A(S(G)). These

are the square roots of the eigenvalues of MMT = A + kI and their negatives. The

remaining eigenvalues must be 0.

Suppose that n ≥ 2. Then G = Kn is (n−1)-regular and G has at least one edge,

so S(G) is (2, n− 1)-semiregular. The nonzero eigenvalues of G are n and −1, so the

eigenvalues of S(G) are ±
√
2n− 2, ±

√
n− 2, and 0. Thus, G is normalized rational
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if and only if

√
n− 2 =

a

b

√
2n− 2

for some integers a and b. We assume that a/b is in lowest terms, so gcd(a, b) = 1.

Solving for n gives

n =
2(b2 − a2)

b2 − 2a2
(3.1)

Thus,
√
n− 2 is a rational multiple of

√
2n− 2 if and only if (b2 − 2a2) divides

2(b2 − a2).

Lemma 3.4. If gcd(a2, b2) > 1, then gcd(a, b) > 1.

Proof. Let g = gcd(a2, b2) > 1 and suppose that p is a prime divisor of g. Then

p|a2 and p|b2. Since p is prime, p|a, p|b, and p > 1. Since p is a common divisor of a

and b, p| gcd(a, b).

Theorem 3.5. Suppose that a, b ∈ Z and gcd(a, b) = 1. Then n = 2(b2−a2)
b2−2a2 ∈ Z

if and only if |b2 − 2a2| < 3.

Proof. If |b2 − 2a2| < 3, then the denominator in the formula for n is ±1 or ±2.

Since each of these numbers divides 2 and 2 is a factor of the numerator, it follows

that n is an integer.

Proceeding by contradiction for the converse, suppose that b2 − 2a2 = k where

|k| ≥ 3. Then b2 − 2a2 = k|2(b2 − a2), since n ∈ Z. Therefore, 2(b2 − a2) = ck for

some c ∈ Z. Since b2 − 2a2 = k, b2 = 2a2 + k. Substituting this into 2(b2 − a2) = ck

yields the equation 2a2 = k(c− 2).

If k is odd, then k|a2, and therefore, a2 = pk for some p ∈ Z. It follows that

b2 = 2(pk)+ k = k(2p+1), and so k|b2. Thus, k| gcd(a2, b2). If k is even, then k = 2l

for some l ∈ Z, |l| ≥ 2. Then 2a2 + 4l = 2cl, so a2 = l(c − 2). Therefore, l|a2 and

a2 = pl for some p ∈ Z. It follows that b2 = l(2p+2), and so l|b2. Thus, l| gcd(a2, b2).

In either case, by Lemma 3.4, there is a number q > 1 such that q| gcd(a, b), a
contradiction. Therefore |b2 − 2a2| < 3.

Therefore, in looking for n such that
√
n− 2 = a

b

√
2n− 2 for some (a, b) we only

need to consider (a, b) where gcd(a, b) = 1 and b2−2a2 = c for some c ∈ {−2,−1, 1, 2}.
For any choice of c and for any integer solution (a, b) to b2 − 2a2, we can substitute

b2 = 2a2 + c into 3.1 to find the corresponding value of n. Since n is the number

of vertices in Kn, n must be positive. If c = −2, then n = −(a2 − 2) ≥ 2 only

when a = 0. But there is no integer solution (0, b) to b2 − 2a2 = −2. If c = −1,

then n = −2(a2 − 1) ≥ 2 only when a = 0. But there is no integer solution (0, b) to
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b2− 2a2 = −1. Therefore, there is no value of n for which bipartite subdivision of Kn

is normalized rational when b2 − 2a2 = −2 or b2 − 2a2 = −1 in (3.1).

If c = 1, then n = 2(a2 + 1) ≥ 2 for each integer solution (a, b) to b2 − 2a2 = 1,

and if c = 2, then n = (a2 + 2) ≥ 2 for each integer solution (a, b) to b2 − 2a2 = 2.

Thus, we have the following theorem.

Theorem 3.6. The subdivision of Kn is normalized rational if and only if n =
2(b2−a2)
b2−2a2 where b2 − 2a2 = 1 or b2 − 2a2 = 2 for some a, b ∈ Z. Furthermore,

1. if (a, b) is a solution to b2 − 2a2 = 1, then n = 2(a2 + 1),

2. if (a, b) is a solution to b2 − 2a2 = 2, then n = (a2 + 2)

It remains to determine the integer solutions to b2−2a2 = 1 (a Pell equation) and

b2 − 2a2 = 2 (a generalized Pell equation). In each case, the general solution can be

found, using the algorithm in [11, Ch. 6] for example. The solutions to b2 − 2a2 = 1

are

[

a

b

]

=

(

3 + 2
√
2
)m

4

[

4 + 3
√
2

6 + 4
√
2

]

+

(

3− 2
√
2
)m

4

[

4− 3
√
2

6− 4
√
2

]

,

where m ∈ Z. The solutions to b2 − 2a2 = 2 are

[

a

b

]

=

(

3 + 2
√
2
)m

2

[

7 + 5
√
2

10 + 7
√
2

]

+

(

3− 2
√
2
)m

2

[

7− 5
√
2

10− 7
√
2

]

,

where m ∈ Z. Some resulting values of n, a, b, and n, as well as the corresponding

value for c are given in Table 3.1

We can also use Corollary 3.2 to show that the graphs described in Part 2 of

Theorem 3.6 are normalized rational. It follows from the spectrum of Kn given above

that S(Kn) is adjacency integral if and only if 2n− 2 = σ2 and n− 2 = τ2 for some

integers σ and τ. This implies n = τ2 + 2 for some τ such that there is an integral

solution (σ, τ) to σ2 − 2τ2 = 2. If we let (σ, τ) = (b, a), this is the same equation as in

Part 2 of the theorem, and the resulting value of n is also the same. Since r = 2 and

s = n−2, we have rs = 2n−2 = σ2, and so by Corollary 3.2, the graph is normalized

rational.

3.2. Uniform Hypergraphs. An r-regular k-uniform hypergraph is a hyper-

graph in which each hyperedge contains exactly k vertices and each vertex is contained

in exactly r hyperedges. The incidence graph of a hypergraphH is the bipartite graph

I(H) whose vertex parts are V (H) and E(H). A vertex v ∈ V (H) and hyperedge

e ∈ E(H) are adjacent in I(H) if v is a vertex in e. If H is an r-regular k-uniform

hypergraph, then I(H) is (k, r)-semiregular graph. Conversely, any (k, r)-semiregular

graph is the incidence graph of an r-regular k-uniform hypergraph (possibly with
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Table 3.1

Some values of n for which S(Kn) is normalized rational, along with the corresponding a, b,

and c.

n a b c

2 0 1 1

3 1 2 2

10 2 3 1

51 7 10 2

290 12 17 1

1683 41 58 2

9802 70 99 1

57123 239 338 2

332930 408 577 1

1940451 1393 1970 2

11309770 2378 3363 1

multiple hyperedges). In this language, a k-regular graph is a k-regular 2-uniform

hypergraph. Since the incidence graph I(H) contains isolated vertices if H does, and

thus Â(I(H)) and L̂(I(H)) are not defined, we assume that H contains no isolated

vertices. This means that n ≥ k.

3.2.1. Complete hypergraphs. The complete k-uniform hypergraph K
(k)
n is

the hypergraph on n vertices whose hyperedge set consists of all subsets of size k from

V (H). The complete graph Kn is the complete 2-uniform hypergraph K
(2)
n , and the

bipartite subdivision of Kn is the incidence graph of Kn. The incidence graph of K
(k)
n

is an (r, k)-semiregular with r =
(

n−1
k−1

)

. The incidence matrix of the hypergraph H

is the matrix whose rows are indexed by the vertices of H and whose columns are

indexed by the hyperedges of H . The (v, e)-entry of the matrix is 1 if the vertex v

is contained in the hyperedge e, and 0 otherwise. If M is the incidence matrix of H ,

then I(H) has adjacency matrix

A(I(H)) =

[

O MT

M O

]

As in the proof of Lemma 3.3, the square roots of the eigenvalues of MMT and their

negatives are eigenvalues of A(I(H)), and the remaining eigenvalues are 0. The (i, j)-

entry of MMT is the number of hyperedges containing vertices i and j. In the case

where i = j, this is the number of hyperedges containing the vertex i. There are
(

n−1
k−1

)

hyperedges containing a given vertex in H and
(

n−2
k−2

)

hyperedges containing a given

pair of vertices. Thus MMT =
(

n−1
k−1

)

I +
(

n−2
k−2

)

(J − I), which has nonzero eigenvalues
(

n−1
k−1

)

−
(

n−2
k−2

)

and
(

n−1
k−1

)

−
(

n−2
k−2

)

+ n
(

n−2
k−2

)

. After some manipulation, applying the
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identity
(

n−1
k−1

)

= n−1
k−1

(

n−2
k−2

)

, we find that the eigenvalues of I(H) are

±
√

n− k

k − 1

(

n− 2

k − 2

)

and ±
√
rk =

√

(n− 1)k

k − 1

(

n− 2

k − 2

)

Therefore, the eigenvalues of A(I(H)) are rational multiples of
√
rk if and only if

√

n− k

k − 1

(

n− 2

k − 2

)

=
a

b

√

(n− 1)k

k − 1

(

n− 2

k − 2

)

for some integers a and b for which we may assume that gcd(a, b) = 1. Isolating n in

this equation gives

n =
k(b2 − a2)

b2 − ka2
(3.2)

Thus, in order for I(H) to be normalized rational, the expression on the right must

be a positive integer. The following lemma restricts the possible values of b2 − ka2 in

the denominator on the right hand side of (3.2).

Lemma 3.7. If n = k(b2−a2)
b2−ka2 is an integer and gcd(a, b) = 1, then b2 − ka2 is a

divisor of k(k − 1).

Proof. If n = k(b2−a2)
b2−ka2 is an integer, then b2− ka2 must be a divisor of k(b2− a2).

If b2 − ka2 = ±1, then it follows immediately that it is a divisor k(k− 1). So suppose

that the denominator is some integer d such that |d| > 1. Then b2 = ka2 + d and

n =
k((k − 1)a2

d
+ k (3.3)

Since n is an integer, d|k(k − 1)a2. Since b2 = ka2 + d, if gcd(d, a2) > 1, then

gcd(a2, b2) > 1 and so gcd(a, b) > 1, a contradiction. Since d and a2 are coprime, d

must divide k(k − 1).

The number n must be at least k, so by Equation 3.3, k(k−1)a2

d must be non-

negative. If d is positive, then this is true for any feasible values of k and a. If d is

negative, then this is true only when a = 0, but there are no solutions (a, b) = (0, b)

to b2 − ka2 = d when d is negative. This gives the following.

Theorem 3.8. If the incidence graph of K
(k)
n , n ≥ k, is normalized rational,

then n = k(b2−a2)
b2−ka2 for some integers a and b such that gcd(a, b) = 1 and b2 − ka2 = d

for some positive divisor d of k(k − 1).

Thus, to determine when the incidence graph of K
(k)
n is normalized rational for a

given k, we only need to find the integer solutions (a, b), if they exist, to the generalized
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Pell equation b2 − ka2 = d for each positive divisor d of k(k − 1). If solutions exist,

then the corresponding values of n are integral. For example, when k = 3, k(k−1) = 6

so d ∈ {1, 2, 3, 6}. The equation a2 − 3b2 = d has integer solutions when d = 1 or

d = 6, but not when d = 2 or d = 3.

If d = 1 or d = k(k − 1), then (a, b) = (0, 1) and (a, b) = (1, k) are solutions,

respectively, to b2 − ka2 = d. Unfortunately, there does not appear to be a simple

set of criteria for determining whether or not the equation has integer solutions for

a particular k and d where d 6∈ {1, k(k − 1)}. However, the algorithm given in [11]

can be used to determine whether or not solutions to the equation exist and find all

integer solutions in the case that they do.

Note that if k is a perfect square, say k = σ2, then the equation becomes b2−ka2 =

(b− σa)(b + σa) = d. Thus, in this case, it is only necessary to solve the system

b− σa = d1

b+ σa = d2

for each factorization d = d1d2 into integers. Therefore, there are only finitely many

integer solutions when k is a square. It is shown in [11] that if k is not a square

and there is at least 1 solution (a, b), then infinitely many solutions can be found

from (a, b) by iterative application of a linear transformation. Otherwise, there are 0

solutions.

3.2.2. Incidence graphs of Steiner systems. Another class of k-uniform r-

regular hypergraphs comes from t-(n, k, λ) designs (see, for example, [3, Ch. 1]). Such

a design is equivalent to a hypergraph whose vertex set and hyperedge set are the

point set and block set, respectively, of the design. A Steiner system S(n, k, t) is

a t-(n, k, 1) design. We will consider Steiner triple systems S(n, 3, 2) and Steiner

quadruple systems S(n, 4, 3).

A Steiner triple system S(n, 3, 2) is equivalent to a 3-uniform r-regular hypergraph

H where r = (n − 1)/2. Furthermore, any two points are contained in a unique

hyperedge. Thus, if M is the incidence matrix of the hypergraph, then MMT =
n−1
2 I+(J−I) = n−3

2 I+J. This matrix has eigenvalues n−3
2 and rk = 3n−3

2 . Therefore,

the eigenvalues of A(I(H)) are

±
√

n− 3

2
and ±

√
rk = ±

√

3n− 3

2

Therefore, I(H) is normalized rational if and only if

√

n− 3

2
=

a

b

√

3n− 3

2
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for some a, b ∈ Z for which we may assume gcd(a, b) = 1. Solving for v in terms of a

and b gives

n =
3(b2 − a2)

b2 − 3a2
(3.4)

Thus, I(H) is normalized rational if and only if the expression on the right hand side

of 3.4 is an integer. This gives the following.

Lemma 3.9. Let H be the hypergraph obtained from an S(n, 3, 2). Then the

incidence graph of I(H) is normalized rational if and only if

n =
3(b2 − a2)

b2 − 3a2

for some integers a and b such that gcd(a, b) = 1.

The right hand side of (3.4) is the same as the formula for n in Theorem 3.8

with k = 3. Using the same argument, we can show that b2 − 3a2 must be equal to

some positive divisor of 6, and if it is, then there is a corresponding n. Note that

an S(n, 3, 2) exists if and only if n ≡ 1 or 3 mod 6, so n must satisfy this further

condition for a corresponding normalized rational graph to exist. If n = 9 or n = 99,

for example, then the incidence graph of an S(n, 3, 2) is normalized rational.

A Steiner quadruple system is an S(n, 4, 3). It is equivalent to a 4-uniform r-

regular hypergraph where r = (n−1)(n−2)
6 . Two distinct points are contained in n−2

2

blocks. Therefore, if M is is the incidence matrix of the hypergraph, then MMT =
(n−1)(n−2)

6 I + n−2
2 (J − I). It follows that the eigenvalues of A(I(H)) are

±
√

(n− 4)(n− 2)

6
,±

√
rk = ±

√

4(n− 4)(n− 2)

6

Thus, I(H) is normalized rational if and only if

√

(n− 4)(n− 2)

6
=

a

b

√

4(n− 4)(n− 2)

6

for some integers a and b, for which we may assume that gcd(a, b) = 1. Solving this

equation for n in terms of a and b gives

n =
4(b2 − a2)

b2 − 4a2

The right hand side of this equation is the same as in Theorem 3.8 with k = 4. As in

the theorem, b2 − 4a2 must be a positive divisor of k(k− 1) = 12. Since 4 is a square,

there are only finitely many solutions, at most 1 for each factorization of a divisor
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of 12 into two positive integers. Therefore, if I(H) is normalized rational for some

integers a and b, then there must be integer solutions to

a− 2b = d1

a+ 2b = d2

where d1d2|12 for some d1, d2 ∈ N. An exhaustive search over all possibilities yields

integer solutions (1, 4) when d1 = 2 and d2 = 6, (−1, 4) when d1 = 6 and d2 = 2,

(0, 2) when d1 = d2 = 2, and (0, 1) when d1 = d2 = 1. The corresponding values for

n are 5, 5, 4, and 4. But a Steiner system exists only when n ≡ 2 or 4 mod 6. So

the only S(n, 4, 3) whose incidence graph is normalized rational is the trivial case of

n = 4, consisting of one block (or hyperedge) containing all 4 vertices.
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