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USING TWINS AND SCALING TO CONSTRUCT COSPECTRAL

GRAPHS FOR THE NORMALIZED LAPLACIAN∗

STEVE BUTLER†

Abstract. The spectrum of the normalized Laplacian matrix cannot determine the number of

edges in a graph, however finding constructions of cospectral graphs with differing number of edges

has been elusive. In this paper we use basic properties of twins and scaling to show how to construct

such graphs. We also give examples of families of graphs which are cospectral with a subgraph for

the normalized Laplacian matrix.
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1. Introduction. The goal in spectral graph theory is to understand the in-

terplay between the structure of a graph and the eigenvalues of a matrix that is

associated with the graph. There are many possible ways to associate a matrix with

a graph and each one has something different to say about the graph. At the same

time each matrix has limitations in what can be said about a graph, this is because

of the existence of cospectral graphs which are graphs which are not isomorphic but

for which the corresponding matrices have the same eigenvalues.

One way to explore the limitations of a particular matrix in spectral graph the-

ory is through the study of cospectral graphs and identifying a structural property

that distinguish these graphs (such a property cannot then a priori be determined

through the spectrum). The four most common matrices that are studied are the ad-

jacency matrix (A, where the (i, j)-entry indicates whether or not an edge is present),

the combinatorial Laplacian (L = D − A, where D is the diagonal matrix of the

degrees d(u)), the signless Laplacian (Q = D + A) and the normalized Laplacian

(L = D−1/2(D − A)D−1/2 when the graph has no vertices of degree 0; when the

graph does have vertices of degree 0 set the corresponding entry of D−1/2 to 0). In-

formation about these matrices can be obtained in several places including the work

of Brouwer and Haemers [1] and Chung [7].

In Table 1.1, taken from [4], for each matrix we indicate whether or not a partic-
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ular type of matrix can detect a certain structural property. Here “Bip.” stands for

bipartite and “Comp.” stands for components.

Table 1.1

Matrices and properties of a graph

Matrix Bip. # Comp. # Bip. Comp. # Edges

A Yes No No Yes

L No Yes No Yes

Q No No Yes Yes

L Yes Yes Yes No

One of the striking things is that while the normalized Laplacian does well in

detecting qualitative structure (i.e., expansion [7]) it does poorly in some simple quan-

titative values (i.e., counting the number of edges). In some sense this follows because

the normalized Laplacian matrix is up to a simple transformation related to the prob-

ability transition matrix of a random walk, which is given by D−1A. In particular we

have that D−1A = D−1/2(I−L)D1/2 and so two graphs are cospectral for the normal-

ized Laplacian if and only if they are also cospectral with respect to the probability

transition matrix for a random walk. (This latter relationship is useful in checking

cospectrality in some cases, and we will use it later in this paper.)

There have been several papers which have addressed constructions of cospec-

tral graphs for the normalized Laplacian (see [3, 5, 6, 8]). However none of these

constructions yielded graphs with differing number of edges, and previously the only

large graphs that were known which were cospectral and had differing number of

edges were complete bipartite graphs.

The goal of this paper is to begin to address this situation by giving simple

methods to construct cospectral graphs with respect to the normalized Laplacian

matrix and which have differing number of edges. This will be based on two aspects for

the normalized Laplacian, namely scaling and twins (which we introduce in Section 2

and then extend in Section 3). We also give examples of graphs which are cospectral

with a subgraph (see Section 4). We then finish with some concluding remarks (see

Section 5).

While our goal is to construct graphs which are simple, we will find it useful

and informative to work with weighted graphs. A weighted graph is a graph with an

additional weight function on the edges, w(u, v), which is non-negative and symmetric

(i.e., w(u, v) = w(v, u)). The adjacency matrix of a weighted graph is defined using

the weight function by Au,v = w(u, v). In Section 3 we will also need vertex weights

which are nonnegative functions w(u) (introduced for use in the normalized Laplacian

in [2]). The degree of the vertex then becomes the sum of the vertex weight and the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 28, pp. 54-68, April 2015



ELA

56 S. Butler

incident edges, i.e., d(u) = w(u) +
∑

v∼u w(u, v). With this degree we can now define

the diagonal degree matrix D and along with A can define L, Q and L. We note

that a vertex weight does not correspond to a loop, i.e., a loop affects both D and A

while a vertex weight only affects D. Simple graphs correspond to the situation when

w(u, v) ∈ {0, 1} for all edges u∼v and w(u) = 0 for all vertices u.

2. Scaling and twins. In this section we will introduce our two basic princi-

ples which when combined will allow us to construct cospectral graphs with differing

number of edges. The first one has to do with scaling and exploits the normalization

aspect of the normalized Laplacian.

Proposition 2.1. Let α > 0, and let G and αG be graphs on the same vertex set

where wαG(u, v) = αwG(u, v) and wαG(u) = αwG(u). Then LG = LαG, in particular

the (weighted) graphs are cospectral with respect to the normalized Laplacian.

Proof. This follows because the degrees also scale by α and because of the defini-

tion of the normalized Laplacian, i.e., L = D−1/2(D −A)D−1/2. So we have

LαG = D
−1/2
αG (DαG −AαG)D

−1/2
αG =

( 1√
α
D

−1/2
G

)(
α(DG −AG)

)( 1√
α
D

−1/2
G

)

= D
−1/2
G (DG −AG)D

−1/2
G = LG,

as desired.

The second principle has to do with twin vertices. In a simple graph twin vertices

are two disjoint vertices that have the same set of neighbors. For a weighted graph

we will have a similar notion but we add the requirements that the edge weights

scale. Therefore we say u and v are twin vertices if u and v are not adjacent, not

isolated, and there is some α > 0 so that αw(u) = w(v), w(u, u) = w(v, v) = 0, and

for all t 6= u, v we have αw(u, t) = w(v, t). (This generalizes the notion of twins as

introduced in [4] and [8].)

As an example, let us consider the weighted graph shown in Figure 2.1. All the

vertex weights are zero, and the edge weights are 1 unless otherwise marked (we will

follow this convention throughout the paper). Then we have that the vertices a and

b are twins with the scaling factor α = 2 but that a and c are not twins because

even though they have the same neighbors there is no consistent scaling factor for

the edge weights. In general we note that the twins relationship gives an equivalence

relationship for the vertices of the graph, and moving forward the idea of grouping

twins in these equivalence classes and then coalescing will be the idea behind our

construction.

Proposition 2.2. Let G be a graph with twin vertices u and v, let Ĝ be a graph

with u and v deleted and a new vertex uv added where wĜ(uv, t) = wG(u, t)+wG(v, t)
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a b c

2 2 2

Fig. 2.1. Example of twin vertices

and wĜ(uv) = wG(u) + wG(v). Then the eigenvalues of the normalized Laplacian of

G, counting multiplicity, are the eigenvalues of the normalized Laplacian of Ĝ with

an additional eigenvalue of 1.

The proposition is a special case of a more general result given in the next section,

so we will postpone the proof. We also note that while we dealt with two twin

vertices, we can repeatedly apply this result when we have many vertices which form

an equivalence class of twin vertices. In this case we simply combine the set of twin

vertices into a single vertex and then add all the corresponding weights together, this

will also create 1 as an eigenvalue with multiplicity one less than the number of initial

twins.

We are now ready to give our approach, which will be to form large bipartite

graphs with many groups of equivalence classes of twin vertices, and then apply the

previous propositions. We will show that when properly done the resulting graphs

are cospectral.

Theorem 2.3. Let G and H be (simple) graphs on n vertices such that when

all possible twin vertices are combined then the resulting weighted graphs G′ and H ′

satisfy some isomorphism H ′ = αG′ (i.e., by rescaling the weights then we can go

from one graph to the other). Then G and H are cospectral.

Proof. Since after reduction G′ and H ′ have the same number of vertices then it

must be that we had the same number of twin vertices to reduce in each graph, and

by Proposition 2.2 each reduction contributed 1 to the spectrum. But the remain-

ing eigenvalues, i.e., those determined by G′ and H ′ also agree by Proposition 2.1.

Therefore the original graphs are cospectral.

An example of Theorem 2.3 is shown in Figure 2.2 where on the top row we show

two simple graphs and then below them the corresponding (weighted) graphs when

they have coalesced their twin vertices. In particular the two coalesced graphs are,

up to a scaling factor in the edge weights, the same and so are cospectral, and since

in each case we reduced the number of vertices by 6 we can conclude that the graphs

in the first row are also cospectral. Further it is easy to see that the graph on the left

has 18 edges while the graph on the right has 24 edges.
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Fig. 2.2. An example of Theorem 2.3

This example can be generalized by fixing a bipartite graph and “blowing” it up

in two different ways. Suppose that G is a bipartite graph with no isolated vertices

and where the vertices have been partitioned as A ∪ B with |A| = a and |B| = b.

Then for any natural numbers s, s′, t, t′ such that as+ bt = as′+ bt′ we may construct

the following cospectral pair. We construct H by starting with G and replacing

each vertex in A with s independent vertices, each vertex in B with t independent

vertices, and each edge in G with a copy ofKs,t connecting the corresponding vertices.

Similarly we construct H ′ by starting with G and replacing each vertex in A with s′

independent vertices, each vertex in B with t′ independent vertices, and each edge

in G with a copy of Ks′,t′ . Both graphs have the same number of initial vertices

(by assumption) and further upon coalescing the twin vertices we have introduced,

the graphs are stG and s′t′G which are cospectral and hence the initial graphs were

also cospectral. Also we note when st 6= s′t′ then the corresponding graphs will have

differing number of edges.

The graphs shown in Figure 2.2 are an example of this construction with G being

the 6-cycle and s = 1, t = 3 and s′ = t′ = 2. Of course more interesting possibilities

can occur. In the top of Figure 2.3 we give an example of another way to build off of

a 6-cycle. To simplify the picture we will mark the number of vertices that we blow

up inside each vertex and then edges represent complete bipartite graphs. Using the

above techniques we first coalesce the twins coming from the blowup of C6 (in total

we reduce from 24 to 6 vertices in both cases; also note the new edge weight equals

the product of the number of twins on each side of the blowup). We now have the

weighted graphs at the bottom of Figure 2.3 which differ by a scaling factor of α = 8
9

and so can conclude that the original graphs were cospectral.
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Fig. 2.3. A more interesting blowup of the 6-cycle

3. Twin subgraphs. The preceding section looked at the idea of combining ver-

tices together, the goal of this section is to look at ways to combine larger structures,

which we will term twin subgraphs together. We will start by looking at the example

of twin subgraphs shown in Figure 3.1, where we have marked the twin subgraphs

H(1) and H(2). The basic idea is that these two subgraphs, along with how they

connect to the remainder of the graph, agree up to a scaling factor.

2 2

2

a

c

a′

b

d

b′

e

H(1)

H(2)

Fig. 3.1. Example of twin subgraphs

In general we say that H(1) and H(2) are twin subgraphs of the graph G if there

is a partition of the vertices of G as V (G) = V1∪V2∪V3, a bijective map π : V1 → V2,

and a fixed α > 0 which satisfy the following two properties:

• G restricted to V1 is H(1), G restricted to V2 is H(2), w(u, v) = 0 for all

u ∈ V1 and v ∈ V2, and αH(1) = π(H(2));

• for each u ∈ V1 and t ∈ V3 we have αw(u, t) = w(π(u), t).

The first condition states that we have two graphs which are disjoint and not

connected by an edge which agree up to some fixed scaling factor; the second condition

states that the way that these two subgraphs connect with the remainder of the graph

(i.e., vertices in V3) also agree up to the same fixed scaling factor.
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Applying this definition to the graph shown in Figure 3.1 we have that V1 = {a, b},
V2 = {a′, b′}, V3 = {c, d, e}, π(a) = a′, π(b) = b′ and α = 2 so that H(1) and H(2) are

twin subgraphs.

Our goal is to combine the twins together and in the process reduce the size of

the graph. So given a graph G with twin subgraphs H(1) and H(2) we will consider

the following three graphs:

• Ĝ formed by deleting the vertices V2 and for each u ∈ V1 we set w(u) =

(1 + α)w(u) and for all t ∈ V1 ∪ V3 we set w(u, t) = (1 + α)w(u, t);

• Ĥ(i) formed by restricting G to H(i) and then creating a new weight function

w′ on the vertices by the following w′(u) = w(u) +
∑

t∈V3
w(u, t).

The graph Ĝ can be thought of the graph that is formed when H(1) and H(2) are

combined together in G. Note that by definition αĤ(1) = Ĥ(2) and so these graphs

are cospectral and can be used interchangeably in the arguments below. In Figure 3.2

we give the three graphs which come from Figure 3.1; this is our first time when

vertex weights have come into play and we have marked these at a vertex by using a

square box.

1 1 2 22

3

3 3

Ĝ Ĥ(1) Ĥ(2)

Fig. 3.2. The three graphs coming from Figure 3.1

We are now ready to give our main result.

Theorem 3.1. Suppose that H(1) and H(2) are twin subgraphs of G. Then the

eigenvalues (counting multiplicity) of the normalized Laplacian of G is given by the

union ot the eigenvalues of the normalized Laplacian of Ĝ and the eigenvalues of the

normalized Laplacian of Ĥ(1).

Before we begin the proof we introduce harmonic eigenvectors for the normalized

Laplacian matrix (see [5, 7]). In particular, if Lx = λx then the harmonic eigenvector

corresponding to λ is y = D−1/2x. Note with this convention we have (D − A)y =

λDy, or rearranging, Ay = (1−λ)Dy. So the requirement for a harmonic eigenvector

is that at each vertex u the following is satisfied

∑

v
v∼u

w(u, v)y(v) = (1 − λ)d(u)y(u). (3.1)

(Recall that d(u) = w(u) +
∑

u∼v w(u, v).) Further, we have that two harmonic
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eigenvectors y and z are perpendicular if and only if the eigenvectors which they cor-

respond to are perpendicular. This translates to requiring that D1/2y is perpendicular

to D1/2z, or in other words

0 = (D1/2y)T (D1/2z) = yTDz =
∑

u

d(u)y(u)z(u).

Proof. We will show how to lift harmonic eigenvectors from Ĝ and Ĥ(1) to har-

monic eigenvectors of G for the same corresponding eigenvalue. Further the two fam-

ilies of harmonic eigenvectors thus produced are perpendicular and so by dimension

arguments we will have found all of the eigenvalues of G and produced the result.

So suppose that x̂ is a harmonic eigenvector of Ĝ for the eigenvalue λ. Now

consider the vector x defined as follows:

x(u) =

{
x̂(u) if u ∈ V1 ∪ V3,

x̂(π−1(u)) if u ∈ V2.

We claim that x is a harmonic eigenvector of G for the eigenvalue λ, to verify this we

consider what happens at a vertex u.

• u ∈ V3. Note that for v ∈ V1 that wĜ(u, v) = (1 + α)wG(u, v) = wG(u, v) +

wG(u, π(v)) while for v ∈ V3 that wĜ(u, v) = wG(u, v). Further a vertex in

V3 has the same degree both in G and Ĝ. Therefore we have
∑

v
v∼u

wG(u, v)x(v) =
∑

v
v∼u

wĜ(u, v)x̂(v) = (1−λ)dĜ(u)x̂(u) = (1−λ)dG(u)x(u).

• u ∈ V1. Note that for all v that wG(u, v) =
1

1+αwĜ(u, v) and that dG(u) =
1

1+αdĜ(u). Therefore we have

∑

v
v∼u

wG(u, v)x(v) =
1

1 + α

∑

v
v∼u

wĜ(u, v)x̂(v) =
1

1 + α
(1− λ)dĜ(u)x̂(u)

= (1− λ)dG(u)x(u).

• u ∈ V2. This case follows similarly from what was done for the u ∈ V1 case.

Now suppose that ŷ is a harmonic eigenvector of Ĥ(1) for the eigenvalue λ. Now

consider the vector y defined as follows:

y(u) =





αŷ(u) if u ∈ V1,

−ŷ(π−1(u)) if u ∈ V2,

0 else.

We claim that y is a harmonic eigenvector of G for the eigenvalue λ, to verify this we

consider what happens at a vertex u.
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• u ∈ V3. By definition for v ∈ V1 we have that αwG(u, v) = wG(u, π(v)).

Therefore we can conclude

wG(u, v)y(v) + wG(u, π(v))y(π(v)) = wG(u, v)y(v) + αwG(u, v)y(π(v))

= wG(u, v)(αŷ(v)) + αwG(u, v)(−ŷ(v)) = 0.

Using this, and that all vertices in V3 (including u) are 0 for y we can conclude

∑

v
v∼u

wG(u, v)y(v) = 0 = (1− λ)dG(u)y(u)

• u ∈ V1. For a vertex u ∈ V1 we have that for all v ∈ V1 ∪ V3 wG(u, v) =
1

1+αwĜ(u, v) (by definition there are no edges between V1 and V2) and that

dG(u) =
1

1+αdĜ(u). Therefore we have

∑

v
v∼u

wG(u, v)y(v) =
α

1 + α

∑

v
v∼u

wĜ(u, v)ŷ(v) =
α

1 + α
(1 − λ)dĜŷ(u)

= (1− λ)dGy(u).

• u ∈ V2. This case follows similarly from what was done for the u ∈ V1 case.

Finally we verify that the resulting vectors are orthogonal. Now suppose that

x and y were harmonic eigenvectors lifted from Ĝ and Ĥ(1) respectively. We have

d(u)x(u)y(u) is trivially 0 for all u ∈ V3 (from y(u) = 0). Further we have for u ∈ V1

that

d(u)x(u)y(u)+d(π(u))x(π(u))y(π(u)) = d(u)x(u)y(u)+αd(u)x(u)

(
− 1

α
y(u)

)
= 0.

This shows the remaining terms can be paired to cancel and these harmonic eigen-

vectors are orthogonal, which concludes the proof.

We can now give a proof for the case of twin vertices that came from the preceding

section.

Proof. [Proof of Proposition 2.2] Let V1 = {u}, V2 = {v}, and V3 the remaining

vertices. Then by Theorem 3.1 we now have that the eigenvalues of G are the eigen-

values of Ĝ together with the eigenvalues of a graph consisting of a single vertex with

no loop and positive vertex weight (i.e., since the vertex twins were not isolated). For

this latter graph we have that L = D−1/2(D − A)D−1/2 = [1] which has eigenvalue

1. The result now follows.

As in the previous section we can now combine twin subgraphs to form cospectral

graphs, we now just have a more interesting array of graphs to work with. A special
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case of this phenomenon was previously given by Osborne [8] wherein the twin sub-

graphs were sPn+1 and tPn+1 and they were glued together at a vertex. In particular

Osborne showed that the spectrum was independent of the choice of s and t and then

used this to construct cospectral simple graphs.

Of course several twin subgraphs can be glued together and the theorem still

applies. An example of this is shown in the top of Figure 3.3 (again to save space we

mark the number of twins inside of each vertex if it corresponds to multiple twins). We

first start by combining vertex twins (reducing by 16 vertices in each case) to get the

graphs shown in the bottom of Figure 3.3. Now in both cases we have three subgraphs

which are mutual twins gluing together at a central vertex. We can combine these

graphs together to conclude (after appropriate scaling) that the remaining eigenvalues

come from a path of length 4 and two copies of a path of length 3 with one end of

the path having a vertex weight of 1. This example shows it is possible to iteratively

combine twins to form cospectral graphs.

2

2

4

4

5

5

3

3

7

7

2

2

2

5

5

5

4

4

4

7

7

7

3

3

3

Fig. 3.3. Two cospectral graphs arising from having triplet subgraphs

We note that Theorem 3.1 shows we could connect the same arbitrary subgraph

to the center vertices of the pair of graphs in Figure 3.3 and the resulting graphs

would still be cospectral. A very elementary form of this method for constructing

cospectral graphs was given in Butler and Grout [5] for constructing non-isomorphic
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cospectral graphs for the normalized Laplacian, where the “rays” from the central

vertex only went out to distance two.

The examples mentioned so far rely on gluing graphs at one vertex, but other

configurations can arise. In the next section we will give an example of twin subgraphs

where the gluing happens at two distinct vertices.

4. Graphs cospectral with their subgraph. Since we can construct graphs

which are cospectral and have differing number of edges we have the possibility that

there are graphs which are cospectral with one of their subgraphs for the normalized

Laplacian matrix. A handful of examples of this type were given by Butler and Grout

[5], and here we generalize two of these to form an infinite sequence of examples of

this behavior. These graphs also show that it is possible for a dense graph to be

cospectral with a sparse subgraph.

Our first construction is shown in the top of Figure 4.1 where we again follow the

convention of marking any twins by indicating that with a label at the vertex where

we want to take twin copies. In particular the difference between the two graphs is a

removal of a Kk,k represented by the edge on the bottom.

k k

k + 1

k k

k + 1

k k

k + 1 k + 1

1

k
2

k k

k + 1 k + 1

1

Fig. 4.1. A pair of cospectral graphs, one a subgraph of the other, and their coalescing
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For both graphs in Figure 4.1 we have removed 3k−2 vertices when coalescing so

that the spectrum will consist of 1 with multiplicity 3k−2 in addition to the spectrum

of the coalesced graphs shown at the bottom of Figure 4.1. These are graphs on 5

vertices and so we can write down explicitly the normalized Laplacian for these two

matrices, but as already noted the matrices are a transformation of the probability

transition matrix (i.e., D−1A) and so we instead write these down here (where the

vertices are labeled going from top to bottom and left to right).




0 1
2

1
2 0 0

1
2 0 1

2k+2
k

2k+2 0
1
2

1
2k+2 0 0 k

2k+2

0 1
k+1 0 0 k

k+1

0 0 1
k+1

k
k+1 0







0 1
2

1
2 0 0

1
2 0 1

2k+2
k

2k+2 0
1
2

1
2k+2 0 0 k

2k+2

0 1 0 0 0

0 0 1 0 0




The characteristic polynomial for both of these matrices is

x5 − 6k2 + 8k + 3

4(k + 1)2
x3 − 1

4(k + 1)
x2 +

k(2k + 1)

4(k + 1)2
x.

In particular the remaining five eigenvalues to determine for the original graph must

also agree, showing that the graphs are cospectral.

The second construction is similar but instead of only having twin vertices we also

have twin subgraphs. An example of a pair of such graphs for the special case k = 2 is

shown in Figure 4.2. The general construction is shown at the top in Figure 4.3 where

we take the indicated number of copies of the “edge” inside of the dashed rectangle.

By coalescing the various twins, equal in number and type in both graphs, we reduce

down to the 6 vertex graphs with appropriate edge weights shown at the bottom of

Figure 4.3.

Fig. 4.2. An example of cospectral graphs with one a subgraph of the other

Again we only need to check that the graphs on the bottom of Figure 4.3 are

cospectral. As before we write down the probability transition matrices, which are as
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×(k + 1) ×(k + 1)

k k k k

k k

k + 1

k + 1

k + 1

1

k
2

k k

k + 1

k + 1

k + 1

1

Fig. 4.3. A pair of cospectral graphs, one a subgraph of the other, and their coalescing

follows:



0 1
2

1
2 0 0 0

1
2 0 0 1

2 0 0
1
2 0 0 1

2k+2
k

2k+2 0

0 1
2

1
2k+2 0 0 k

2k+2

0 0 1
k+1 0 0 k

k+1

0 0 0 1
k+1

k
k+1 0







0 1
2

1
2 0 0 0

1
2 0 0 1

2 0 0
1
2 0 0 1

2k+2
k

2k+2 0

0 1
2

1
2k+2 0 0 k

2k+2

0 1 0 0 0

0 0 1 0 0




The characteristic polynomial for both of these matrices is

x6 − 7k2 + 10k + 4

4(k + 1)2
x4 +

k(13k + 8)

16(k + 1)2
x2 − k2

16(k + 1)2
.

Thus these graphs are also cospectral.

5. Concluding remarks. In this paper we have looked at how we can use the

properties of scaling and twins in graphs to produce some examples of cospectral
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graphs. In particular, we have seen ways to construct cospectral graphs with differing

number of edges for the normalized Laplacian matrix.

While this covers many basic and beautiful cases, there are still many pairs of

graphs which are known to be cospectral but for which no current explanation is

known (beyond coincidence). Further progress in understanding these structures will

be interesting. One special case that warrants further exploration is when a graph

is cospectral with its subgraph. The examples given here show that we can pull out

“most” of the edges of a special graph and not change the spectrum. However in all

known cases when a graph is cospectral with a subgraph, the graph that is pulled out

is a bipartite graph. It would be interesting to find a graph that is cospectral with

its subgraph when we pull out a non-bipartite graph or show no such pairing exists.

As noted in the table at the beginning we cannot form graphs which are cospectral

for the adjacency matrix and have differing number of edges. We can however still

coalesce twin vertices, so the obstacle for the approach outlined here is in the scaling.

In particular for the adjacency matrix the graph αG is not cospectral with G, but

rather the eigenvalues all scale by α. This suggests a new notion, namely we say

that G and H are α-cospectral with respect to the adjacency matrix if there is some

α > 0 so that the eigenvalues of H , counting multiplicity, is obtained by scaling each

of the eigenvalues of G by the value α. With this convention it can be shown that

the construction of bipartite graphs in Section 2 produce α-cospectral graphs.

By computer experiment, most small graphs which are α-cospectral with respect

to the adjacency matrix tend to have twin vertices, and as a result tend to have 0

as an eigenvalue, often with high multiplicity. However this is not required, and in

Figure 5.1 we give an example of two graphs which are α-cospectral with respect

to the adjacency matrix but have no eigenvalue of 0. (The spectrum for the graph

on the left is −
√
2
(4)

,
√
2
(4)

,±1 ±
√
3 while the spectrum for the graph on the right

is −1(4), 1(4),±
√
2±

√
3 where exponents indicate multiplicity; in this case we have

α =
√
2.) It would be interesting to understand some other constructions of α-

cospectral graphs as well as a more general theory about what α-cospectral graphs

have in common.

Fig. 5.1. An example of a pair of α-cospectral graphs
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