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Abstract. Given a strongly connected directed graph D, let SD denote the set of all stochastic

matrices whose directed graph is a spanning subgraph of D. We consider the problem of completely

describing the set of stationary vectors of irreducible members of SD . Results from the area of convex

polytopes and an association of each matrix with an undirected bipartite graph are used to derive

conditions which must be satisfied by a positive probability vector x in order for it to be admissible

as a stationary vector of some matrix in SD . Given some admissible vector x, the set of matrices in

SD that possess x as a stationary vector is also characterised.
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1. Introduction. Let A be an n×n irreducible stochastic matrix, and let D(A)

denote the directed graph of A; that is, the graph on vertices labelled 1, . . . , n, such

that (i, j) is an arc inD(A) if and only if aij > 0. By the well-known Perron-Frobenius

theorem (see [20, Section 1.1]), there exists a strictly positive left eigenvector of A

corresponding to the Perron value 1, which, when normalised so that the entries sum

to 1, is referred to as the stationary vector of A.

It is well-known that the structure of the directed graphD(A) can provide qualita-

tive information about the associated matrix; for example, A is an irreducible matrix

if and only if D(A) is strongly connected (i.e. for any pair of distinct vertices i, j there

exists a path from i to j in D(A)). It is a frequently seen strategy within the fields of

linear algebra and matrix theory to consider the effect or influence of a combinatorial

property of a matrix on other analytic or algebraic properties of the matrix. In this

paper, we investigate the influence of the directed graph on the stationary vector of

a matrix.
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In particular, we are interested in the following problem: given a strongly con-

nected directed graph D, let SD denote the set of all stochastic matrices whose di-

rected graphs are spanning subgraphs of D; that is,

SD = {A ∈ R
n×n | A ≥ 0, A1 = 1, and D(A) ⊆ D}.

Can we describe the set of all possible stationary vectors of irreducible matrices in

SD? Furthermore, supposing that x is some admissible stationary vector of an irre-

ducible matrix in SD, we aim to characterise the set of matrices in SD possessing x

as a stationary vector. Our principal goal in this paper is to provide a theoretical

characterisation, while an exploration of possible implementations is carried out in

Section 5. Though we indicate that these methods can be computationally costly for

large or dense directed graphs, the example discussed in Section 6 emphasises the fact

that there are many small-scale cases of practical interest that can be analysed using

the results in this paper.

Stochastic matrices are central to the theory of finite homogeneous Markov chains,

which are used to model a wide range of dynamic systems, such as levels of vehicle

traffic or pollution in urban road networks (see [10] and [9], respectively), and popu-

lation management in mathematical ecology ([6]). In each of these applications, the

stationary vector represents some key feature of the system by cataloguing its long-

term behaviour. In the case that the transition matrix A is primitive, the iterates of

the Markov chain converge to the stationary distribution vector, independent of the

initial distribution. In this way, the ith entry of the stationary vector represents the

long-term probability that the Markov chain is in the ith state.

The main motivation for this work is the fact that many real-world systems are

governed by an underlying directed graph that dictates which transitions between

states are permitted. For example, the transition matrix of a Markov chain modelling

vehicle traffic is constrained by the given road network, which determines the tran-

sitions between states (road segments) that are possible in one time-step. The set

SD represents the set of all possible transition matrices of a Markov chain modelling

such a system, and so a solution to the problem posed above will lend itself to the

design of a Markov chain which simultaneously respects this given directed graph,

and achieves some desirable stationary distribution. This, then, provides an indica-

tion of how to control or influence the modelled system so that it has some desirable

long-term behaviour.

There is an existing body of work motivated by this observation that real-world

systems are often constrained by a given directed graph. This research centres around

finding the range of possible values of some parameter of an associated Markov chain,

as we range over the matrices in SD. For example, [16] investigates the minimum rate

of convergence of a Markov chain with directed graph D (as measured by a certain
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coefficient of ergodicity) where the minimum is taken over all irreducible matrices in

SD, and [15] investigates the minimum value of the Kemeny constant over the set SD.

More relevant to our work in this paper is [17], which examines the minimum value

of

||x||∞ := max{x1, . . . , xn},

where x = [x1 . . . xn]
T denotes the stationary vector as we range over the matrices in

SD. In the words of the author, “this problem can be thought of as a ‘load balancing’

problem, in the sense that we seek to make the maximum entry in the stationary

distribution vector as small as possible, subject to the constraint that the directed

graph of the corresponding transition matrix is a spanning subgraph of D.” This

provides another way of viewing the long-run behaviour of a dynamical system and

influencing the system in some way so that some desirable stationary distribution is

achieved.

There are many other approaches to the analysis of admissible stationary vectors

of matrices whose entries are permitted to vary to some degree, and it is a widely

researched area because of the potential applications. One notable branch of such

research is the concept of condition numbers (see [7]), which provide a measure of

the change in the stationary vector when the transition matrix is perturbed. While

technically related to our work, this approach lends itself more to applications in

which we want to quantify the influence of small errors in the transition matrix on

results found via the stationary vector.

Finally, we recall the Markov chain matrix tree theorem [11], which provides

solutions for the entries of the stationary vector based on combinatorial properties of

the directed graph of the matrix in question. While this result is certainly aligned

with the approach we wish to take, we see no obvious way that this result may be

implemented in such a way as to account for arbitrary changes in the positive entries

of the transition matrix in question.

We remark that the results in this paper have applications beyond stochastic

matrices and the Markov chains they represent. We observe that to any nonnegative

irreducible matrix M we may associate an irreducible stochastic matrix as follows:

Let ρ(M) denote the Perron value of A, and let u and v be right and left Perron

vectors of M , respectively, normalised so that vTu = 1. Letting U denote a diagonal

matrix whose ith diagonal entry is ui, we see that

A :=
1

ρ(M)
U−1MU (1.1)

is both irreducible and stochastic, and, most importantly, the directed graphs of A

and M coincide. Furthermore, the stationary vector x of A is equal to Uv, so that
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xi = uivi, for i = 1, . . . , n. It is known that for each i, uivi is the derivative of

ρ(M) with respect to the ith diagonal entry of M . We will demonstrate this kind of

application in Section 6, where we use our results to examine the sustainability of the

North Atlantic right whale population.

In the following sections, we freely use common concepts from the areas of com-

binatorial matrix theory and finite Markov chains. We refer the interested reader to

[4] and [20] for background on these topics.

2. Preliminary Observations. Let A ∈ SD, and suppose that xTA = xT ,

for some x ∈ R
n
+, such that xT1 = 1, where 1 denotes the vector of all ones. Set

X := diag(x), the diagonal matrix with the entries of x along the diagonal, and

consider the matrix B := XA. Notice that

B1 = x and 1TB = xT . (2.1)

In this way, we see that a positive probability vector x is admissible as a stationary

vector for an irreducible A ∈ SD if and only if there exists a nonnegative irreducible

matrix B, respecting the directed graph D, such that (2.1) holds.

Our approach will be to assume that x = [x1 . . . xn]
T is some admissible vector

(i.e. that there exists some fixed A ∈ SD such that xTA = xT ) and we consider the

equations in (2.1) as a linear system in the entries of B that are nonzero. These are

known from the zero pattern of the matrix A, and we note that bij > 0 only if (i, j)

is an arc in D. We will show that in the case that the bipartite graph of B is acyclic,

solutions may be found to these ‘variables’ in terms of the entries of x – i.e. each

bij may be written as an expression in x1, . . . , xn. Then, since bij > 0, we achieve

an inequality condition on x which must be satisfied in order for x to be admissible.

Notice that this approach also allows us to construct the matrix B satisfying (2.1) for

our chosen x, and hence a matrix A ∈ SD possessing x as a stationary vector.

It is evident from (2.1) that the matrix B is a member of the symmetric trans-

portation polytope T (x) – defined as the set of nonnegative matrices whose row and

column sum vectors are both equal to x. Note that the action A→ XA was observed

in [13] to act as a bijection between the convex set

Sn(x) := {A ∈ R
n×n | A ≥ 0, A1 = 1, and xTA = xT }

and T (x), when x ∈ R
n
+. We will use techniques from the areas of convex sets and

transportation polytopes to generalise our approach beyond matrices whose bipartite

graphs are acyclic. Note that similar techniques were used in [12] to determine the

class of stochastic matrices having a common left fixed vector.

Due to the preliminary description of our approach as determining information

about the class of matrices B with a “given” row and column sum vector x, it is
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not surprising that some of the results in the next section are similar to those in the

literature on transportation problems. However, we emphasise that our question, as

stated, is motivated in the opposite way to those problems discussed in this linear

programming question. In particular, the traditional approach there has been to

choose certain row and column sum vectors, and attempt to describe the combinatorial

properties of the class of matrices with those sum vectors. Our aim, however, is to

investigate how a combinatorial property of a matrix (in particular, the zero pattern,

or associated directed graph) affects the range of possible vectors that can be both

the row and column sum vector. While very different in spirit, some of the mechanics

of dealing with these questions at the small-scale remain the same, and we refer the

interested reader to [2] and [8].

Remark 2.1. We note that in the definition of Sn(x) above, we have not

excluded the possibility that a matrix A satisfying xTA = xT may be reducible. In

general, since our set SD contains both reducible and irreducible matrices, we will

make no distinction between x being a stationary vector of a matrix A, or simply a

left fixed vector, which will allow the possibility that A is reducible. Relaxing the

constraint in this way will allow us to compute the conditions that are required for x

to be the left fixed vector of any matrix in SD, and in Section 4 we discuss the stricter

conditions under which this matrix will be irreducible.

3. The Bipartite Graph. Let A ∈ SD and let x be some positive probability

vector, and suppose that xTA = xT . As before, set X := diag(x) and B := XA. In

this section we describe the role of the bipartite graph of B in examining the linear

system in (2.1).

Definition 3.1. Let A = [aij ] be an n × n matrix. The bipartite graph of

A, denoted B(A), is the undirected graph with vertex set {r1, . . . , rn} ∪ {c1, . . . , cn},

where ri is adjacent to cj if and only if aij 6= 0. The ri are called the row vertices and

the cj the column vertices. For a directed graph D, we let B(D) denote the bipartite

graph of the adjacency matrix of D.

Definition 3.2. Let G be an undirected graph with vertices v1, . . . , vn and

edges e1, . . . , em. The vertex-edge incidence matrix of G is the n×m matrix M such

that

mij =

{
1, if vi is incident to ej ;

0, otherwise.

Consider the bipartite graph B(B) (which is equal to B(A)) with row vertices

r1, . . . , rn and column vertices c1, . . . , cn. Let ω(·) denote the weight of an edge or a
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vertex, and set

ω(ricj) := bij .

Suppose we also weight the row vertices so that ω(ri) := xi, for i = 1, . . . , n. Then the

row sums of B (given by B1 = x) are evident from the bigraph in that each equation

in B1 = x,

xi =

n∑

j=1

bij ,

is given by

ω(ri) =

n∑

j=1

ω(ricj). (3.1)

Similarly, by weighting the column vertices, the column sums 1TB = xT are also im-

mediately evident from the bipartite graph. This results in the following proposition.

Proposition 3.3. Let B be an n×n matrix with bigraph B(B), and let x ∈ R
n
+.

The coefficient matrix of the linear system obtained from the equations

B1 = x, 1TB = xT

is equal to the vertex-edge incidence matrix of B(B).

This correspondence will be used to determine the conditions on x that ensure x

is admissible as a left fixed vector of some matrix A ∈ SD. We will also see that it is

useful when the bipartite graph B(A) is a forest (that is, acyclic); in particular, the

incidence matrix has full column rank when B(A) is a forest, while this is not true

in general. However, we show now that it is in fact enough to consider only cases in

which the bipartite graph is a forest.

Proposition 3.4. Suppose that x ∈ R
n
+ and xTA = xT for some A ∈ SD. Then

there exists Ã ∈ SD such that xT Ã = xT , and the bipartite graph of Ã is a forest with

no isolated vertices.

Proof. Let x ∈ R
n
+, and suppose A ∈ SD such that xTA = xT . Then A ∈ Sn(x)

(defined in Section 2), which is a convex polytope, and thus A may be written as a

convex combination of the extreme points of Sn(x):

A = λ1A1 + λ2A2 + . . .+ λmAm, some m,

where λi > 0 and
∑

i λi = 1. Of course, xTAi = xT for each i, and B(Ai) ⊆ B(A), so

Ai ∈ SD for each i.
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It is proven in [18] that a matrix M ∈ T (x) is an extreme point if and only if the

bipartite graph of M is a forest with no isolated vertices. Since the bijection

Sn(x)←→ T (x)

A←→ XA

described in [13] (and referenced above) preserves the extreme points of the polytope

and does not affect the bipartite graph, we conclude that B(Ai) is a forest with no

isolated vertices, for each i.

Remark 3.5. For the remainder of this section, we operate under the as-

sumption that the bipartite graph B(D) is a forest. If not, then it follows from the

above that we may consider each spanning subgraph F of B(D) which is a forest, and

find the corresponding conditions that ensure x is a left fixed vector of some matrix

Â ∈ SD whose bigraph is this F . Then for any A ∈ SD such that

A = λ1A1 + . . .+ λmAm, (3.2)

where B(Ai) = Fi, some spanning forest Fi ⊂ B(D), xTA = xT if and only if x

satisfies the conditions of each Fi.

Note that with regard to the characterisation of the set of matrices possessing x

as a stationary vector, this result implies that for every forest Fi ⊂ B(D) of which x

satisfies the conditions, we can construct the matrix Ai such that xTAi = xT , and

B(Ai) = Fi. These matrices Ai are then the extreme points of the convex polytope

of matrices possessing x as a left fixed vector, and every such matrix is of the form

(3.2).

We now consider the rank of the linear system (2.1) through the correspondence

with the incidence matrix of the bipartite graph.

Proposition 3.6. Given a tree T , there exists an ordering of the vertices and

edges of T such that when the vertex-edge incidence matrix M is obtained with respect

to this order, mij = 0 whenever j > i, and mij = 1 for i = j.

Proof. We use induction on the order of T . For the base case, suppose that

|T | = 2. The reader may easily satisfy himself that the hypothesis holds for the

incidence matrix of such a tree.

Suppose now that the induction hypothesis holds for all trees T , |T | < m, and

consider a tree T withm vertices, of which k are pendent vertices. Label the k pendent

vertices as v1, . . . , vk in any order, and let e(i) denote the pendent edge incident to

vi. Then delete these edges and vertices. By induction there exists some method

of ordering the remaining vertices so that according to this order, the vertex-edge
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incidence matrix is

M =

[
Ik O

M21 M ′

]

where M21 is some (0, 1)-matrix and O is the zero matrix, both of appropriate di-

mension, while Ik is the k × k identity matrix, and M ′ is an (m − k) × (m − k − 1)

incidence matrix of the smaller tree T ′ obtained by the removal of the pendent vertices

and edges from T . By induction, M ′ satisfies the condition stated in the proposition

and thus the proposition holds for all trees.

Corollary 3.7. The vertex-edge incidence matrix of a forest F with no isolated

vertices has full column rank.

Proof. For a forest with r components, we may order the vertices and edges of

each component according to Proposition 3.6, and list these sequentially so that the

incidence matrix M of F is a block matrix with rectangular blocks representing the

components of F , and zeros elsewhere; i.e.

M =




C1 O . . . O

O C2 . . . O

...
...

. . .
...

O O . . . Cr




. (3.3)

Since each submatrix Ci has full column rank by Proposition 3.6, it follows that M

has full column rank.

Note that Proposition 3.6 and Corollary 3.7 are well-known results in the litera-

ture; see for example, [1, Lemma 2.17]. These results, coupled with Proposition 3.4,

demonstrate that when B(B) is a forest, there are unique solutions for the weights

bij in terms of the vector entries xk, assuming (as we may) that the linear system is

consistent. In order to find these solutions, and the conditions required on x that give

a nonnegative solution to the linear system, we bring the augmented matrix for the

linear system to row echelon form. The entries in the augmented column will then

be linear combinations of x1, . . . , xn, while there will be some nonzero rows and some

zero rows in the coefficient matrix of the system. The augmented entries correspond-

ing to the nonzero rows will determine the inequality conditions described before,

and the entries in the augmented column that correspond to zero rows produce extra

conditions on x. There will be one zero row in each rectangular block of the matrix

(3.3), indicating that these extra conditions are derived from the component structure

of B(A). The following proposition describes these conditions, which we will refer to

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 28, pp. 25-53, April 2015



ELA

Stationary vectors of stochastic matrices 33

as component conditions.

Proposition 3.8. Given a directed graph D, let A ∈ SD and let x ∈ R
n
+ such

that xTA = xT . For each component C of B(A),
∑

ri∈C

xi =
∑

cj∈C

xj . (3.4)

Proof. It is easily seen that if v is a left null vector of an incidence matrix M ,

then if vertex i is adjacent to vertex j,

vi + vj = 0.

From this, it is not difficult to show that the left null space of M is spanned by vectors

vC , where, for each component C of the graph represented by M :

[vC ]j =





1, if j corresponds to a row vertex in C;

−1, if j corresponds to a column vertex in C;

0, otherwise.

Letting M be the incidence matrix of B(D) and considering the vectors vC which

span its null space, we have, for each component C

vTC x̂ = 0

where x̂ is the (doubled) vector of vertex weights in the appropriate order. The

component conditions (3.4) follow.

We now consider a method for finding the unique solutions to the unknown matrix

entries bij .

From the linear system, we have that

xi =
∑

j

bij and xi =
∑

k

bki.

Suppose we are looking for the weight bij of a particular edge ricj in terms of the xi.

Then

bij = xi −
∑

k 6=j

bik (3.5)

= xj −
∑

k 6=i

bkj

Thus an expression can be given of the weight of an edge e in terms of the xi when the

expressions of the weights of all of the other edges incident to either the row vertex

or the column vertex of e are known.
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Now, the weight of a pendent edge, say ricj , is immediately determined by the

pendent vertex to which it is incident; that is, bij = xi if deg(ri) = 1 (similarly,

bij = xj if deg(cj) = 1). Referring to the edge ordering in Proposition 3.6, note that

the weight of the edge ek may be written in terms of the edges ei, where i < k. Thus

using (3.5) we may solve inductively for the weights of all edges of F .

We can also give a formula for computing the weight of any edge ricj of F .

Proposition 3.9. Let F be a forest, x ∈ R
n
+, and suppose that B is an n × n

matrix such that B(B) = F and B1 = x, 1TB = xT . Then the solution for the

unknown entry bij := ω(ricj) may be determined directly from F as follows:

Let Cr denote the component of F \ {ricj} containing ri, and Cc the component

of F \{ricj} containing cj, and let V (Cr), V (Cc) denote the vertex sets of Cr and Cc,

respectively. Then

ω(ricj) =
∑

rk∈V (Cr)

xk −
∑

cl∈V (Cr)

xl, (3.6)

or, equivalently,

ω(ricj) =
∑

ck∈V (Cc)

xk −
∑

rl∈V (Cc)

xl. (3.7)

Proof. First of all, note that the equivalence of these two expressions follows from

Proposition 3.8, since V (Cr) ∪ V (Cc) determines a single component of F (the one

containing the edge ricj), and equating these expressions gives us the corresponding

component condition as in (3.4).

To prove these solutions, we will use the induction alluded to above. For the base

case, suppose that ricj is a pendent edge, and, without loss of generality, suppose

that ri is the pendent vertex. Then V (Cr) = {ri}, and

ω(ricj) = xi,

and the hypothesis holds.

Now fix ricj ∈ F . We assume that the weight of every other edge incident to

ri is known, and is computed according to the induction hypothesis. That is, let

ricj1 , ricj2 , . . . ricjs denote the relevant edges, and let Cα denote the component of

F \ {ricjα} that contains cjα , for each α = 1, . . . , s. Then

ω(ricjα) =
∑

ck∈V (Cα)

xk −
∑

rl∈V (Cα)

xl.
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Notice that the vertex set of the component Cr of F \ {ricj} that contains ri is

equal to

V (C1) ∪ V (C2) ∪ · · · ∪ V (Cs) ∪ {ri}.

From (3.5),

ω(ricj) = xi −
∑

k 6=j

bik

= xi −
s∑

α=1

ω(ricjα)

= xi −

s∑

α=1


 ∑

ck∈V (Cα)

xk −
∑

rl∈V (Cα)

xl




=
∑

rl∈V (Cr)

xl −
∑

ck∈V (Cr)

xk.

We note that the inductive method is more straightforward for finding the weights

of every edge in the bipartite graph, while Proposition 3.9 gives a concise formula

which may be more appropriate when the weight of a single edge is required.

We summarise the results of this section with the following theorem:

Theorem 3.10. Let D be a strongly connected directed graph, B(D) its bipartite

graph, and let x ∈ R
n. Then x is a left fixed vector of some A ∈ SD if and only if

there is a spanning forest F of B(D) with no isolated vertices, such that:

(a) the component condition (3.4) holds for each component C of F ;

(b) for each edge ricj of F , the weight w(ricj) as computed in (3.6) and (3.7) is

positive.

Remark 3.11. We emphasise that in the statement of the above theorem, we

say that given any vector in R
n (not necessarily positive) that satisfies the conditions

in Propositions 3.8 and 3.9, it must then be a positive left fixed vector of a matrix

in SD. This is as a result of the inductive method of determining the weights - if the

weight of a pendent edge is positive, this ensures the positivity of a single entry of x,

and using (3.5), positivity of the whole vector follows.

If we are only interested in probability vectors, then we must include the condition

that x1 + x2 + . . .+ xn = 1.

Remark 3.12. An alternative formulation of the conditions in Theorem 3.10

can be found in a paper of Brualdi [3]. In this article, the author discusses the more

general set P(R,S) of matrices with a given zero pattern P, row sum vector R, and
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column sum vector S. What we have named component conditions in this special case

are accounted for in the author’s assumption of nondecomposability, and our edge-

weight conditions can be seen to be equivalent to his characterisation of a necessary

and sufficient condition for P(R,S) to be nonempty [3, Theorem 2.1], when P is the

zero pattern of a matrix whose bipartite graph is a forest.

Notable differences between the approaches include Brualdi’s investigation of the

more general transportation polytope, while we focus on the symmetric case (i.e.

R = S) since the basis of our discussion is concerned with stationary vectors of

stochastic matrices. We observe that the strength of our approach rests on Remark

3.5, as we succeed in completely characterising the set of all matrices with a given

row and column sum vector, while [3] gives a construction of one matrix in the class

on the condition that the row and column sums are rational, along with a method

for constructing a new matrix in the class from one that is known. Additionally, by

focusing only on matrices in the class whose bipartite graphs are forests, we reduce

the complexity of the graph before performing the analysis, meaning that we can

present fewer, and more explicit conditions.

Finally, we note that Brualdi’s result gives a condition for the existence of a matrix

with precisely the given graph and desired row/column sums, while our approach

allows for solutions with edges of the original graph being absent. The difference in

intention is key here; our original problem is posed because of the applications of

Markov chain theory, and it is natural in some of these settings, e.g. the closing of

some roads in a road network-type example.

Example 3.13.

r1

r2

r3

r4

r5

r6

c1

c2

c3

c4

c5

c6

Fig. 3.1: B(D)
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Consider the bipartite graph B(D) shown in Figure 3.1. We first note that it is a

forest of two components, imposing the condition

x1 + x3 + x4 = x2 + x5 (3.8)

on any left fixed vector x of a matrix in SD. We refer to the component with darker

edges in Fig. 3.1 as Component 1, and the other as Component 2.

The conditions derived as the weights of the edges are as follows:

• Component 1:

ω(r1c2) = x1

ω(r4c5) = x4

ω(r3c2) = x2 − x1

ω(r3c5) = x5 − x4

• Component 2:

ω(r2c1) = x1

ω(r5c6) = x6

ω(r6c4) = x6

ω(r5c3) = x5 − x6

ω(r2c4) = x4 − x6

ω(r2c3) = x2 − x4 + x6 − x1

We have presented these in the order described in Proposition 3.6, so that the

reader may see more clearly the inductive method described above. For example, the

weight of r2c3 is determined by assuming that those before it in the order are known,

as follows:

ω(r2) = ω(r2c1) + ω(r2c3) + ω(r2c4)

⇒ ω(r2c3) = ω(r2)− ω(r2c1)− ω(r2c4)

= x2 − x1 − (x4 − x6). (3.9)

To illustrate the equivalence of the method in Proposition 3.9, suppose we remove

r2c3 from B(D). The corresponding “row component” Cr is the induced subgraph

with vertex set {r2, r6, c1, c4}, and the “column component” Cc is induced by the

vertex set {r5, c3, c6}. Thus

ω(r2c3) = x2 + x6 − x1 − x4

or ω(r2c3) = x3 + x6 − x5
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which are equivalent to each other by (3.8), and also to the expression obtained in

(3.9).

Consider

xT =
[
0.1 0.2 0.225 0.125 0.25 0.1

]
.

It may be verified that x satisfies the conditions derived from B(D), and thus

there exists A ∈ SD such that xTA = xT . But since bij = ω(ricj), we can compute

the matrix B to be

B =




0 0.1 0 0 0 0

0.1 0 0.075 0.025 0 0

0 0.1 0 0 0.125 0

0 0 0 0 0.125 0

0 0 0.15 0 0 0.1

0 0 0 0.1 0 0




and thus

A = X−1B

=




0 1 0 0 0 0

0.5 0 0.375 0.125 0 0

0 0.444 0 0 0.556 0

0 0 0 0 1 0

0 0 0.6 0 0 0.4

0 0 0 1 0 0



.

Remark 3.14. While Proposition 3.9 is an interesting result, and reinforces the

importance of the bipartite graph in this problem, there are certainly computationally

simpler methods by which the edge-weight conditions may be found. In particular,

we may do the following: the incidence matrix of the bigraph (or coefficient matrix

of the system) may be decomposed according to the components of B(B), so that

M =




C1 O . . . O

O C2 . . . O

...
...

. . .
...

O O . . . Cr




.

As remarked before, this matrix in row echelon form has r zero rows, while the rest

are nonzero. Deleting those zero rows results in an invertible matrix, M̂ . Suppose a
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


r1c2 r4c5 r3c2 r3c5 r2c1 r5c6 r6c4 r5c3 r2c4 r2c3

r1 1 0 0 0

r4 0 1 0 0

c2 1 0 1 0

c5 0 1 0 1

r3 0 0 1 1

c1 1 0 0 0 0 0

c6 0 1 0 0 0 0

r6 0 0 1 0 0 0

r5 0 1 0 1 0 0

c4 0 0 1 0 1 0

c3 0 0 0 1 0 1

r2 1 0 0 0 1 1




(a) The incidence matrix M of B(D) from Example 3.13.




r1 r4 c2 c5 c1 c6 r6 r5 c4 c3

r1c2 1 0 0 0

r4c5 0 1 0 0

r3c2 −1 0 1 0

r3c5 0 −1 0 1

r2c1 1 0 0 0 0 0

r5c6 0 1 0 0 0 0

r6c4 0 0 1 0 0 0

r5c3 0 −1 0 1 0 0

r2c4 0 0 −1 0 1 0

r2c3 0 1 0 −1 0 1




(b) The inverse of the truncated incidence matrix, M̂−1.

M̂−1 ·




x1

x4

x2

x5

x1

x6

x6

x5

x4

x3




=




x1

x4

x2 − x1

x5 − x4

x1

x6

x6

x5 − x6

x4 − x6

x3 − x5 + x6




=




ω(r1c2)

ω(r4c5)

ω(r3c2)

ω(r3c5)

ω(r2c1)

ω(r5c6)

ω(r6c4)

ω(r5c3)

ω(r2c4)

ω(r2c3)




(c) The vector M̂
−1

· x̂ displaying the edge-weight conditions as they would be produced

using Prop. 3.9.

Fig. 3.2: Application of Remark 3.14 to Example 3.13
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new vector x̂ of length 2n− r is constructed from x so that the weights xi appear in

an order corresponding to the vertex order with respect to which M is written, and

entries that correspond to deleted rows are deleted. It is evident that the product of

the ith row of M̂−1 with x̂ is the weight of the ith edge. Thus the inverse matrix M̂−1

is all that is necessary to determine the weights of the edges, bij .

Let us illustrate using Example 3.13. The incidence matrix for the bipartite graph

in Fig. 3.1, written with respect to the order described in Prop. 3.6, is the one shown in

Fig. 3.2a (where the blank entries in the off-diagonal blocks are zero). If we delete the

rows corresponding to the vertices r3 and r2 (one from each component), and invert

the resulting matrix, we obtain the matrix M̂−1 shown in Fig. 3.2b. Constructing

the vector x̂ according to our description above and multiplying by M̂−1 results in

the vector of edge-weight conditions displayed in Fig. 3.2c, which is identical to the

set of conditions derived from the bipartite graph B(D) shown in Fig. 3.1.

We remark that this example also demonstrates that when computing the edge

weights it is sufficient to consider each component (and its vertex-edge incidence

matrix) individually - an observation we will make use of when discussing the imple-

mentation of our results.

Remark 3.15. We note with regard to Example 3.13 that once the weight

of each edge in B(D) was found, the set of conditions derived from each spanning

forest F ⊂ B(D) would be easily achieved, since if e ∈ B(D) is not an edge of F , we

simply have ω(e) = 0. Although we observed early in this section that when B(D) is

not acyclic it is enough to find conditions from any spanning forest of B(D), we now

conclude that we may consider only edge-maximal forests, and relax the positivity

constraint of the edge weights, insisting only that for each i, there exists some j such

that ω(ricj) > 0. This is to ensure that the bipartite graph has no isolated vertices,

and hence the resulting matrix – of which x is a left fixed vector – has no zero rows

or columns.

4. Determining stationary vectors of irreducible matrices. Thus far, we

have derived conditions by which we may determine all left fixed vectors of matrices

in SD, which may be reducible. Recall that a matrix A is reducible if there exists a

permutation matrix P such that

PAPT =

[
A1 O

A21 A2

]
. (4.1)

In this section we determine the conditions under which x is the stationary vector of

an irreducible matrix in SD, and the conditions under which it is a left fixed vector of

only reducible members of SD. First, we determine a relationship between a reducible
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matrix and its bipartite graph.

Definition 4.1. Let G be a bipartite graph with vertex set {r1, . . . , rn} ∪

{c1, . . . , cn}, and let Ĝ be an induced subgraph of G. We say that Ĝ is a balanced

subgraph of G if Ĝ has no isolated vertices, and ri ∈ Ĝ⇔ ci ∈ Ĝ.

Given this definition, we have the following characterisation of reducible matrices

in terms of their bipartite graphs: an n× n matrix A is reducible if and only if there

exists a balanced subgraph B̂ ⊂ B(A) such that each row vertex of B̂ is adjacent only

to column vertices of B̂; that is, there is no edge incident to a row vertex of B̂ that is

not in the edge set of B̂.

We now observe the following relationship between certain edges in the bipartite

graph, or certain entries of the matrix B = XA.

Proposition 4.2. Let B be an n × n matrix and x ∈ R
n
+ such that 1TB = xT

and B1 = x. Then if for some permutation matrix P ,

PBPT =

[
B1 B12

B21 B2

]

where B1, B2 are square submatrices, the sum of the entries in the submatrix B12 is

equal to the sum of entries in B21.

Proof. Suppose that B1 is a k × k submatrix. Since the sum of the first k rows

and the sum of the first k columns of PBPT are equal, it follows that the sums of

the entries in B12 and the entries in B21 must be equal.

Corollary 4.3. Given a directed graph D, let x be a positive vector such that

xTA = xT for some A ∈ SD. Then A is reducible if and only if there exists a

permutation matrix P such that

PAPT =

[
A1 O

O A2

]
.

Equivalently, A is reducible if and only if B(A) is the disjoint union of two balanced

subgraphs of B(D).

In this way, we have established that x is the left fixed vector of a reducible matrix

in SD if and only if it satisfies the component and edge-weight conditions derived from

a spanning forest of B(D) that is a disjoint union of two balanced subgraphs.

Example 4.4. The bipartite graph B(D) of Example 3.13 (see Fig. 3.1) admits

the two subgraphs shown in Fig. 4.1, each of which is a disjoint union of two balanced

subgraphs. We note that B(D) does not admit any other such subgraphs – i.e. any
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r1

r2

r3

r4

r5

r6

c1

c2

c3

c4

c5

c6
B1

r1

r2

r3

r4

r5

r6

c1

c2

c3

c4

c5

c6
B2

Fig. 4.1: Two spanning subgraphs of B(D) representing reducible matrices in SD

reducible matrix in SD with a positive left fixed vector must have one of these graphs

in Fig. 4.1 as its bipartite graph.

In the case of B1, reducibility is achieved when r2c3, r2c4 and r3c2 are absent

from the graph of B(D) – i.e. ω(r2c3) = ω(r2c4) = ω(r3c2) = 0. Similarly, a matrix

A ∈ SD with left fixed vector x has bipartite graph B2 if and only if ω(r2c4) =

ω(r3c5) = ω(r5c3) = 0.

Suppose now that x ∈ R
n
+ is a left fixed vector of some matrix A ∈ SD. Then A

is reducible if and only if x satisfies each of

x2 − x1 = 0

x3 − x5 + x6 = 0

x4 − x6 = 0

or each of

x4 − x6 = 0

x5 − x4 = 0

x5 − x6 = 0.

Given a directed graph D such that B(D) is as in Fig. 3.1, and some x that is

a left fixed vector of a matrix in SD (i.e. x is known to satisfy the conditions of
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Theorem 3.10), we can say that x is in fact a stationary vector if and only if at least

one expression from each group above is positive. Alternatively (in this case), x is

a stationary vector if the forest whose conditions are satisfied by x as per Theorem

3.10 is B(D) itself, since B(D) contains no other spanning subgraphs with no isolated

vertices that are not equivalent to those shown in Fig. 4.1 (via Proposition 4.2).

Remark 4.5. As the preceding example suggests, a precise description of

the set of positive vectors that serve as the stationary vectors for some irreducible

member of SD will, in general, be quite involved, particularly when B(D) is not

acyclic. Consequently, we will not pursue that problem further here. However, as the

following result shows, any stationary vector associated with an irreducible member

of SD can be approximated arbitrarily closely by vectors satisfying the conditions of

Theorem 3.10.

Proposition 4.6. Given a strongly connected directed graph D, the set of all

positive left fixed vectors of matrices in SD is the topological closure of the set of

stationary distributions of irreducible members of SD.

Proof.

Let A ∈ SD be reducible, and suppose, without loss of generality, that

A =

[
A1 O

O A2

]
, (4.2)

with A1, A2 irreducible, and that A has a positive left fixed probability vector

xT = [β1x
T
1 | β2x

T
2 ],

where xT
1 , x

T
2 are the stationary vectors of A1, A2 respectively, and 0 < β1, β2 < 1,

β1 + β2 = 1.

Consider the family of matrices defined as follows:

A′(ε, δ) =

[
A1 − εeie

T
j εeie

T
k

δere
T
s A2 − δere

T
t

]
, (4.3)

where ε, δ > 0, and where indices i, j, k, r, s, t are chosen appropriately; that is, in such

a way that the (i, j) entry of A1 and the (r, t) entry of A2 are both nonzero, and the

(i, k) or the (r, s) entry of the relevant off-diagonal block is one that corresponds to

an edge in D. In other words, this family of matrices A′(ε, δ) represent perturbations

of the matrix A that result in an irreducible matrix in SD.

We will show that there exists a sequence of matrices A′(ε, δ) such that the

stationary vectors converge to the left fixed vector x of A as ε → 0. To do this,
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we will describe the stationary vector of a matrix of the form (4.3) using stochastic

complementation, and then express δ in terms of ε in such a way as to achieve the

result. We give a brief overview of the theory of stochastic complementation here (see

[19] for a more in-depth discussion and rigorous proofs).

Suppose that we have an irreducible stochastic matrix A with stationary vector

x, so that

A =

[
A1 A12

A21 A2

]
.

Define

S1 := A1 +A12(I −A2)
−1A21;

S2 := A2 +A21(I −A1)
−1A12.

These are irreducible and stochastic. Let xi be the stationary distribution of Si; then

x =

[
a1x1

a2x2

]

where [a1 a2] is the stationary vector of the 2× 2 matrix

C =

[
xT
1 A11 xT

1 A121

xT
2 A211 xT

2 A21

]
. (4.4)

Applying this approach to the matrix in (4.3), we consider the stochastic com-

plement

S1 = (A1 − εeie
T
j ) + εeie

T
k (I −A2 + δere

T
t )

−1δere
T
s

= A1 − εeie
T
j + εeie

T
s ,

since S1 must be stochastic. We denote the stationary vector of S1 by z1. Similarly,

we compute the stochastic complement

S2 = A2 − δere
T
t + δere

T
k ,

and denote its stationary vector by z2. Note that z1 → x1 as ε→ 0, and z2 → x2 as

δ → 0, since A1 and A2 are both irreducible.

Now, the stationary vector of A′(ε, δ) may be written as

z(ε, δ)T = [α1z
T
1 | α2z

T
2 ]
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where [α1 α2] is the stationary vector of the 2 × 2 matrix computed as in (4.4); that

is,

α1 =
δz2(r)

εz1(i) + δz2(r)
;

α2 =
εz1(i)

εz1(i) + δz2(r)
,

where zj(k) denotes the kth entry of the vector zj . Choosing

δ :=
εβ1x1(i)

β2x2(r)

ensures that α1 → β1 and α2 → β2 as ε→ 0, and also that z2 → x2 as ε→ 0.

Thus given some reducible matrix A ∈ SD of the form (4.2), there exists an

irreducible A′ ∈ SD, dependent on some ε > 0, such that the stationary vector of A′

converges to the left fixed vector of A as ε→ 0.

Now suppose that A has k strong components, i.e.

A =




A1 O . . . O

O A2 . . . O
...

...
. . .

...

O O . . . Ak



, some k.

The argument presented above may be used as a technique to show that if x is a

left fixed vector of the matrix A with k strong components, then given ε > 0, there is

a matrix Â ∈ SD having k − 1 strong components and a left fixed vector x̂ such that

||x − x̂|| < ε. Iterating this argument yields an irreducible matrix A′ ∈ SD having

stationary vector y, such that

||x− y|| < (k − 1)ε.

Thus the set of all left fixed probability vectors of matrices in SD is the topological

closure of the set of all stationary vectors of irreducible matrices in SD.

5. Implementation. Given a directed graph D, our implementation centres

around finding the edge-maximal subforests of B(D) and the corresponding conditions

described in Propositions 3.8 and 3.9. Both tasks would require extensive time to do

by hand, and so it is preferable to use mathematical programming software such as

MATLAB instead. Since graphs are more difficult to deal with in such software, we

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 28, pp. 25-53, April 2015



ELA

46 J. Breen, S. Kirkland

rely on the linear algebraic approach outlined in Remark 3.14, where it was observed

that the edge-weight conditions can be found by inverting the truncated incidence

matrices of the maximal subforests.

The edge-maximal acyclic subgraphs of a connected component C of B(D) are

found by removing a single edge from each cycle in C. Any two trees obtained in

this way will differ from each other only in the choice of edge removed from each

cycle. This suggests that a possible update scheme may be useful, which deduces the

edge-weight conditions of one tree from a similar one.

An algorithm is provided in [21] that returns all spanning trees of a connected

graph. It achieves this by giving a ‘root tree’ and a series of edge exchanges, and the

results are ordered so that two adjacent trees in the sequence differ by the exchange

of exactly one edge. We can then use a formula found in [14] to compute the inverse

incidence matrix of one tree from that of another, when they differ by one edge. In

particular, for trees T1, T2 with M1,M2 denoting the truncated incidence matrices

(obtained with respect to the same order), we can write

M2 = M1 + yeTk ,

where y is equal to the kth column of M2 −M1. This amounts to replacing the kth

edge of T1 by some other edge. By [14, Section 0.7.4], if 1 + eTkM
−1
1 y 6= 0, then

M−1
2 = M−1

1 −
1

1 + eTkM
−1
1 y

M−1
1 yeTkM

−1
1 . (5.1)

Observation 5.1. We claim that the denominator of this fraction in (5.1),

1 + eTkM
−1
1 y, is equal to either ±1, simplifying the above expression. Our reasoning

for this is as follows:

• Each of M1, M2 can, by an appropriate permutation of rows and columns,

be brought to lower triangular form with 1s on the diagonal. Hence det(M1)

is either +1 or −1 (depending on the signs of the row and and column per-

mutations that bring it to triangular form), and similarly det(M2) is either

+1 or −1.

• Thus det(M−1
1 M2) is also either +1 or −1.

• We have M−1
1 M2 = I +M−1

1 yeTk , and it’s a straightforward exercise to show

that if u, v ∈ Rn, then det(I + uvT ) = 1 + vTu. Hence det(I +M−1
1 yeTk ) =

1 + eTkM
−1
1 y.

• Consequently we have

1 + eTkM
−1
1 y = det(I +M−1

1 yeTk )

= det(M−1
1 M2)

= ±1.
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In this way, (5.1) may be simplified to read:

M−1
2 = M−1

1 ±M−1
1 yeTkM

−1
1 . (5.2)

We may determine the circumstances under which we get +1 or −1 by determin-

ing the signs of the row and column permutations that bring M1 and M2 to lower

triangular form. Without loss of generality, assume that M1 is in lower triangular

form, and that M2 is formed by removing a column of M1 and replacing it with some

new column vector that represents the new edge. Assuming the resulting matrix is

no longer in lower triangular form, we know that it can be achieved by permuting the

rows and columns in such a way that the corresponding vertices and edges of T2 have

been re-ordered appropriately.

Recall, however, that a row (corresponding to some vertex v) has been deleted

from each of M1 and M2. For this reason, we describe a new method of ordering the

vertices and edges of T2, dependent on v, so that v arrives last in the vertex order

and the resulting incidence matrix satsifies the conditions of Proposition 3.6. This is

easily extended from the inductive method described in the proof of Proposition 3.6

by simply passing over v at each inductive step; i.e. if at some stage v is a pendent

vertex of T ′, we do not label it among the others that we add to the order and then

delete. The edge order is deduced from the vertex order by setting v as the source

vertex, and orienting (assigning direction to) each edge so that it points away from

v. Then e(i) is defined to be the edge pointing towards the ith vertex in the vertex

order.

To determine the signs of the row and column permutations required to bring

M2 to lower triangular form, we determine the number of edges in T2 that have a

different orientation than in T1. If no edges change orientation, then a simultaneous

permutation of rows and columns is required to bring M2 to lower triangular form,

which has sign +1. If some edges change orientation, then we perform a simultaneous

permutation of the rows and columns so that the vertex order is achieved, and we

then require some further re-ordering of the columns to achieve the edge order.

Suppose the new edge e′ added to create T2 becomes oriented to some vertex

vi1 . Then the edge e(i1) that was oriented to vi1 in T1 has had its position in the

ordering usurped by e′, and we must swap these two columns of M2. Now, e(i1) must

now be oriented to some other vertex vi2 , and so this enforces another exchange, of

the columns representing e(i1) and e(i2). This process will continue until it reaches

the vertex vik to which the removed edge e was oriented. It is clear, then, that the

permutation of the columns is a product of transpositions, the number of which is

equal to the number of edges in the path from vi1 to vik . However, note that if e and

e′ are oriented in the same direction (i.e. right-to-left or left-to-right) then the number

must be even, as vi1 and vik are both row or both column vertices. If e and e′ are
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oriented in opposite directions, the number of transpositions will be odd. Hence the

sign in the update formula (5.2) will be −1 if we exchange an edge for one oriented

in the same direction, and +1 for one oriented in the opposite direction.

We illustrate the process with an example.

Example 5.2. We refer back to the bipartite graph shown in Fig. 3.1 and

examined in Example 3.13 and Remark 3.14. Suppose that we want to find the edge-

weight conditions of the bipartite graph obtained from B(D) by exchanging the edge

r2c3 for r6c6. The conditions derived from Component 1 will not be affected, so we

examine only Component 2, which will be our T1. The last vertex in the ordering of

Component 2 is r2, and we show the orientation of the edges in Fig. 5.1a, along with

the truncated incidence matrix M1, labelled with the vertex and edge orderings of T1.

Fig. 5.1b displays the bipartite graph obtained by removing r2c3 and adding the

edge r6c6, along with the matrix obtained from M1 by replacing the column cor-

responding to r2c3 by one representing r6c6, and then performing a simultaneous

permutation so that the rows are ordered according to the new vertex order of T2.

Evidently, further re-ordering of the columns is necessary to bring it to lower trian-

gular form. To further re-order the columns in M2, we see that we must swap r6c6

in the order for the edge previously oriented to c6, r5c6, which is now oriented to r5.

We then swap r5c6 for r5c3, which is now oriented to c3, the vertex to which r2c3

was oriented. Thus the permutation that brings M2 to lower triangular form has sign

+1, and so to find the edge-weight conditions for T2, we compute M−1
2 using the

update formula (5.2) with a −1 as opposed to a +1. This could be told immediately

by comparing the orientation of r6c6 in T2 with the orientation of r2c3 in T1: since

they are ordered the same way, this implies the permuation will have sign +1, and

the update formula (5.2) will use a −1.

Suppose instead that we were to exchange r2c4 for r6c6, as shown in Fig. 5.1c.

Since these edges have opposite orientation to each other, this means we would use

the update formula with a +1.

Remark 5.3. We have described the process of determining the sign in the

update formula using the properties of the bipartite graph, which as we have observed,

are more difficult to deal with in the software we wish to use to implement our

solutions. For this reason, we give the following alternative method for determining

the sign in (5.2).

We have defined y := (M2 −M1)ek, and from (5.2) we deduce that

M1 −M2 = ±M2M
−1
1 yeTk
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r2

r5

r6

c1

c3

c4

c6




r2c1 r5c6 r6c4 r5c3 r2c4 r2c3

c1 1 0 0 0 0 0

c6 0 1 0 0 0 0

r6 0 0 1 0 0 0

r5 0 1 0 1 0 0

c4 0 0 1 0 1 0

c3 0 0 0 1 0 1




(a) T1 and the truncated incidence matrix M1

r2

r5

r6

c1

c3

c4

c6




r2c1 r6c6 r5c3 r5c6 r6c4 r2c4

c1 1 0 0 0 0 0

c3 0 0 1 0 0 0

r5 0 0 1 1 0 0

c6 0 1 0 1 0 0

r6 0 1 0 0 1 0

c4 0 0 0 0 1 1




(b) T2 and the permuted incidence matrix M2, before the edge re-ordering

r2

r5

r6

c1

c3

c4

c6




r2c1 r6c6 r6c4 r5c6 r5c3 r2c3

c1 1 0 0 0 0 0

c4 0 0 1 0 0 0

r6 0 1 1 0 0 0

c6 0 1 0 1 0 0

r5 0 0 0 1 1 0

c3 0 0 0 0 1 1




(c) T3 and the permuted incidence matrix M3, before the edge re-ordering
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and hence

−y = ±M2(M
−1
1 y).

Compute M−1
1 y (in O(n) operations), and then select a nonzero entry of y, say ya.

We can determine the sign from the equation

−ya = ±eTaM2M
−1
1 y

in another O(n) operations.

Both the algorithm in [21] and the process of obtaining the inverse incidence

matrices may be implemented in the case B(D) is a forest by applying the methods

to the connected components of B(D). We note, however, that the time complexity

of the algorithm in [21] is O(V + E +N), where V is the number of vertices, E the

number of edges, and N the number of spanning trees of the graph, and that this

is optimal. This implementation of our results suffers, then, for large or particularly

dense graphs.

Despite the issues with time complexity, we note that there are many applications

involving systems that are governed by relatively small or sparse directed graphs. We

present the following example to demonstrate the usefulness of our results in such

cases.

6. Example: North Atlantic right whale population. We recall that to

any nonnegative irreducible matrix M , we can associate a stochastic matrix A by the

calculation

A =
1

ρ(M)
U−1MU,

as discussed in the introduction, and the ith entry of the stationary vector of A then

represents the derivative of ρ(M) with respect to the ith diagonal entry of the matrix

M .

We can apply this approach to the population projection matrix of a stage-

classified matrix model of a population (detailed in [5, Ch. 4]). Since the Perron

value of this projection matrix represents the asymptotic growth of the population,

information regarding the stationary vector of the corresponding stochastic matrix

A will provide some insight into the sensitivity of this growth rate. This could indi-

cate better strategies for managing a population, a common aim in examining these

models.

To demonstrate how our results in this paper may be useful in such a situation,

we consider the specific example of the female North Atlantic right whale population.
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s s s s s1 32 4 5
✐ ✐

✲ ✲

✛ ✛

✲ ✲ ✲ ✲

r1

r2

r3

r4

r5

c1

c2

c3

c4

c5

Figure 6: Life cycle graph for the North American right whale (female) and the

corresponding bipartite graph

The projection matrix for this population has directed graph indicated in Fig. 6,

according to [6] - which is also referred to as a life cycle graph. Each vertex represents

a stage in the life cycle of the female whale (calf, immature, mature, mother, post-

breeding), while arcs indicate a contribution by one class to another within a single

projection interval (one year, in this case), either via reproduction or by leaving one

stage and entering another. Note that the loops at each vertex in the graph represent

the proportion of the population in a single class that survive and remain in the same

class after the interval has passed.

Letting D denote the directed graph in Fig. 6, we consider the bipartite graph

B(D), also shown in Fig. 6. The component condition given by this graph is

x4 − x5 = 0,

and the edge-weights are:

ω(r1c2) = x1

ω(r3c1) = x1

ω(r3c4) = x4

ω(r5c3) = x5

ω(r2c2) = x2 − x1

ω(r3c3) = x3 − x1 − x4

ω(r2c3) = x1

ω(r4c5) = x4.
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Thus the only non-trivial conditions on the stationary vector x of a stochastic matrix

with this bipartite graph are as follows:

x4 = x5,

x2 ≥ x1, (6.1)

x3 ≥ x1 + x4.

From this, we see that the given directed graph D dictates some unexpected relation-

ships between the derivatives of the Perron value with respect to the diagonal entries

of the transition matrix. In this example, we have determined that the derivative

with respect to either the second or third diagonal entry is the largest, regardless

of how the projection matrix varies. In particular, this may be interpreted to mean

that the growth rate of the population is most sensitive to increases in the proportion

of members of the immature or mature (fertile) classes that survive and remain in

the class within one projection interval. Though one may intuitively expect this, we

note that these conditions (6.1) produce quantitative conclusions as well as the above

qualitative conclusion - for example, x3 is not only larger than x1 and x4, it is larger

than the sum of these quantities. In general, these relationships may help to inform

conservation techniques for a population modelled in this way.
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