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RANKS AND EIGENVALUES OF STATES WITH
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CHI-KWONG LI† , YIU-TUNG POON‡ , AND XUEFENG WANG§

Abstract. For a quantum state represented as an n×n density matrix σ ∈ Mn, let S(σ) be the

compact convex set of quantum states ρ = (ρij) ∈ Mm·n with the first partial trace equal to σ, i.e.,

tr1(ρ) = ρ11 + · · ·+ ρmm = σ. It is known that if m ≥ n then there is a rank one matrix ρ ∈ S(σ)

satisfying tr1(ρ) = σ. If m < n, there may not be any rank one matrix in S(σ). In this paper, we

determine the ranks of the elements and ranks of the extreme points of the set S. We also determine

ρ∗ ∈ S(σ) with rank bounded by k such that ‖tr1(ρ∗)−σ‖ is minimum for a given unitary similarity

invariant norm ‖ · ‖. Furthermore, the relation between the eigenvalues of σ and those of ρ ∈ S(σ)

is analyzed. Extension of the results and open problems will be mentioned.
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1. Introduction. In quantum information science, quantum states are used to

store, process, and transmit information. Mathematically, quantum states are repre-

sented by density matrices, i.e., positive semidefinite matrices of trace 1; see [8, 12]

for example. Let Mn (Hn) be the set of n× n complex (Hermitian) matrices, and let

D(n) be the set of density matrices in Mn. Suppose σ1 ∈ D(m) and σ2 ∈ D(n) are

two quantum states. Their product state is σ1 ⊗ σ2. The combined system is known

as the bipartite system, and a general quantum state is represented by a density ma-

trix ρ ∈ D(m · n). Two basic quantum operations used to extract information of the

subsystems from a quantum state of the bipartite system are the partial traces, which

are linear maps satisfying

tr1(σ1 ⊗ σ2) = σ2 and tr2(σ1 ⊗ σ2) = σ1

on tensor states σ1 ⊗ σ2 ∈ D(m · n). Then for a general state ρ = (ρij)1≤i,j≤m ∈
D(m · n) such that ρij ∈ Mn, we have

tr1(ρ) = ρ11 + · · ·+ ρmm ∈ Mn and tr2(ρ) = (trρij)1≤i,j≤m ∈ Mm.
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It is well known that for every σ ∈ D(n) there is a pure state ρ ∈ D(n · n) such
that tr1(ρ) = σ. This is known as the purification process, which is useful in the study

of quantum computation; for example see [12]. In fact, it is easy to show that for

every σ ∈ D(n) of rank r, there is a pure state ρ ∈ D(r · n) satisfying tr1(ρ) = σ.

However, one may not be able to find a purification if the dimension of the first system

is bounded, say, due to limitation of resource or restriction on the physical system.

In such a case, two questions naturally arise:

Problem 1.1. Can we find a pure state ρ ∈ D(m · n) such that tr1(ρ) is nearest

to σ, say, with respect to a certain norm ‖ · ‖ on Hn?

Problem 1.2. Can we find ρ ∈ D(m · n) with rank as low as possible so that

tr1(ρ) = σ?

In Section 2, we will give complete answers to these problems. In particular, for

a given σ ∈ D(n) and a given positive integers k and m, we determine

min{‖tr1(ρ)− σ‖ : ρ ∈ D(m · n) has rank at most k}

for any unitary similarity invariant norm ‖ · ‖ on Hn, i.e., norm ‖ · ‖ such that

‖UAU∗‖ = ‖A‖ for any A ∈ Hn and unitary U ∈ Mn. In fact, using the notion of

majorization, we obtain a general result on the existence of ρ ∈ D(m · n) with low

rank such that tr1(ρ)− σ satisfies many nice properties.

To better understand quantum states with a prescribed reduced state, we consider

the compact convex set

S(σ) = {ρ ∈ D(m · n) : tr1(ρ) = σ}.

In Sections 3, we determine the ranks of elements and the ranks of extreme points

in S(σ). In Section 4, we analyze the relationship between the eigenvalues of σ and

those of the elements in S(σ). We obtain a necessary and sufficient condition relating

the eigenvalues of ρ and σ when m ≥ n, and also in some low dimension cases. The

general problem for the case when m < n remains open. In Section 5, we discuss the

extensions and difficulties of the study to multi-partite systems.

Researchers have used advanced techniques in representation theory (see [2, 7]

and their references) to give a complete description of the relationship between the

eigenvalues of the reduced states tr1(ρ), tr2(ρ), and those of the “parent” state ρ.

However, it is not easy to generate (and store) all the inequalities even for a moderate

size problem (see [7]). Moreover, it is not easy to use the numerous set of inequalities

to answer basic questions. For example, for (m,n) = (2, 3), there is a density matrix

ρ ∈ M2·3 and reduced states tr2(ρ), tr1(ρ) with eigenvalues a1 ≥ · · · ≥ a6, b1 ≥ b2,

and c1 ≥ c2 ≥ c3 respectively if and only if 41 inequalities are satisfied [7]. However,
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it is not easy to use the result to answer Problems 1 and 2, and other simple problems

such as:

1. Characterize the eigenvalues a1 ≥ · · · ≥ a6 of a density matrix ρ ∈ M2·3 such

that the (first) partial trace is a maximally entangled state, i.e., tr1(ρ) = I3/3.

2. Determine all possible ranks of matrices in the convex set

S(I3/3) = {ρ ∈ D(2 · 3) : tr1(ρ) = I3/3}.

3. Determine the ranks of the extreme points of the convex set S above.

Nevertheless, one can readily answer the above problems using our results in

Sections 3 and 4. (See Section 5.)

We conclude this section by fixing some notations. We will use Xt and X∗ to

denote the transpose and conjugate transpose of a matrix or vector X .

Let {e(m)
1 , . . . , e

(m)
m } and {e(n)1 , . . . , e

(n)
n } be the standard bases for Cm and Cn,

respectively. Then, clearly, {e(m)
1 ⊗ e

(n)
1 , e

(m)
1 ⊗ e

(n)
2 , . . . , e

(m)
m ⊗ e

(n)
n } is the standard

basis for Cm ⊗Cn ≡ Cmn. For ℓ = m,n and 1 ≤ i, j ≤ ℓ, let E
(ℓ)
i j = e

(ℓ)
i (e

(ℓ)
j )t. Then

{E(ℓ)
i j : 1 ≤ i, j ≤ ℓ} is the standard basis for Mℓ. For simplicity, we use the notation

ei for e
(m)
i or e

(n)
i and Ei j for E

(ℓ)
i j , if the dimension is clear in the context. Also, we

use ei ⊗ ej instead of e
(m)
i ⊗ e

(n)
j .

Furthermore, we use PSD(n) and Rk(n) to denote the sets of matrices in Mn

which are positive semidefinite and have rank at most k, respectively.

Two linear maps

[ · ] : Cmn → Mn,m and vec : Mn,m → C
mn

will be used frequently in our discussion. Here, for w = (w1, . . . , wmn)
t ∈ Cmn

W = [w] is the n×m matrix such that the jth column equals (w(j−1)n+1, . . . , wjn)
t

for j = 1, . . . ,m; and vec is the inverse map which converts an n ×m matrix W to

w = vec(W ) ∈ Cmn so that W = [w]. Note that

tr1(ww
∗) = WW ∗ and tr2(ww

∗) = W t(W t)∗.

2. Approximation by reduced states of low rank states. To state and

prove our results, we need the following definitions and notation.

Recall that for x, y ∈ Rn, x is majorized by y, denoted by x ≺ y, if the sum of

entries of the vectors are the same, and the sum of the k largest entries of x is not

larger than that of y for k = 1, . . . , n − 1. A scalar function f : Rn → R is Schur

convex provided f(x) ≤ f(y) whenever x ≺ y.
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We can extend the definition of majorization and Schur convex function to Hermi-

tian matrix as follows. For every A ∈ Hn, let λ(A) ∈ Rn be the vector of eigenvalues

of A with entries arranged in descending order. For A,B ∈ Hn, we write A ≺ B

if λ(A) ≺ λ(B). A function f : Rn → R can be extended to f̃ : Hn → R by set-

ting f̃(A) = f(λ(A)). On the other hand, some scalar functions on Hn or D(n)

can be viewed as an extension of f : Rn → R. For example, the determinant func-

tion A 7→ det(A) on Hn corresponds to f(x1, . . . , xn) =
∏n

j=1 xj ; the von Neumann

entropy ρ 7→ −trρ(log ρ) on D(n) corresponds to f(x) = −
∑n

j=1 xj log xj with the

convention that xj log xj = 0 if xj = 0. Moreover, every unitary similarity invariant

norm ‖ · ‖ corresponds to a Schur convex norm function f : Rn → R; see [10]. For

example, for 1 ≤ p ≤ ∞ the Schatten p-norm defined by

‖A‖p = {tr|A|p}1/p

is a unitary similarity invariant norm, where |A| is the unique positive semi-definite

matrix such that |A|2 = A∗A. Here, we take the limit p → ∞, and set ‖A‖∞ =

max{|µ| : µ is an eigenvalue of |A|}. Clearly, the Schatten p-norm corresponds to the

ℓp norm on Rn defined by ℓp(x1, . . . , xn) = (
∑n

j=1 |xj |p)1/p.

We have the following result.

Theorem 2.1. Let n,m, k be positive integers such that k ≤ m. Suppose σ ∈
D(n) has rank r and has spectral decomposition

∑r
j=1 λjxjx

∗
j with λ1 ≥ · · · ≥ λr > 0.

Then there is ρ ∈ D(m · n) with rank at most k such that tr1(ρ) = σ if and only if

r ≤ mk.

If mk < r, then there is ρ ∈ D(m · n) with rank k such that

tr1(ρ) =

mk∑

j=1

(λj + µ)xjx
∗
j ,

where µ = (
∑r

j=mk+1 λj)/(mk), so that

λ(σ − tr1(ρ)) = (λmk+1, . . . , λr, 0, . . . , 0
︸ ︷︷ ︸

n−r terms

,−µ, . . . ,−µ
︸ ︷︷ ︸

mk terms

) ≺ λ(σ − tr1(ρ̃))(2.1)

for all ρ̃ ∈ D(m · n) with rank at most k.

By the properties of Schur convex functions and unitary similarity invariant norm

(see [11] and [10]), we immediately have the following.

Corollary 2.2. Suppose σ and ρ satisfy the hypothesis and conclusion of The-

orem 2.1. Then for every Schur convex function f : Rn → R, we have

f(λ(σ − tr1(ρ))) ≤ f(λ(σ − tr1(ρ̃))) for all ρ̃ ∈ D(m · n) of rank at most k.
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Furthermore, for every unitary similarity invariant norm ‖ · ‖ on Hn, we have

‖σ − tr1(ρ)‖ ≤ ‖σ − tr1(ρ̃)‖ for all ρ̃ ∈ D(m · n) of rank at most k.

Proof of Theorem 2.1. If r ≤ mk, then we can write σ = σ1+ · · ·+σk, where each

σi has rank at most m and has a purification ρi ∈ D(m · n). Then ρ = ρ1+ · · ·+ρk ∈
D(m · n) has rank at most k such that tr1(ρ) = σ.

Conversely, if ρ ∈ D(m · n) has rank at most k so that it is the sum of at most k

rank one matrices ρ1, . . . , ρk. Then tr1(ρi) has rank at most m, and tr1(ρ) has rank

at most mk.

Suppose mk < r. Let σ̂ =
∑mk

j=1(λj + µ)xjx
∗
j ∈ Hn. Then σ̂ = ρ̂1 + · · ·+ ρ̂k such

that each ρ̂j has rankm, and admits a purification ρj ∈ D(m · n). Let ρ = ρ1+· · ·+ρk.

Then ρ has rank at most k and tr1(ρ) = σ̂.

To prove (2.1), suppose r > mk. Let

(c1, c2 . . . , cn) = λ(σ − tr1(ρ)) = (λmk+1, . . . , λr, 0, . . . , 0
︸ ︷︷ ︸

n−r terms

,−µ, . . . ,−µ
︸ ︷︷ ︸

mk terms

),

where µ = (
∑r

j=mk+1 λj)/(mr).

Suppose ρ̃ has rank at most k. Then tr1(ρ̃) has rank at most mk. Let

λ(tr1(ρ̃)) = (b1, . . . , bn).

Then we have bi = 0 for mk < i ≤ n.

Suppose λ(σ − tr1(ρ̃)) = (a1, . . . , an). We will prove that

(c1, c2 . . . , cn) ≺ (a1, a2 . . . , an).(2.2)

Clearly, we have
∑mn

i=1 ci = 0 =
∑mn

i=1 ai. Since σ = (σ−tr1(ρ̃))+tr1(ρ̃), by Wielandt’s

inequalities [11, Theorem 9.G.1a], for 1 ≤ s ≤ n−mk, we have

s∑

i=1

ai =
s∑

i=1

ai +
s∑

i=1

bmk+i ≥
s∑

i=1

λmk+i =
s∑

i=1

ci.

Let µ̃ = (
∑n−mk

j=1 aj)/(mk) = −(
∑n

j=n−mk+1 aj)/(mk). Then we have

(c1, c2 . . . , cn) ≺ (a1, a2 . . . , an−mk,−µ̃, . . . ,−µ̃
︸ ︷︷ ︸

mk terms

) ≺ (a1, a2 . . . , an).
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3. Ranks of elements in S(σ). In this section, for σ ∈ D(n), we consider the

compact convex set

S(σ) = {ρ ∈ D(m · n) : tr1(ρ) = σ}.

We will completely determine the ranks attainable by its elements and by its extreme

points. The following lemma is useful in our discussion.

Lemma 3.1. Let σ ∈ D(n) and U ∈ Mn be unitary. Then

S(UσU∗) = (Im ⊗ U)S(σ)(Im ⊗ U)∗ = {(Im ⊗ U)ρ(Im ⊗ U)∗ : ρ ∈ S(σ)}.

Recall that σ ∈ D(n) is a pure state if rank (σ) = 1. It is well known that the

extreme points of D(n) are pure states. For a pure state σ ∈ D(n), we have the

following complete description of S(σ). In particular, all states in the set S(σ) are

tensor states.

Proposition 3.2. Let σ ∈ D(n) be a pure state. Then

S(σ) = {ξ ⊗ σ : ξ ∈ D(m)}.

Consequently, there is ρ ∈ S(σ) with rank k if and only if 1 ≤ k ≤ m. Moreover, ρ is

an extreme point of S(σ) if and only if ρ = ξ ⊗ σ for a rank one ξ ∈ D(m).

Proof. By Lemma 3.1, we may assume that σ = E11 ∈ Mn. Then ρ =

(ρij)1≤i,j≤m ∈ D(m · n) with ρij ∈ Mn if and only if ρ11 + ρ22 + · · · + ρmm = E11.

Since ρ is positive semidefinite, we see that ρii = ξiE11, where ξi ≥ 0 for i = 1, . . . , m

and
∑m

i=1 ξi = 1. Thus, ρij = ξijE11 for some ξij , i, j = 1, . . . , m, with ξii = ξi.

Hence, ρ = ξ ⊗ σ with ξ = (ξij) = tr2(ρ) ∈ D(m).

Clearly, rank (ρ) = rank (ξ) ∈ {1, . . . , m}. Also, it is well known that D(m) is

a compact convex set with the pure states as the set of extreme points. The last

statement follows.

For a general state σ ∈ D(n), it is not so easy to give a complete description for

the set S(σ). In the following, we consider general states σ ∈ D(n) and determine

the ranks and extreme points of matrices in S(σ).

Theorem 3.3. Let σ ∈ D(n) have rank r. There is ρ ∈ S(σ) ⊆ D(m · n) with

rank k if and only if

⌈r/m⌉ ≤ k ≤ rm.

In particular, if there are matrices in S(σ) of rank r1, r2 with r1 < r2, then there are

matrices in S(σ) of rank r1 + 1, . . . , r2 − 1.
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Proof. By Lemma 3.1, we may assume that σ = diag(d1, . . . , dr, 0, . . . , 0) with

d1 ≥ · · · ≥ dr > 0.

Suppose ρ = ZZ∗ ∈ S(σ) such that Z is mn × k, where k is the rank of ρ and

Z has columns z1, . . . , zk ∈ Cmn. Set Zj = [zj ] for j = 1, . . . , k. Then σ = tr1(ρ) =
∑k

j=1 ZjZ
∗
j has rank at most mk because every ZjZ

∗
j has rank at most m. Hence,

r/m ≤ k.

Next, we consider the upper bound for k. Suppose ρ = (ρij) ∈ S(σ) with ρij ∈
Mn. Since

σ = diag(d1, . . . , dr, 0, . . . , 0) = ρ11 + ρ22 + · · ·+ ρmm ,

we have ρij ∈ span {Epq : 1 ≤ p, q ≤ r} for all 1 ≤ i, j ≤ m. Hence, ρ = (ρij) has

rank at most rm.

Finally, we show that for every k between the lower and upper bound, there exists

ρ ∈ S(σ) with rank k. Suppose r/m ≤ k ≤ rm. Then ρ can be constructed as follows.

Case 1. Suppose r < k ≤ rm and denote k = qr + s with 0 < q < m and

0 < s ≤ r. Let

ρ =

q+1
∑

i=1

s∑

j=1

dj
q + 1

E
(m)
ii ⊗ E

(n)
jj +

q
∑

i=1

r∑

j=s+1

dj
q
E

(m)
ii ⊗ E

(n)
jj .

Then rank ρ = (q + 1)s+ q(r − s) = qr + s = k and

tr1(ρ) =

q+1
∑

i=1

s∑

j=1

dj
q + 1

E
(n)
jj +

q
∑

i=1

r∑

j=s+1

dj
q
E

(n)
jj =

r∑

j=1

djE
(n)
jj = σ .

Case 2. Suppose r/m ≤ k ≤ r ≤ n, and r = kq̂+ ŝ with 0 ≤ q̂ < m and 1 ≤ ŝ ≤ k.

Let fj =
√
dje

(n)
j for 1 ≤ j ≤ n, and

ρ =

s∑

j=1

(
q̂+1
∑

i=1

e
(m)
i ⊗ f(i−1)k+j

)(
q̂+1
∑

i=1

e
(m)
i ⊗ f(i−1)k+j

)∗

+
k∑

j=ŝ+1

(
q̂
∑

i=1

e
(m)
i ⊗ f(i−1)k+j

)(
q̂
∑

i=1

e
(m)
i ⊗ f(i−1)k+j

)∗

.

Then, rank ρ = ŝ+ (k − ŝ) = k and

tr1(ρ) =

ŝ∑

j=1

q̂+1
∑

i=1

d(i−1)k+jE
(n)
(i−1)k+j (i−1)k+j +

k∑

j=ŝ+1

q̂
∑

i=1

d(i−1)k+jE
(n)
(i−1)k+j (i−1)k+j

=

r∑

ℓ=1

dℓE
(n)
ℓ ℓ = σ .
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By Theorem 3.3, we have the following corollary, which is part of Theorem 2.1.

Corollary 3.4. Suppose σ ∈ D(n) has rank r. Then there is ρ ∈ D(m · n) with
rank not larger than k such that tr1(ρ) = σ if and only if km ≥ r. In particular, σ

has a purification ρ ∈ D(m · n) if and only if m ≥ r.

Next, we consider the extreme points of the set S(σ). We begin with some general

observations.

Lemma 3.5. Let σ ∈ D(n) and let ρ ∈ S(σ) ⊆ D(m·n). Then ρ is not an extreme

point if and only if there exists a nonzero ξ ∈ Hmn such that ρ± ξ ∈ PSD(m ·n) and
tr1(ξ) = On. In such a case, there are ρ1, ρ2 ∈ S(σ) with rank (ρ1) < rank (ρ) such

that ρ = (ρ1 + ρ2)/2.

Proof. If ρ ∈ S(σ) is not extreme, then there are two different elements ρ1, ρ2 ∈
S(σ) such that ρ = (ρ1 + ρ2)/2. Let ξ = (ρ1 − ρ2)/2 6= 0. Then ρ± ξ ∈ S(σ) so that

ρ ± ξ ∈ PSD(m · n) and tr1(ξ) = tr1(ρ1 − ρ2)/2 = (σ − σ)/2 = On. Conversely, if

ξ ∈ Hmn satisfies ρ ± ξ ∈ D(m · n) and tr1(ξ) = On, then we can set ρ± = ρ ± ξ so

that ρ+, ρ− ∈ S(σ) and ρ = (ρ+ + ρ−)/2.

Now, if ρ ∈ S(σ) has rank r and is not an extreme point. Then we can choose an

orthonormal set {z1, . . . , zr} in Cmn such that ρ =
∑r

j=1 λjzjz
∗
j . Suppose a nonzero

ξ ∈ Hmn is such that ρ±ξ ∈ PSD(m·n) and tr1(ξ) = Om. Then ξ =
∑

1≤i,j≤r hijziz
∗
j

for some non-zero (hij) ∈ Hr. Thus, there exists t > 0 such that

1) ρ± tξ ∈ PSD(m · n),
2) either ρ1 = ρ+ tξ or ρ2 = ρ− tξ has rank < r, and

3) ρ = (ρ1 + ρ2)/2, with ρ1, ρ2 ∈ S(σ).

The last assertion follows.

Theorem 3.6. Suppose ρ ∈ S(σ) for a given σ ∈ D(n) such that ρ has rank

r and ρ = ZZ∗ ∈ D(m · n), where Z has columns z1, . . . , zr ∈ Cmn. Then ρ is an

extreme points of S(σ) if and only if the set T (z1, . . . , zr) = {[zi][zj ]∗ : 1 ≤ i, j ≤ r}
is linearly independent.

Proof. Suppose T (z1, . . . , zr) is linearly dependent. Then there is H = (hij) ∈ Mr

such that

∑

i,j

hij [zi][zj ]
∗ = 0.

Let [zj ] = Zj for j = 1, . . . , r. Then [Z1 · · ·Zr](H ⊗ Im)[Z1 · · ·Zr]
∗ = 0. We may

replace H by eitH + e−itH∗ for a suitable t ∈ [0, 2π) and assume that 0 6= H = H∗.

Then for t > 0 such that ‖tH‖ < 1, ρ± = ρ ± tZHZ∗ = Z(Ir ± tH)Z∗ is positive
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semidefinite. Moreover,

tr1(ρ±) =

r∑

j=1

ZjZ
∗
j ± t

∑

1≤i,j≤r

hijZiZ
∗
j = σ

and tr(ρ±) = tr(σ) = 1. Thus, ρ± ∈ S(σ) are two different elements such that

ρ = (ρ+ + ρ−)/2. Hence, ρ is not an extreme points.

Conversely, if ρ is not an extreme point of S(σ), then ρ = (ρ+ + ρ−)/2 for

two different elements ρ+, ρ− in S(σ). Then ρ+ − ρ = ρ − ρ− = H̃ 6= 0 so that

ρ+ = ρ + H̃ = ZZ∗ + H̃ ∈ S(σ) and ρ− = ρ − H̃ = ZZ∗ − H̃ ∈ S(σ). Thus, the

range space of H̃ is a subspace of the range space of ρ, which is the column space of

Z. Thus, H̃ has the form ZHZ∗ for some 0 6= (hij) = H = H∗ ∈ Mr so that Ir ±H

are positive semidefinite. Moreover,

tr1(ρ±) = tr1(ρ± H̃) = tr1(ρ) = σ.

It follows that 0 = tr1(H̃) =
∑

ij hijZiZ
∗
j . Hence, T (z1, . . . , zr) is linearly depe-

ndent.

Next, we determine all possible ranks of the extreme points of S(σ).

Theorem 3.7. Suppose σ ∈ D(n) and rank (σ) = r. There is an extreme point

ρ ∈ S(σ) ⊆ D(m · n) with rank k if and only if

⌈r/m⌉ ≤ k ≤ r.

Moreover, every ρ ∈ S(σ) with rank equal to ⌈r/m⌉ is an extreme point. For ⌈r/m⌉ <
k ≤ r, there exists ρ ∈ S(σ) which is not an extreme point.

Proof. By Lemma 3.1, we may assume that σ = diag(d1, . . . , dr, 0, . . . , 0) with

d1 ≥ · · · ≥ dr > 0.

(1) We show that any ρ ∈ S(σ) with rank (ρ) = k > r is not an extreme point.

Suppose ρ = z1z
∗
1 + · · ·+ zkz

∗
k. Let Zi = [zi] for i = 1, . . . , k. Then

∑k
j=1 ZjZ

∗
j =

σ. It follows that the last n − r rows of Zi are zero for i = 1, . . . , k. Thus, ZiZ
∗
j =

Cij ⊕ On−r for some Cij ∈ Mr. Thus, {ZiZ
∗
j : 1 ≤ i, j ≤ k} is linearly dependent as

k2 > r2. By Theorem 3.6, ρ is not an extreme point.

(2) Suppose r/m ≤ k ≤ r. We show that there is an extreme point ρ ∈ S(σ) with

rank (ρ) = k.

Because r/m ≤ k ≤ r, we can let r = kq̂ + ŝ, and use the construction in Case

2 in the proof of Theorem 3.3 to obtain ρ =
∑k

j=1 zjz
∗
j . Note that for 1 ≤ i, j ≤ k,

[zi][zj ]
∗ has the form

√
λiλjEij(k) ⊕ Yij . Thus, {[zi][zj ]∗ : 1 ≤ i, j ≤ k} is linearly

independent, and ρ is an extreme point.
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(3) Suppose ⌈r/m⌉ < k ≤ r. We show that there is ρ ∈ S(σ) with rank (ρ) = k such

that ρ is not an extreme point.

Because ⌈r/m⌉ < k ≤ r ≤ n, we may use the the construction in Case 2 in

the proof of Theorem 3.3, with k replaced by k − 1 to get ρ̃ =
∑k−1

j=1 zjz
∗
j such that

tr1(ρ̃) = σ. Since k − 1 < r, Z1 = [z1] has two nonzero columns. Replace z1 by

z̃1 = z1/
√
2 and construct zk so that Zk = [zk] is obtained from [z̃1] by multiplying

its first column by −1. Then ρ = z̃1z̃
∗
1 +

∑k
j=2 zjz

∗
j ∈ S(σ) has rank k. Note

that [z̃1][z̃1]
∗ = [zk][zk]

∗ so that T (z̃1, z2, . . . , zk) is linearly dependent. So, ρ is not

extreme.

(4) We show that if ρ ∈ S(σ) has rank k = ⌈r/m⌉, then ρ is an extreme point.

If ρ is not an extreme point, then by Lemma 3.5 ρ1, ρ2 ∈ S(σ) with rank (ρ1) <

rank (ρ) such that ρ = (ρ1 + ρ2)/2, which is a contradiction.

Corollary 3.8. Suppose σ ∈ D(n) and ρ ∈ S(σ) ⊆ D(m · n).

(a) If ρ has rank one, then ρ is an extreme point of S(σ).
(b) If ρ has rank k > n, then ρ is not an extreme point.

Proof. (a) If ρ = zz∗, then {[z][z]∗} is linearly independent. So, ρ is an extreme

point.

(b) If ρ = ZZ∗, where Z has linearly independent columns z1, . . . , zk, then

T (z1, . . . , zk) ⊆ Mn2 has k2 elements with k2 > n2, and hence is a linearly dependent

set in Mn2 . So, ρ is not an extreme point.

4. Eigenvalues. As mentioned in the introduction, even though we know the

inequalities governing the eigenvalues of ρ ∈ D(m · n) and those of σ2 = tr1(ρ) and

σ1 = tr2(ρ), it is not easy to use them to determine the relations between the eigen-

values of ρ and tr1(ρ) (without specifying those of tr2(ρ)). We have the following

result.

Theorem 4.1. Suppose m,n ≥ 2, λ1 ≥ · · · ≥ λn ≥ 0 and µ1 ≥ · · · ≥ µmn ≥ 0

satisfy
∑n

j=1 λj = 1 =
∑mn

j=1 µj.

(a) If there exist σ ∈ D(n) with eigenvalues λ1, . . . , λn and ρ ∈ S(σ) ⊆ D(m · n)
with eigenvalues µ1, . . . , µmn, then

(
λ1

m
, . . . ,

λ1

m
,
λ2

m
, . . . ,

λ2

m
, . . . ,

λn

m
,

)

≺ (µ1, µ2, . . . , µnm) ,(4.1)

so that

(λ1, . . . , λn) ≺





m∑

j=1

µj ,
m∑

j=1

µm+j , . . . ,
m∑

j=1

µ(n−1)m+j



 ,(4.2)
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and setting λj = 0 for j > n, we have

(µ1, . . . , µmn) ≺





m∑

j=1

λj ,
m∑

j=1

λm+j , . . . ,
m∑

j=1

λm2n−m+j



 .(4.3)

(b) If m ≥ n and condition (4.2) holds, then there exist σ ∈ D(n) with eigenvalues

λ1, . . . , λn and ρ ∈ S(σ) with eigenvalues µ1, . . . , µmn.

Proof. (a) Suppose ρ = (ρij)1≤i,j≤m ∈ S(σ) has eigenvalues µ1 ≥ · · · ≥ µmn. We

may assume that ρ11+ρ22+· · ·+ρmm = diag(λ1, . . . , λn). Then there is a permutation

matrix P ∈ Mmn such that PρP t = (ρ̃ij)1≤i,j≤n such that ρ̃ij ∈ Mm such that

trρ̃jj = λj for j = 1, . . . , n. There are unitary matrices U1, . . . , Un ∈ Mm such that

all the diagonal entries of Uj ρ̃jjU
∗
j equals tr(ρjj)/m = λj/m. Let U = U1 ⊕ · · · ⊕Un.

Then the vector of diagonal entries of the matrix UPρP tU∗ is majorized by the vector

of eigenvalues; see [6] and [11, Chapter 5] for example. We get (4.1), and (4.2).

To prove (4.3), suppose that ρ has spectral decomposition ρ = µ1z1z
∗
1 + · · ·

+µmnzmnz
∗
mn. Then,

k∑

j=1

µj = tr





k∑

j=1

µjzjz
∗
j



 = tr



tr1





k∑

j=1

µjzjz
∗
j







 .

Because tr1(
∑k

j=1 µjzjz
∗
j ) has rank at most mk and tr1(ρ) − tr1(

∑k
j=1 µjzjz

∗
j ) is

positive semi-definite, tr(tr1(
∑k

j=1 µjzjz
∗
j )) is bounded by the sum of the mk largest

eigenvalues of tr1(ρ), i.e.,
∑km

j=1 λj .

(b) Suppose m ≥ n and the majorization holds. Let wk =
∑m

j=1 µ(k−1)m+j for

k = 1, . . . , n. By the result of Horn [6], there exist unitary matrices U1, . . . , Un ∈ Mm

such that

Ak = U∗
kdiag(µ(k−1)m+1, µ(k−1)m+2, . . . , µkm)Uk

has constant diagonal
1

m
(wk, . . . , wk). Then the matrix A =

∑n
k=1 Ak ⊗ E

(n)
kk has

eigenvalues µ1, . . . , µmn and has the form A = (Aij)
m
i,j=1, where

Aii =
1

m
diag(w1, . . . , wn) ∈ Mn.

Let U be a unitary such that U∗diag(w1, . . . , wn)U has diagonal entries λ1, . . . , λn.

Let ω = e
2πi

m and D = ⊕m−1
k=0 diag(ωk, ω2k, . . . , ωnk). Then

ρ = D∗(Im ⊗ U)∗A(Im ⊗ U)D

will have reduced state tr1(ρ) = diag(λ1, . . . , λn).
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The following corollaries are clear.

Corollary 4.2. Suppose m = n = 2, and σ ∈ D(2) has eigenvalues λ1 ≥ λ2 ≥
0. There exists ρ ∈ D(2 · 2) with eigenvalues µ1 ≥ · · · ≥ µ4 satisfying tr1(ρ) = σ if

and only if µ1 + µ2 ≥ λ1

Corollary 4.3. Suppose m ≥ n.

(a) For any σ ∈ D(n) there is a pure state ρ ∈ D(m · n) such that tr1(ρ) = σ.

(b) If σ ∈ D(n) is a pure state and ρ ∈ S(σ), then ρ has rank at most m.

It is interesting to note that if m ≥ n, the simple majorization condition (4.3)

governs the relations between the eigenvalues of ρ and σ with ρ ∈ S(σ). For m < n,

the majorization condition is not good enough as shown in the following.

Example 4.4. Suppose m = 2 and n = 3. Let σ = I3/3, and ρ = uu∗ for a

unit vector. Then tr1(ρ) has rank at most two and cannot be σ. Note that the rank

is not the only obstacle. Suppose ρ = U∗diag(1 − 5d, d, d, d, d, d)U = (ρij)1≤i,j≤2

for d = 0.1, and tr1(ρ) = σ. Since ρ11 + ρ22 = I3/3, they commute and we may

assume that they are in diagonal form: ρ11 = diag(d1, d2, d3), and ρ22 = I3/3− ρ11.

If ρ11 has eigenvalues d1 ≥ d2 ≥ d3, then by the generalized interlacing inequality [3],

d ≥ d2 ≥ d ⇒ d2 = d. Similarly, the second largest eigenvalue of ρ22 also equals d.

But then d+ d = 2d 6= 1/3.

Theorem 4.5. There exist density matrices σ ∈ M3 with eigenvalues λ1 ≥ λ2 ≥
λ3 and ρ ∈ M6 with eigenvalues µ1 ≥ · · · ≥ µ6 such that tr1(ρ) = σ if and only if

µ4 + µ5 ≤ λ1 ≤ µ1 + µ2 and µ5 + µ6 ≤ λ3 ≤ µ2 + µ3.

Proof. Suppose ρ =

[
ρ11 ρ12
ρ21 ρ22

]

has eigenvalues µ1 ≥ · · · ≥ µ6 such that

tr1(ρ) = σ. Then we may assume that ρ11 + ρ22 = diag(λ1, λ2, λ3). As in the

proof of Theorem 4.1, we have (λ1, λ2, λ3) ≺ (µ1 + µ2, µ3 + µ4, µ5 + µ6). Therefore,

we have λ1 ≤ µ1 + µ2 and µ5 + µ6 ≤ λ3. Suppose ρ11 and ρ22 have eigenvalues

a1 ≥ a2 ≥ a3 and b1 ≥ b2 ≥ b3 respectively. Then applying Horn inequalities [4, 5]

for the triple ((1, 3), (1, 3), (2, 3)), we have a1+a3+ b1+ b3 ≥ λ2+λ3 ⇒ λ1 ≥ a2+ b2.

Let ai = bi = 0 for i = 4, 5, 6. By a result in [9], there exist A, B ∈ H6 with eigen-

values a1 ≥ · · · ≥ a6 and b1 ≥ · · · ≥ b6 respectively, such that A+ B has eigenvalues

µ1, . . . , µ6. Applying Horn inequalities for the triple ((2, 4), (2, 4), (4, 5)), we have

λ1 ≥ a2 + b2 = a2 + a4 + b2 + b4 ≥ µ4 + µ5.

The inequality λ3 ≤ µ2 + µ3 follows from symmetry.

Conversely, suppose µ4 + µ5 ≤ λ1 ≤ µ1 + µ2 and µ5 + µ6 ≤ λ3 ≤ µ2 + µ3. Then
λ1 lies in (at least) one of the following intervals:

[µ5+µ4, µ5+µ3], [µ5+µ3, µ5+µ2], [µ5+µ2, µ4+µ2], [µ4+µ2, µ3+µ2], [µ3+µ2, µ1+µ2].(4.4)
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Suppose µi + µj ≤ λ1 ≤ µi + µk. Then we can choose µj ≤ µ̂j , µ̂k ≤ µk such that

µi + µ̂j = λ1 and µj + µk = µ̂j + µ̂k. Let a =
√
µ̂j µ̂k − µjµk. Then

[
µ̂j a

a µ̂k

]

has

eigenvalues µj , µk.

Let the remaining 3 eigenvalues of ρ be {µi, µj , µk}c = {µi1 , µi2 , µi3}.

Claim. For some ℓ = 2 or 3, λℓ satisfies i) µi1 +µi2 ≤ λℓ ≤ µi1 + µi3 or ii) µ̂k +µi2 ≤
λℓ ≤ µ̂k + µi3 .

Suppose i) in the claim holds. Then we can choose µi2 ≤ µ̂i2 , µ̂i3 ≤ µi3 such

that µi1 + µ̂i2 = λℓ and µi2 + µi3 = µ̂i2 + µ̂i3 . Let b =
√
µ̂i2 µ̂i3 − µi2µi3 . Then

[
µ̂i2 b

b µ̂i3

]

has eigenvalues µi2 , µi3 . Hence, the matrix

ρ =












µi 0 0 0 0 0

0 µ̂k 0 a 0 0

0 0 µ̂i2 0 b 0

0 a 0 µ̂j 0 0

0 0 b 0 µ̂i3 0

0 0 0 0 0 µi1












has eigenvalues µ1, . . . , µ6 and tr1(ρ) has eigenvalues λ1, λ2 and λ3.

The proof for the case ii) is similar.

We are going to show that the claim holds in each of the cases in (4.4).

1. µ5 + µ4 ≤ λ1 ≤ µ5 + µ3 : Then the remaining 3 eigenvalues are µ1, µ2 and

µ6. We have λ2 ≤ λ1 ≤ µ5 + µ3 ≤ µ2 + µ1 and

λ2 ≥
6∑

i=1

µi − 2λ1 ≥
6∑

i=1

µi − 2(µ5 + µ3) ≥ µ2 + µ6.

2. µ5 + µ3 ≤ λ1 ≤ µ5 + µ2 : Then the remaining 3 eigenvalues are µ1, µ4 and

µ6. We have λ2 ≤ λ1 ≤ µ2 + µ5 ≤ µ1 + µ4 and

λ2 ≥
(

6∑

i=1

µi − λ1

)

/2 ≥
(

6∑

i=1

µi − (µ5 + µ2)

)

/2 ≥ µ4 + µ6.

3. µ5 + µ2 ≤ λ1 ≤ µ4 + µ2 : Then the remaining 3 eigenvalues are µ1, µ3 and

µ6. We have λ2 ≤ λ1 ≤ µ2 + µ4 ≤ µ1 + µ3 and

λ2 ≥
(

6∑

i=1

µi − λ1

)

/2 ≥
(

6∑

i=1

µi − (µ4 + µ2)

)

/2 ≥ µ3 + µ6.
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4. µ4 + µ2 ≤ λ1 ≤ µ3 + µ2 : Then the remaining 3 eigenvalues are µ1, µ5 and

µ6. We have λ3 ≥ µ5 + µ6 and

λ3 ≤
(

6∑

i=1

µi − λ1

)

/2 ≤
(

6∑

i=1

µi − (µ4 + µ2)

)

/2 ≤ µ1 + µ5.

5. µ3+µ2 ≤ λ1 ≤ µ1+µ2 : Since µ5+µ6 ≤ λ3 ≤ µ2+µ3, consider the following

cases:

(a) If µ5 + µ6 ≤ λ3 ≤ µ5 + µ4, then we are done.

(b) If µ5 + µ4 ≤ λ3 ≤ µ3 + µ4, then we use µ6 + µ2 ≤ λ1 ≤ µ1 + µ2 and we

are done.

(c) If µ3 + µ4 ≤ λ3 ≤ µ3 + µ2, then we have

λ1 + λ2 ≥ µ3 + µ2 + µ3 + µ4 ≥ µ2 + µ3 + µ4 + µ6 ⇒ λ2 ≤ µ1 + µ5.

So we can use µ6 + µ5 ≤ λ2 ≤ µ1 + µ5 and we are done.

5. Final remarks and further research. First, let us give the solutions of

the simple questions mentioned in Section 1 using the results in Section 3 and 4.

(Theorems 4.5, 3.3, and 3.6).

1. There exists a density matrix ρ ∈ M2·3 with eigenvalues a1 ≥ · · · ≥ a6 such

that tr1(ρ) = I3/3 if and only if

a2 + a3 ≥ 1/3 ≥ a4 + a5.

2. There exists a density matrix in S(I3/3) with rank k if and only if 2 ≤ k ≤ 6.

3. There exists an extreme point of S(I3/3) with rank k if and only if 2 ≤ k ≤ 3.

One may consider extending the results in the previous sections to the compact

convex set

S(σ1, σ2) = {ρ ∈ D(m · n) : tr1(ρ) = σ2, tr2(ρ) = σ1}

for given σ1 ∈ D(m), σ2 ∈ D(n). As mentioned in the introduction, Klyachko [7] has

studied the relationship between the eigenvalues of ρ ∈ S(σ1, σ2) and those of σ1, σ2.

The answers depend on numerous linear inequalities that are difficult to handle. As

mentioned in the introduction, it is not easy to generate and store all the inequalities

and it is hard to use them to deduce answers for simple problems such as:

Problem 5.1. Determine the ranks of the elements in S(σ1, σ2).

Problem 5.2. Determine the ranks of the extreme points of the set S(σ1, σ2).

Note also that unlike the case of S(σ), the ranks of the elements in S(σ1, σ2)

cannot be determined only by the ranks of σ1 and σ2. For example, suppose σ1 and
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σ2 have the same rank. If σ1, σ2 have the same set of non-zero eigenvalues, then

there is a rank one matrix in S(σ1, σ2). Otherwise, there is no rank one matrix

in S(σ1, σ2). While it is difficult to determine the minimum rank of the matrices

in S(σ1, σ2), it is easy to show that the largest rank of the matrices in S(σ1, σ2)

equal rank (σ1)rank (σ2). Also, it is not hard to show that a matrix in S(σ1, σ2) with

minimum rank is an extreme point. However, it is not easy to determine the ranks

of extreme points in general. In [13], it was shown that the rank of an extreme point

in S(σ1, σ2) cannot exceed (m2 + n2 − 1)1/2. In fact, one can show that if σi has

rank ri for i = 1, 2, then the rank of an extreme point of S(σ1, σ2) cannot exceed

(r21 + r22 − 1)1/2 based on the following extension of Lemma 3.5.

Lemma 5.3. Let σ1 ∈ D(m), σ2 ∈ D(n) and ρ ∈ S(σ1, σ2) ⊆ D(m · n). Then

ρ is not an extreme point if and only if there exists a nonzero ξ ∈ Hmn such that

ρ ± ξ ∈ PSD(m · n), tr1(ξ) = On and tr2(ξ) = Om. In such a case, there are

ρ1, ρ2 ∈ S(σ1, σ2) with rank (ρ1) < rank (ρ) such that ρ = (ρ1 + ρ2)/2.

Of course, similar questions can be asked for the set

S(σ1, . . . , σk) = {ρ ∈ D(n1 · · ·nk) : trj′(ρ) = σj},

where trj′ (ρ) is the reduced state of ρ in the jth system, for given σj ∈ D(nj) with

j = 1, . . . , k. Even more challenging problems will be the study of ρ and reduced

states in subsystems that have overlaps.
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