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MINIMUM RANK OF GRAPHS WITH LOOPS∗
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JEPHIAN CHIN-HUNG LIN† , GABI MAURER†, KATHLEEN NOWAK† ,

AARON RODRIGUEZ† , AND JAMES STRICKLAND†

Abstract. A loop graph G is a finite undirected graph that allows loops but does not allow

multiple edges. The set S(G) of real symmetric matrices associated with a loop graph G of order n

is the set of symmetric matrices A = [aij ] ∈ R
n×n such that aij 6= 0 if and only if ij ∈ E(G). The

minimum (maximum) rank of a loop graph is the minimum (maximum) of the ranks of the matrices

in S(G). Loop graphs having minimum rank at most two are characterized (by forbidden induced

subgraphs and graph complements) and loop graphs having minimum rank equal to the order of the

graph are characterized. A Schur complement reduction technique is used to determine the minimum

ranks of cycles with various loop configurations; the minimum ranks of complete graphs and paths

with various configurations of loops are also determined. Unlike simple graphs, loop graphs can have

maximum rank less than the order of the graph. Some results are presented on maximum rank and

which ranks between minimum and maximum can be realized. Interesting open questions remain.

Key words. Loop graph, Minimum rank, Maximum nullity, Zero forcing number, Spanning

composite cycle, Generalized cycle, Schur complement, Matrix, Graph.

AMS subject classifications. 05C50, 15A03, 15B57.

1. Introduction. A simple graph does not allow loops or multiple edges, where-

as a loop graph allows (but does not require) loops. The set of edges of a simple graph

describes the nonzero pattern of the off-diagonal entries of the graph’s family of real

symmetric matrices (with no constraints on diagonal entries), whereas the edges of

a loop graph completely describe the nonzero pattern of the graph’s family of real

symmetric matrices. Note that a loop graph that does not contain any loops requires

matrices to have a zero diagonal, whereas a simple graph (which by definition has

no loops) does not require a zero diagonal. To avoid confusion, we use G etc. to

denote a simple graph and G etc. to denote a loop graph. Formal definitions and

other terminology can be found in Section 1.1.

The minimum rank problem for a simple or loop graph is to determine the mini-
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mum of the ranks among the matrices in the family described by the simple or loop

graph. The minimum rank problem for simple graphs has been studied extensively

(see [14] and the references therein). Some work has been done on loop graphs, includ-

ing complete determination of minimum rank for loop trees [12], cut-vertex reduction

[25], and characterizations of extreme minimum rank for loop graphs that do not have

loops [16]. However, far fewer results have been obtained about the minimum rank

problem for loop graphs than for simple graphs.

Characterizations of loop graphs having minimum rank at most two (by forbidden

induced subgraphs and graph complements) are established in Section 2; the proof

makes use of the analogous characterizations for simple graphs [5], but the forbidden

subgraphs are substantially different. In Section 3 the characterization of minimum

rank equal to order if and only if there is a unique spanning composite cycle is extended

from loopless loop graphs (zero diagonal minimum rank) [16] to every loop graph.

Section 4 presents a technique for reducing the minimum rank problem for a specific

graph to a smaller one through the use of the Schur complement. This method

is applied to cycles in Section 5, which contains characterizations of the minimum

ranks of complete graphs, paths, and cycles with various configurations of loops.

Unlike simple graphs, loop graphs can have maximum rank less than the order of

the graph [16]. Thus, it is of interest to determine the maximum rank and which

ranks between minimum and maximum can be realized; these topics are discussed

in Section 6. Section 7 presents examples showing that certain results, including the

Graph Complement Conjecture and Colin de Verdière type parameters do not extend

to loop graphs, and asks questions for future research.

1.1. Notation and terminology. For a loop graph G = (V (G), E(G)), the

finite nonempty set of vertices is denoted by V (G) and the set of edges E(G) is a set of

two element multisets of vertices (i.e., the two vertices in an edge need not be distinct).

A loop is an edge with two copies of one vertex. The edge {u, v} is often denoted

by uv (or in the case of a loop {u, u} by uu). A simple graph G = (V (G), E(G))

is defined analogously, except an edge is a two element set of vertices (i.e., the two

vertices in an edge must be distinct).

For a symmetric n×n real matrix A, the loop graph of A is G(A) = (V,E), where

V = {1, . . . , n} and E = {uv | auv 6= 0}, and the simple graph of A is G(A) = (V,E),

where V = {1, . . . , n} and E = {uv |u 6= v and auv 6= 0}. Let G = (V,E) be a loop

graph of order n (normally V = {1, . . . , n}; otherwise we associate V with {1, . . . , n}).

The set of real symmetric matrices described by G is

S(G) = {A ∈ R
n×n : A⊤ = A and G(A) = G}.

The definition for a simple graph G is analogous using G(A), rather than G(A), with

the effect that the diagonal entries of A are completely free for A ∈ S(G). The
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adjacency matrix AG is in S(G) and analogously for a simple graph. The minimum

rank and the maximum nullity of a loop graph G are

mr(G) = min{rankA | A ∈ S(G)} and M(G) = max{nullA | A ∈ S(G)}.

The definitions of minimum rank and maximum nullity for a simple graph G are

analogous, but the set of matrices is now S(G), so the minimum or maximum is taken

over symmetric matrices whose off-diagonal pattern of nonzero entries is described by

the edges of G. Clearly mr(G) +M(G) = |G|.

A path in a simple or loop graph is a subgraph with distinct vertices v1, v2, . . . , vt
and edge set {v1v2, v2v3, . . . , vt−1vt}. A cycle in a simple or loop graph is a subgraph

with distinct vertices v1, v2, . . . , vt, where t ≥ 3 and edge set {v1v2, v2v3, . . . , vt−1vt,

v1vt}; a k-cycle is a cycle with k vertices. By definition, the complete graph on n

vertices, Kn, has all loops, and the complete bipartite graph on s and t vertices, Ks,t,

has no loops. For any loop graph G, G0 denotes the loop graph having the same

underlying simple graph as G but no loops, and Gℓ has the same underlying simple

graph as G but all loops.

The subgraph G[W ] of G = (V,E) induced by W ⊆ V is the subgraph with vertex

set W and edge set {wu | wu ∈ E and w, u ∈ W}. The complement of G is the loop

graph G = (V,E), where E = E(Kn) \ E. The union of loop graphs Gi = (Vi, Ei)

is
⋃h

i=1 Gi = (∪h
i=1Vi,∪

h
i=1Ei); if the Vi are pairwise disjoint, then the union can be

denoted by
⋃̇h

i=1Gi. Let G = (V,E) be a loop graph of order n. If G1 and G2 are

disjoint loop graphs, the join G1 ∨ G2 of G1 and G2 is the graph with vertex set

V (G1 ∨G2) = V (G1) ∪̇V (G2) and edge set E(G1 ∨G2) = E(G1)∪E(G2)∪E, where

E consists of all the edges uv with u ∈ V (G1) and v ∈ V (G2).

Vertex u is a neighbor of vertex v in G if and only if uv ∈ E (so u is a neighbor

of itself if and only if it has a loop). The set of neighbors of v is denoted by NG(v)

(or N(v) if G is clear). The degree of vertex v in G is deg
G
v = |NG(v)| (and

degG v can be denoted by deg v if G is clear). The minimum degree of G = (V,E) is

δ(G) := min{deg v | v ∈ V }.

Let A be an n × n matrix. For α, β ⊆ {1, 2, . . . , n}, the submatrix of A lying in

rows indexed by α and columns indexed by β is denoted by A[α, β]; A[α, α] is also

denoted by A[α] and is a principal submatrix. We also define A[α, α) := A[α, α],

A(α, α] := A[α, α], and A(α) := A[α], where α = {1, 2, . . . , n} \ α.

1.2. Composite cycles and the characteristic polynomial. A composite

cycle C of a loop graph G is a subgraph of G, where each connected component is one

of the following: A cycle, an edge (meaning an edge and its two distinct endpoints),

or a loop (meaning a vertex v and its edge vv). An edge can be thought of as a 2-cycle
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and a loop as a 1-cycle, but they behave differently when evaluating determinants,

so we define a “cycle” to have at least 3 vertices. Composite cycles are also called

generalized cycles and [1, 2]-factors. The order of C is the number of vertices in C.

A composite cycle of order |G| is said to be a spanning composite cycle (or a perfect

[1, 2]-factor). The following notation is adapted from [16] (although there the term

“generalized cycle” is used). Given a composite cycle C, define nc(C) to be the number

of distinct cycles in C, and ne(C) to be the number of even components of C, that is,

the number of edges plus the number of cycles of even order. The set of all composite

cycles of order k of a loop graph G is denoted by cyck(G). With a composite cycle

C, we associate a permutation of the vertices of C as follows. For each cycle in C,

fix an orientation and then associate a directed graph cycle (v1, v2, . . . , vk) with the

cyclic permutation (v1v2 · · · vk). Each edge component v1v2 of C is associated with

the 2-cycle permutation (v1v2) and each loop v1v1 is associated with the 1-cycle

permutation (v1), which fixes v1. The permutation πC is defined to be the product of

these associated permutation cycles. Note that there are 2nc(C) different choices for

the orientation of the cycles of C, and each choice yields a permutation that has the

same sign as πC , namely (−1)ne(C). The sum of all k× k principal minors of an n× n

matrix A = [aij ] ∈ S(G) is denoted Sk(A), and can be expressed using composite

cycles [21] as

Sk(A) =
∑

C∈cyck(G(A))

(−1)ne(C)2nc(C)ai1πC(i1) · · ·aikπC(ik), (1.1)

where {i1, i2, . . . , ik} is the vertex set of C and the sum over the empty set is defined

to be zero. The characteristic polynomial pA(x) of A is

xn − S1(A)x
n−1 + S2(A)x

n−2 + · · ·+ (−1)n−1Sn−1(A)x + (−1)nSn(A).

Note that for A ∈ S(G), detA = Sn(A) can be computed using spanning com-

posite cycles, and if G has a unique spanning composite cycle then detA 6= 0. The

next remark extends and generalizes Remark 1.4 in [16].

Remark 1.1. For a real symmetric matrix A with pA(x) = xn + c1x
n−1 + · · ·+

ckx
n−k + · · · + cn, rankA = max{k | ck 6= 0}. Let G be a loop graph of order n. If

G has no composite cycle of order k, then rankA 6= k for all A ∈ S(G). If G has

no composite cycle of order k for all k > m, then rankA ≤ m for all A ∈ S(G), and

hence mr(G) ≤ m.

1.3. Additional results. This section contains some obvious extensions to loop

graphs of well-known results for minimum rank of simple graphs, and summarizes

additional known results for loop graphs that we will use.
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Observation 1.2. Let G be a loop graph.

1. If G is obtained from the simple graph G by adding some configuration of

loops to G, then mr(G) ≤ mr(G).

2. If H is an induced subgraph of G, then mr(H) ≤ mr(G).

3. G has no edges if and only if mr(G) = 0.

4. If the connected components of G are G1,G2, . . . ,Gt, then

mr(G) =

t∑

i=1

mr(Gi).

A loop graph T is a forest if T does not have any cycles, and a tree is a connected

forest. Note that a forest is permitted to have loops. The technique in the next

remark is known for matrices described by simple graphs (see, for example, [10]), and

the same inductive reasoning applies to loop graphs.

Remark 1.3. Suppose A ∈ S(G) and T is a loopless forest that is a subgraph of

G. If G has a loop at vertex v, then the v, v-entry of B := 1
avv

A is one. There exists

a nonsingular diagonal matrix D such that (DBD)uv = 1 for every uv ∈ E(T) and

(DBD)vv = 1 (v is chosen as the root). Observe that for D nonsingular diagonal,

B ∈ S(G) implies DBD ∈ S(G) and rank(DBD) = rankB, so when showing that a

matrix in S(G) realizing a specific rank does not exist, without loss of generality we

can assume the entries associated with the edges of a loopless forest are all one, and

one nonzero diagonal entry can be assumed to be one (if such exists).

The zero forcing number was introduced in [2] for simple graphs and extended

to loop graphs in [22]. Let G = (V,E) be a loop graph, with each vertex colored

either white or blue. If exactly one neighbor v of u is white, then change the color

of v to blue (the possibility that u = v is permitted); this is the color-change rule

for loop graphs. When the color-change rule is applied to u changing the color of v,

we say u forces v, and write u → v. Given an initial coloring of G, the final coloring

is the result of applying the color-change rule until no more changes are possible. A

zero forcing set for G is a subset of vertices B such that if initially the vertices in B

are colored blue and the remaining vertices are colored white, then all the vertices

of G are blue in the final coloring. The zero forcing number Z(G) is the minimum

cardinality of a zero forcing set B ⊆ V .

Theorem 1.4. [22] For every loop graph G, M(G) ≤ Z(G). If T is a forest, then

M(T) = Z(T).
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2. Low minimum rank. In this section, we characterize loop graphs having

minimum rank at most two. Minimum rank at most three was characterized for loop

graphs that have no loops in [16], where it was shown that:

• mr(G0) = 0 if and only if G0 has no edges.

• mr(G0) 6= 1.

• For G0 connected, mr(G0) = 2 if and only if G0 = Kn1,n2
with n1, n2 ≥ 1.

• For G0 connected, mr(G0) = 3 if and only if G0 = Kn1,n2,...,nt
with t ≥ 3 and

ni ≥ 1 for i = 1, . . . , t.

Observation 2.1. A loop graph G has mr(G) = 0 if and only if G = Kn, and

mr(G) = 1 if and only if G = Ks ∪̇Kr with s ≥ 1 and r ≥ 0.

We extend Barrett, van der Holst, and Loewy’s characterizations of simple graphs

having minimum rank at most two to loop graphs, but with a different set of forbidden

induced subgraphs, the set Fmr2 shown in Figure 2.1 (see Theorem 2.3 below).

Fig. 2.1. The set Fmr2 = {F1, . . . ,F10} of forbidden induced subgraphs for minimum rank at

most two.

Following the definitions of F -free and F -free for simple graphs in [5], we say a

loop graph G is F-free if G does not contain F as an induced subgraph, and for a set

F of loop graphs, G is F -free if G is F-free for all F ∈ F . The next theorem, due to

Barrett, van der Holst, and Loewy, will be used:
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Theorem 2.2. [5, Theorem 6] Let G be a simple graph. The following are

equivalent:

1. mr(G) ≤ 2.

2. G is {P4, dart, ⋉, K3,3,3, P3 ∪̇K2, 3K2}-free.

3. G =
(
Ks1 ∪̇Ks2 ∪̇Kp1,q1 ∪̇ · · · ∪̇Kpk,qk

)
∨Kr for some nonnegative s1, s2, k,

pi, qi, r with pi + qi ≥ 1 for i = 1, . . . , k.

The next theorem characterizes loop graphs having minimum rank at most two.

Theorem 2.3. Let G be a loop graph. The following are equivalent:

1. mr(G) ≤ 2.

2. G is Fmr2-free for the set Fmr2 of loop graphs shown in Figure 2.1.

3. G =
(
Ks1 ∪̇Ks2 ∪̇Kp1,q1 ∪̇ · · · ∪̇Kpk,qk

)
∨ Kr for some nonnegative s1, s2, k,

pi, qi, r with pi + qi ≥ 1 for i = 1, . . . , k.

4. G =
(
Ks1,s2 ∨ (Kp1

∪̇Kq1 ) ∨ · · · ∨ (Kpk
∪̇Kqk )

)
∪̇Kr for some nonnegative

s1, s2, k, pi, qi, r with pi + qi ≥ 1 for i = 1, . . . , k.

Proof. We modify conditions (3) and (4) by removing the isolated vertices from

the latter:

G = Ks1 ∪̇Ks2 ∪̇Kp1,q1 ∪̇ · · · ∪̇Kpk,qk (2.1)

for some nonnegative s1, s2, k, pi, qi with pi + qi ≥ 1 for i = 1, . . . , k and k ≥ 1 or

s1, s2 ≥ 1, and

G = Ks1,s2 ∨ (Kp1
∪̇Kq1) ∨ · · · ∨ (Kpk

∪̇Kqk ) (2.2)

for some nonnegative s1, s2, k, pi, qi with pi + qi ≥ 1 for i = 1, . . . , k and k ≥ 1 or

s1, s2 ≥ 1. We prove that conditions (1), (2), (2.1), and (2.2) are equivalent for loop

graphs with positive minimum degree. The result then follows, since taking a disjoint

union of G and Kr is equivalent to bordering a matrix M ∈ S(G) with blocks of zeros.

So, henceforth we assume δ(G) ≥ 1.

(1)⇒(2) Every graph in Fmr2 has minimum rank greater than two. So, if G

contains some Fi ∈ Fmr2 as an induced subgraph, then mr(G) ≥ 3.

(2)⇒(2.1) Assume G is Fmr2-free. It is easy to check that any loop configuration

of any of the six graphs P4, dart, ⋉, K3,3,3, P3∪̇K2, and 3K2 contains at least one

induced subgraph in Fmr2 (see Appendix [7] for details). Thus, the associated simple

graph G of G is {P4, dart, ⋉, K3,3,3, P3 ∪̇K2, 3K2}-free, and so by Theorem 2.2,

G =
(
Ks1 ∪̇Ks2 ∪̇Kp1,q1 ∪̇ · · · ∪̇Kpk,qk

)
∨ Kr for some nonnegative s1, s2, k, pi, qi, r

with pi + qi ≥ 1 for i = 1, . . . , k.

Hence, G is of the form
(
Ks1,s2 ∨ (Kp1

∪̇Kq1)∨ · · · ∨ (Kpk
∪̇Kqk)

)
∪̇Kr and G is

G with a certain loop configuration. We show that without loss of generality we may
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assume r = 0. Since δ(G) ≥ 1, every vertex in Kr must have a loop. Suppose first

that the simple graph of G is G = Kr. Since G is F1-free, r ≤ 2, and so G = K1 ∪̇K1

or G = K1, both of which have the required form. Now suppose that G = H ∪̇ (Kr)
ℓ

with |H| ≥ 1 and r ≥ 1. Since G is {F2,F3}-free, every non-loop edge of H must have

loops on both of its endpoints. Since δ(G) ≥ 1 and G is F1-free, H can have at most

one connected component and r = 1. If H 6= Ks, then there would be some pair of

vertices v and u such that H does not contain the edge uv, in which case G would

contain F1. So H = Ks, and G = Ks ∪̇K1, which has the required form. Since the

cases with r ≥ 1 all have the required form, we now assume r = 0.

Thus, we assume G has the form Ks1,s2 ∨ (Kp1
∪̇Kq1) ∨ · · · ∨ ( Kpk

∪̇Kqk) with

some loop configuration, so the complement of G is Ks1 ∪̇Ks2 ∪̇Kp1,q1 ∪̇ · · · ∪̇Kpk,qk

with the complementary loop configuration. A loop graph is Fmr2-free if and only if

its complement is Hmr2-free for the set Hmr2 shown in Figure 2.2.

Fig. 2.2. The set Hmr2 = {H1, . . . ,H10} of complements of forbidden induced subgraphs for

minimum rank ≤ 2, where Hi is the complement of Fi in Figure 2.1.

Consider a matrix M ∈ S(G), which has the form

M =




A1

A2

B1

. . .

Bk



,

where Ai ∈ S(Ksi), Bi ∈ S(Kpi,qi), and all other entries are zero. We now want

to consider the diagonals of these block matrices of type A, representing a complete
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simple graph, and type B, representing a complete bipartite simple graph, given

that G does not contain any of the subgraphs H1, . . . ,H10 of Figure 2.2. With the

allowed forms of block matrices, we show M ∈ S(Ks1 ∪̇Ks2 ∪̇Kp1,q1 ∪̇ · · · ∪̇Kpk,qk) for

appropriate si, pi, qi, k.

A matrix of type A represents a complete simple graph, so all off-diagonal entries

are nonzero. If there are three loopless vertices in the complete graph, the graph

contains H1. So the zero-nonzero pattern of a matrix of type A have one of the three

following forms Aα, α ∈ {a, b, c}:

Aa =



∗ · · · ∗

.

.

.
. . .

.

.

.

∗ · · · ∗


 , Ab =




0 ∗ · · · ∗

∗ ∗ · · · ∗

.

.

.

.

.

.
. . .

.

.

.

∗ ∗ · · · ∗


 , Ac =




0 ∗ ∗ · · · ∗

∗ 0 ∗ · · · ∗

∗ ∗ ∗ · · · ∗

.

.

.

.

.

.

.

.

.
. . .

.

.

.

∗ ∗ ∗ · · · ∗



.

Let sα denote the dimension of the matrix Aα for α ∈ {a, b, c}. Notice that the

graphs corresponding to Ab and Ac already contain a K2 with one loop if sb ≥ 2

and sc ≥ 3. If we take the disjoint union one of these graphs with any other graph,

the union will contain H5 or H6. So if Ab appears, then M = Ab, and similarly for

Ac. Observe that if M = Ab with sb ≥ 2 or M = Ac with sc ≥ 3, then δ(G) = 0.

So, we need consider only Aa of any size, Ab with sb = 1 (this matrix represents

an isolated vertex without a loop), and Ac with sc = 2 (this matrix represents two

isolated vertices without loops).

A matrix of type B represents a Kp,q with a certain number of loops. We cannot

have more than two vertices with loops in either one of the partition sets, because

the vertices of a partition are not connected and with at least 3 loops in one partition

set, G(B) would contain H4. Therefore B must have one of the following six forms:

Ba =




∗ · · · ∗

.

.

.
. . .

.

.

.

∗ · · · ∗

∗ · · · ∗

.

.

.
. .
.

.

.

.

∗ · · · ∗




, Bb =




∗ ∗ · · · ∗

.

.

.
. . .

.

.

.

∗ · · · ∗

∗ · · · ∗

.

.

.
. .
.

.

.

.

∗ · · · ∗




,
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Bc =




∗ ∗ · · · ∗

∗

.

.

.
. .
.

.

.

.

∗ · · · ∗

∗ · · · ∗

.

.

.
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, Bd =



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∗ · · · ∗

∗ · · · ∗ ∗
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

,

Be =




∗ ∗ · · · ∗

∗

.

.

.
. . .

.

.

.

∗ · · · ∗

∗ · · · ∗ ∗

.
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.
. . .

.

.
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∗ · · · ∗




, Bf =




∗ ∗ · · · ∗

∗

.

.

.
. . .

.

.

.

∗ · · · ∗

∗ · · · ∗ ∗

∗

.

.

.
. .
.

.

.

.

∗ · · · ∗




.

Let pβ and qβ be the number of vertices in the two partitions for β ∈ {a, b, c, d,

e, f}. Notice that if we allow either pβ or qβ to be zero, the corresponding matrix

represents a union with isolated vertices (with or without loops). Since we handle

this case separately, here we assume pβ ≥ 1 and qβ ≥ 1. If the matrices other than

Ba are too big, we show that the corresponding bipartite graphs have an induced H2

or H3, and so are prohibited:

If pb ≥ 2, then G(Bb) contains H3 (since we assume qb ≥ 1). For pb = 1, qb ≥ 1,

G(Bb) contains a K2 with one loop. Thus, in this case we cannot have a union

with other graphs because the union would contain H5 or H6, so M = Bb. But

G(Bb) = K1 ∨ Kqb , so δ(G) = 0 and this case is excluded.

By construction of Bc, pc ≥ 2, so G(Bc) contains H2 (since we assume qc ≥ 1),

and this case is excluded.

If pd ≥ 2 and qd ≥ 2, G(Bd) contains H3, so without loss of generality pd = 1. If

qd ≥ 2 the corresponding graph contains a K2 with one loop and can therefore not be

in a union with another graph, and as for Bb this case is excluded. So Bd can only

appear with pd = 1, qd = 1, and G(Bd) = K2.

By construction of Be, pe ≥ 2. For qe ≥ 2, G(Be) contains H2. So Be can only

appear with pe ≥ 2 and qe = 1. But then G(Be) contains an induced Pℓ
3. So if

we have a union of G(Be) with another graph, the union contains H4 or H9. Thus,

M = Be and G(Be) = (K1 ∪̇K1 ∪̇K1 ∪̇ · · · ∪̇K1) ∨ K1, so δ(G) = 0 and this case is

excluded.
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Also notice that G(Bf ) already contains H10, so Bf does not appear.

Thus, the types of B matrices that can occur are Ba for any size, Bd for pd = 1,

qd = 1 (so G(Bd) = K2), or matrices that represent isolated vertices, with a total of

at most two loops.

We can consider Bd with pd = 1, qd = 1, and an isolated vertex with a loop, as

being type Aa. Isolated vertices without loops can be viewed as type Ba with qa = 0

(which we now allow). Thus, all permissible forms of M can be constructed using

only blocks of type Aa and Ba. If we take a block diagonal matrix that includes

nonzero diagonal entries in three distinct blocks, the graph contains an induced H4.

Therefore we can only combine blocks such that at most two of the Aa blocks appear.

To summarize, we can combine up to two matrices of type Aa with a arbitrary number

of matrices of type Ba. Hence, G(M) has the required form (2.1).

(2.1)⇔(2.2) is immediate and (2.2)⇒(1) follows from the proof of [5, Theorem 2],

because the construction of a matrix C ∈ S(Ks1,s2 ∨ (Kp1
∪̇Kq1)∨· · ·∨ ( Kpk

∪̇Kqk))

with rankC ≤ 2 actually shows C ∈ S(Ks1,s2 ∨ (Kp1
∪̇Kq1) ∨ · · · ∨ ( Kpk

∪̇Kqk)).

3. High minimum rank.

In this section, we extend the characterization of minimum rank equal to order

for loopless loop graphs given in [16] to all loop graphs.

Theorem 3.1. For every loop graph G, mr(G) = |G| if and only if G has a

unique spanning composite cycle.

Proof. If G has a unique spanning composite cycle, then detA 6= 0 for all A ∈

S(G), so mr(G) = |G|. Now suppose that mr(G) = |G|. If G is a loop graph without

loops, then mr(G) = mr0(G), whereG denotesG viewed as a simple graph and mr0(G)

is the zero diagonal minimum rank as defined in [16], and the result is established

by Theorem 3.9 of the same paper. Thus, we are left to consider the case when G

contains at least one loop. Suppose there is a loop graph G with mr(G) = |G| that

does not have a unique spanning composite cycle. Let H∗ = (V∗, E∗) be a minimum

counterexample in the sense that every loop graph G on fewer than |H∗| vertices

having mr(G) = |G| necessarily has a unique spanning composite cycle, and every

loop graph on |H∗| vertices with fewer edges also has this property. Denote the order

of H∗ by n∗. Next, observe that H∗ has at least two spanning composite cycles, since

at least one spanning composite cycle is guaranteed by Remark 1.1.

Now let v be a vertex in H∗ such that ℓ := vv ∈ E(H∗). If ℓ is contained

in every spanning composite cycle of H∗, then by deleting ℓ and v, there is a one-

to-one correspondence between the spanning composite cycles of H∗ and those of

H∗ − v, so H∗ − v has at least two spanning composite cycles. We obtain A(v) ∈
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S(H∗ − v) from A ∈ S(H∗) by deleting the row and the column corresponding to

v. Moreover, detA(v) = 1
avv

detA 6= 0. Therefore, H∗ − v does not have a unique

spanning composite cycle and mr(H∗ − v) = |H∗ − v|, violating the minimality of H∗.

Similarly, if no spanning composite cycle contains ℓ, then H∗ and H∗−ℓ have the same

set of spanning composite cycles. In this case, we obtain S(H∗− ℓ) by setting the v, v-

entry of each matrix in S(H∗) to zero. Since ℓ does not participate in any spanning

composite cycle, this action does not affect the determinant. Again, H∗−ℓ is a smaller

counterexample. Thus, we are left to consider the case when H∗ has both a spanning

composite cycle C(1) that contains ℓ and a spanning composite cycle C(2) that doesn’t

contain ℓ. Let t = |E∗| and Y = [yuw] be a symmetric matrix of indeterminates

x1, x2, . . . , xt such that G(Y ) = H∗ (so uw ∈ E∗ implies yuw = ywu = xi for some xi);

without loss of generality, let yvv = x1. Then the determinant of Y is a homogeneous

polynomial of degree n∗ in x1, x2, . . . , xt and we can express it as

detY = x1p(x2, . . . , xt) + q(x2, . . . , xt)

Further, since ℓ ∈ C(1) and ℓ 6∈ C(2), neither p(x2, . . . , xt) nor q(x2, . . . , xt) is iden-

tically zero. Hence, p(x2, . . . , xt)q(x2, . . . , xt) 6≡ 0. Thus, by [16, Lemma 3.4], there

exist nonzero real numbers c2, . . . , ct such that p(c2, . . . , ct)q(c2, . . . , ct) 6= 0. Now

define the matrix A by replacing yuw = xi with ci for i = 2, . . . , t and yvv = x1

with −q(c2,...,ct)
p(c2,...,ct)

. Then A ∈ S(H∗) and detA = 0 so mr(H∗) ≤ rankA ≤ n∗ − 1,

contradicting our assumption that mr(H∗) = n∗.

Remark 3.2. If G does not have a unique spanning composite cycle and there

is a vertex u of G such that G − u has a unique spanning composite cycle, then

mr(G) = |G| − 1.

Example 3.3. The converse of Remark 3.2 is false because Pℓ
4, the path on four

vertices with a loop at each vertex, has mr(Pℓ
4) = 3 but every induced subgraph on

3 vertices has minimum rank 2.

4. Schur complement reduction. In this section, we use the Schur comple-

ment to develop a reduction lemma that allows the removal of two vertices, reducing

the order of the graph. This technique was used in [24]. The next result is well known.

Lemma 4.1. [26, p. 217] Suppose that A ∈ R
k×k is invertible, B ∈ R

(n−k)×k,

and D ∈ R
(n−k)×(n−k). Then

rank

[
A B⊤

B D

]
= rank

[
A 0

0 D −BA−1B⊤

]
= rankA+ rank(D −BA−1B⊤)

For a loop graph G that does not have an edge between vertices u and v (this

includes the case of a loop when u = v), G+uv denotes the loop graph obtained from
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G by adding edge uv. Analogously, if G does have edge uv , G− uv denotes the loop

graph obtained from G by deleting edge uv (again the loop uu is permitted).

Lemma 4.2. (P4 reduction) Suppose that in the underlying simple graph G of a

loop graph G, P = (x, y, z, w) is an induced path and degG y = degG z = 2. Let G′

be the loop graph obtained from G by deleting vertices y and z and adding an edge

between x and w.

(1) If neither y nor z has a loop in G, then mr(G) = mr(G′) + 2.

(2) If z has a loop in G but y does not, then

mr(G) =

{
mr(G′ + xx) + 2 if x does not have a loop;

min{mr(G′),mr(G′ − xx)} + 2 if x has a loop.

Proof. We can describe all cases as mr(G) = mr(H)+2, where H is G′ except with

a loop or no loop on x as specified. We establish the equality mr(G) = mr(H) + 2 by

showing that mr(G) ≥ mr(H)+2 and mr(G) ≤ mr(H)+2. Let n := |G| and define the

2× (n− 2) matrix B :=

[
1 0 0 · · · 0

0 1 0 · · · 0

]
. Order the vertices of G so that y, z, x, w

are the first four vertices (in that order), choose any order for the remaining vertices,

and let α := {y, z}.

For the lower bound on mr(G), we choose A = [aij ] ∈ S(G) with rankA =

mr(G) and partition A as

[
A[α] A[α, α)

A(α, α] A(α)

]
. By Remark 1.3 applied to the forest

T = ({x, y, z, w}, {xy, zw}), we may assume that A(α, α]⊤ = A[α, α) = B. Since y

is adjacent to z in G and in all cases y does not have loop in G, A[α] is invertible.

We then define C = A(α) − A(α, α]A[α]−1A[α, α) = A(α) − (A[α]−1 ⊕ 0). Note that

(A(α))xw = 0 since x and w are not adjacent in G, so Cxw = (A(α))xw−(A[α]−1)yz 6=

0. In each case we show that the loop configuration is such that C ∈ S(H). Then

rankA = rankC + 2 by Lemma 4.1, so mr(G) = rankA = rankC + 2 ≥ mr(H) + 2.

For the upper bound on mr(G), we choose a matrix C = [cij ] ∈ S(H) with

rankC = mr(H), noting that since x is adjacent to w in G′, so the entry cxw is nonzero.

We then construct a matrix A ∈ S(G) defined by A(α, α]⊤ = A[α, α) = B and

A(α) = C + A(α, α]A[α]−1A[α, α) = C + (A[α]−1 ⊕ 0). The choice of A[α] depends

on the case, but in all cases A[α] is invertible and (A[α])yz 6= 0; A[α] is chosen

so that (A(α))xw = Cxw + (A[α]−1)yz = 0. In each case we show that the loop

configuration is such that A ∈ S(G). Then rankA = rankC + 2 by Lemma 4.1, so

mr(G) ≤ rankA = rankC + 2 = mr(H) + 2.

Case (1): Neither y nor z has a loop in G. For the lower bound on mr(G), A[α] has

the form

[
0 ayz

ayz 0

]
and A[α]−1 =

[
0 1

ayz

1
ayz

0

]
, so C ∈ S(G′). For the upper bound
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on mr(G), define A[α] := −

[
0 1

cxw
1

cxw
0

]
, so A ∈ S(G).

Case (2): z has a loop in G but y does not. For the lower bound on mr(G), A[α] =[
0 ayz

ayz azz

]
, which is invertible with A[α]−1 = 1

detA[α]

[
azz −ayz

−ayz 0

]
. If x has no

loop, then the x, x-entry of C is 0 − azz

detA[α] , which is nonzero; if x has a loop, then

the x, x-entry of C is axx − azz

detA[α] , which can be zero or nonzero. Therefore,

mr(G) ≥

{
mr(G′ + xx) + 2 when x has no loop;

min{mr(G′),mr(G′ − xx)} + 2 when x has a loop.

For the upper bound on mr(G), when x has no loop, let C = [cij ] ∈ S(G′ +

xx) be a matrix with rankC = mr(G + xx). We define A[α] := −

[
cxx cxw

cxw 0

]−1

.

Then A ∈ S(G), establishing the upper bound in this subcase. Now assume that

x has a loop and let C = [cij ] be a matrix in S(G′) or S(G′ − xx) with rankC =

min{mr(G′),mr(G′ − xx)}. We define A[α] by

A[α] :=





−

[
1 cxw

cxw 0

]−1

when cxx = 0;

−

[
2cxx cxw

cxw 0

]−1

when cxx 6= 0.

Then A ∈ S(G), so mr(G) ≤ min{mr(G′),mr(G′ − xx)} + 2.

5. Minimum rank for families of graphs. In this section, we establish the

minimum rank of a loop graph consisting of a simple path Pn, cycle Cn, or com-

plete graph Kn with an arbitrary configuration of loops. We use the symbol Pn

(respectively, Cn) to denote Pn (respectively, Cn) with a given loop configuration,

and K
ℓ(s)
n to denote the loop graph obtained from the simple complete graph on n

vertices by adding a loop to each of s vertices (so n− s vertices do not have loops);

K
ℓ(n)
n = Kn. When the vertices are numbered 1 to n, we say a vertex or loop is odd

or even according as the number of its vertex is odd or even.

5.1. Path Pn. A path is a tree, so M(Pn) = Z(Pn) [22]; thus, mr(Pn) can be

computed by using the zero forcing number. Here we give an explicit characterization.

Given a path, a numbering of the vertices is defined by starting at one end with the

number 1 and proceeding along the path, numbering the vertices consecutively (so

Pn has two numberings). Observe that for n odd, the parity of a vertex is the same

in both numberings, whereas for n even the two numberings reverse the roles of odd
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and even in addition to reversing the order of the vertices.

Proposition 5.1. For n odd,

mr(Pn) =

{
n if Pn has is a unique odd loop;

n− 1 otherwise.

For n even,

mr(Pn) =

{
n if all odd loops of Pncome after all even loops;

n− 1 otherwise.

Proof. Note that n − 1 = mr(Pn) ≤ mr(Pn), and by Theorem 3.1, mr(Pn) = n

if and only if Pn has a unique spanning composite cycle. First suppose n is odd.

Each odd loop vv can be associated with one spanning composite cycle consisting of

that loop and the edges (with endpoints) in perfect matching(s) of the component(s)

of Pn − v, so Pn = n if and only if Pn has a unique odd loop. Now suppose n is

even. Then Pn has a spanning composite cycle consisting of alternate edges, and has

additional spanning composite cycles(s) if and only if Pn has an odd loop before an

even loop.

5.2. Cycle Cn. First note that n − 2 = mr(Cn) ≤ mr(Cn) (regardless of loop

configuration). Given a cycle, a numbering of the vertices is defined by selecting one

vertex to number 1 and proceeding around the cycle, numbering the vertices consec-

utively (a given cycle has many numberings). The property of having a numbering

with a unique odd loop is used to characterize mr(Cn), but first we need a lemma.

Lemma 5.2. mr(Cℓ
n) = n− 2.

Proof. The adjacency matrix ACn
has eigenvalues 2 cos(2πk

n
) for k = 1, . . . , n

[11]. For n 6= 4, cos(2π
n
) = cos

(
2π(n−1)

n

)
6= 0, so ACn

− 2 cos(2π
n
)I ∈ S(Cℓ

n) and

rank(ACn
− 2 cos(2π

n
)I) = n − 2 ≥ mr(Cℓ

n). For n = 4, A =




2 1 0 −1

1 1 −1 0

0 −1 2 −1

−1 0 −1 1


 ∈

S(Cℓ
4) and rankA = 2.

Observation 5.3. If n is even, then the underlying simple graph Cn is bipartite,

and Cn has a numbering with exactly one odd loop if and only if at least one of the

two partite sets has exactly one loop.
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Theorem 5.4.

mr(Cn) =





n if n is odd and Cn has no loops;

n− 1 if Cn has a numbering with exactly one odd loop;

n− 2 otherwise.

If mr(Cn) = n− 1 then there exists a vertex v such that Cn− v has a unique spanning

composite cycle. Furthermore, M(Cn) = Z(Cn) unless n is odd and Cn has no loops.

Proof. By Theorem 3.1, mr(Cn) = n if and only if Cn has a unique spanning

composite cycle. If n is odd and Cn is loopless, then Cn has a unique spanning

composite cycle and mr(Cn) = n. If n is odd and Cn has at least one loop, then Cn

has at least two spanning composite cycles (the cycle itself and a loop with a perfect

matching on the remaining vertices), so mr(Cn) ≤ n− 1. If n is even, then Cn has at

least three spanning composite cycles (the cycle itself and two perfect matchings), so

mr(Cn) ≤ n−1. If n is even and Cn has no loops, then mr(Cn) = mr0(Cn) = n−2 [16].

Henceforth, we assume Cn has a loop, and thus, n− 2 = mr(Cn) ≤ mr(Cn) ≤ n− 1.

Suppose Cn has a numbering with a unique odd loop; without loss of generality

this loop is at vertex 1. We apply Proposition 5.1 to Pn−1 := Cn − 2 to show that

mr(Cn − 2) = n − 1, implying mr(Cn) ≥ n − 1. We use the numbering of Pn−1

determined by fixing 1 and renumbering everything else. If n is even, the vertices

retain their parity under this renumbering and 1 is the only odd loop in Pn−1, which

has odd order. If n is even then fixing 1 and renumbering the remaining vertices

causes all other vertices to change parity. Since 1 is the only odd loop in Cn, there

are no even loops in Pn−1, which has even order, so vacuously every odd loop is after

every even loop.

Now assume that Cn has a loop and no numbering has a unique odd loop. We

show mr(Cn) = n− 2; note that this implies M(Cn) = Z(Cn) = 2, because any set of

two consecutive vertices is a zero forcing set. The proof that mr(Cn) = n − 2 is by

induction on the number of vertices using P4 reduction (Lemma 4.2). A numbering

on Cn naturally induces a numbering on C′
n by reducing every number greater than

those assigned to y and z by two (C′
n denotes the graph produced by the reduction);

this does not change the parity of any vertex or loop. Since P4 reduction reduces the

order by two, we consider n = 3 and n = 4 as the base cases. The case n = 3 is clear,

because mr(Cℓ
3) = 1 and Cℓ

3 is the only loop configuration with at least one loop and no

numbering having exactly one odd loop. For n = 4, the possible loop configurations

are all loops (i.e., Cℓ
4) or two nonadjacent loops; we denote the latter by C

(2)
4 . By

Lemma 5.2, mr(Cℓ
4) = 2. For C

(2)
4 , define A := AC4

+ diag(−1, 0, 1, 0) ∈ S(C
(2)
4 );

rankA = 2 so mr(C
(2)
4 ) = 2.
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Now assume the theorem holds for all k with 3 ≤ k ≤ n − 2 and consider Cn,

which by assumption has a loop and no numbering has a unique odd loop. If Cn = Cℓ
n,

then mr(Cn) = n−2 by Lemma 5.2. If Cn has two consecutive vertices without loops,

then we apply P4 reduction with y and z as loopless vertices; C′
n inherits the property

of not having a numbering with a unique odd loop, so we can apply the induction

hypothesis. So assume Cn has at least one vertex with no loop and does not have two

consecutive vertices without loops (in addition to assuming Cn has at least one loop

and no numbering has a unique odd loop). We consider the cases n even and n odd

separately.

Suppose first that n is even, so Cn is bipartite; denote the partite sets by X and

Y . In Cn, neither X nor Y has exactly one loop and without loss of generality Y has

a loopless vertex. Select a loopless vertex y ∈ Y and perform P4 reduction. Define

X ′ := X \ {z} and Y ′ := Y \ {y}. Note that Y ′ does not have exactly one loop. If X

has exactly two loops, they are on vertices x and z, so X ′ has no loops in C′
n − xx.

If X has more than two loops, then X ′ has at least two loops in C′
n. So in one of

C′
n − xx or C′

n, neither X ′ nor Y ′ has exactly one loop, and we can apply induction

to conclude that mr(C′
n − xx) = n− 4 or mr(C′

n) = n− 4 and thus mr(Cn) = n− 2.

Finally suppose n is odd and examine the loop configuration of Cn. We consider

maximal segments of consecutive vertices all having loops, which we call loop segments.

Recall that Cn has at least one loop and at least one vertex with no loop, does not

have two consecutive vertices without loops, and no numbering has a unique odd loop.

Because n is odd and n ≥ 5, these properties imply that Cn must have at least one of

the following: (i) A loop segment with at least 4 vertices. (ii) Three or more separate

loop segments with at least 2 vertices each. (iii) A loop segment with 3 vertices and

a separate loop segment with at least 2 vertices. Choose y to be a loopless vertex

adjacent to a loop segment with the greatest number of vertices, and let x denote the

neighbor of y in this loop segment. Apply P4 reduction to obtain C′
n. In each case,

C′
n has a loop segment with 4 or more vertices or has at least two loop segments with

2 or more vertices. Either of these is sufficient to imply every numbering has at least

two odd loops, so mr(C′
n) = n− 4 and thus mr(Cn) = n− 2.

To establish the last statement it suffices to assume Cn has a numbering with a

unique odd loop and exhibit a zero forcing set of one vertex; without loss of generality

the unique odd loop is at vertex 1. Then {2} is a zero forcing set: Since 2 is blue, 3

has exactly one white neighbor, 4, so 3 → 4. We continue this process with 2k + 1 →

2k + 2 as the kth force, for 1 ≤ k ≤ n−2
2 . Thus, all odd vertices except 1 are blue

after
⌊
n−2
2

⌋
forces. Then 1 → 1 if n is even and n → 1 if n is odd. Since there

are now two consecutive blue vertices, we can completely color the cycle. Thus,

1 ≥ Z(Cn) ≥ M(Cn) = 1.
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5.3. Complete graph Kn with deleted loops. The next result could be

proved entirely from [16, Theorem 2.4] and Proposition 6.8 below, but instead we

provide additional examples of optimal matrices.

Proposition 5.5.

mr(Kℓ(s)
n ) =






3 if 3 ≤ n− s;

2 if 1 ≤ n− s ≤ 2 ≤ n;

1 if n− s = 0 and 1 ≤ n;

0 if n− s = 1 = n.

Proof. Let k := n− s and suppose first that k ≥ 3. Then K
ℓ(0)
3 (the loopless com-

plete graph on 3 vertices) is an induced subgraph of K
ℓ(s)
n , and mr(K

ℓ(0)
3 ) = mr0(K3) =

3 by [16, Theorem 2.4]. Thus, mr(K
ℓ(s)
n ) ≥ 3. For v ∈ R

n, let (v)i denote the ith

coordinate of v. Define the vectors v1 and v2 in R
n by

(v1)i :=

{
sin iπ

2(k+1) , if i ≤ k;

1 if i > k.
(v2)i :=

{
cos iπ

2(k+1) , if i ≤ k;

1 if i > k.

Also define v3 = 1n, where 1n is the all ones n-vector.

Then we claim the matrix A := v1v
⊤
1 + v2v

⊤
2 − v3v

⊤
3 is a matrix in S(K

ℓ(s)
n )

and rankA = 3. Since A is the sum of three rank one matrices, rankA is less than

or equal to 3. Therefore, it suffices to show A ∈ S(K
ℓ(s)
n ). For i, j ≤ k, (A)ij =

sin iπ
2(k+1) sin

jπ
2(k+1) + cos iπ

2(k+1) cos
jπ

2(k+1) − 1 = cos (i−j)π
2(k+1) − 1, which is zero only

when i = j. For i > k, j ≤ k (or j > k, i ≤ k), (A)ij = sin jπ
2(k+1) + cos jπ

2(k+1) − 1 6= 0.

For i > k, j > k, (A)ij = 1 + 1− 1 = 1.

In the case n ≥ 2 ≥ k ≥ 1, it is clear that mr(K
ℓ(s)
n ) ≥ 2, and a rank 2 matrix

may be constructed as follows (with Jm denoting the m × m all ones matrix): For

k = 1:

[
Jn−1 1n−1

1
⊤
n−1 0

]
. For k = 2:



2Jn−2 1n−2 1n−2

1
⊤
n−2 0 1

1
⊤
n−2 1 0


. In the case k = 0, n ≥ 1,

Jn has rank 1, and in the case k = 1 = n, the matrix [0] has rank 0.

6. Maximum rank and ranks in between.

In this section, we study the question of possible ranks for A ∈ S(G). It is well

known that for any simple graph G, the maximum possible rank is the order of G, and

every rank between the minimum and maximum ranks is realized by some A ∈ S(G).

However, this is not true in the case of loop graphs. Given a loop graph G, we say

that G allows rank r if there is a matrix A ∈ S(G) such that rankA = r, in which
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case A is said to realize rank r for G. The maximum rank of a loop graph G is

MR(G) = max{rankA : A ∈ S(G)}.

A sign pattern matrix is a matrix with entries in {+,−, 0} and a zero-nonzero

pattern matrix is a matrix with entries in {∗, 0}; here we consider only symmetric

patterns. An order n loop graph G is uniquely associated with an n×n zero-nonzero

pattern matrix YG = [yuv], where yuv = ∗ if uv ∈ E(G), and yuv = 0 otherwise. Each

zero-nonzero pattern matrix Y describes a (finite) set of sign pattern matrices SY ,

where S = [suv] ∈ SY if and only if suv = 0 ⇔ yuv = 0. Taking the maximum rank

over a set of matrices described by a zero-nonzero pattern matrix is equivalent to

taking the maximum of the maximum ranks over all sign pattern matrices described

by the zero-nonzero pattern matrix. Note that what we denote by MR for a loop graph

(namely the maximum rank over symmetric matrices described by G) is denoted by

SMR when applied to a sign pattern or zero-nonzero pattern, to emphasize that only

symmetric matrices are permitted, whereas MR does not require the matrices to be

symmetric even when the pattern matrix is. There is substantial body of literature

about sign patterns and their minimum and maximum ranks that can be applied

(see [18, Section 42.6]). It is known that for a symmetric sign pattern matrix S,

SMR(S) = MR(S) [19]. So for a zero-nonzero pattern Y , SMR(Y ) = MR(Y ).

The term-rank of a zero-nonzero or sign pattern matrix is the maximum number of

nonzero entries no two of which are in the same line (same row or same column). For

a sign-pattern S, MR(S) is equal to the term-rank of S [18, Fact 42.6.1]. A composite

cycle of order k in G immediately yields a collection of nonzero entries of YG with

no two in the same line, by choosing yuu for a loop at vertex u, yuv and yvu for edge

uv, and yu1,u2
, yu2,u3

, . . . , yut−1,ut
, yut,u1

for the cycle (u1, . . . , ut, u1). In a symmetric

pattern matrix, a set of k nonzero entries yr1,c1 , . . . , yrk,ck of YG with no two in the

same line yields a composite cycle of order at least k. To see this, note that the entry

yr1,c1 can be associated with the arc (r1, c1) in a digraph on the vertices {1, . . . , n}.

Since no two of the entries are in the same line, the in-degree and out-degree of each

vertex is at most one. Thus, each (weakly) connected component of the digraph is a

directed path or directed cycle (allowing 1-cycles and 2-cycles as well as k-cycles with

k ≥ 3). A directed cycle can be taken as part of a composite cycle (as a loop, edge, or

cycle). Because the pattern is symmetric, a directed path on the vertices u1, . . . , ut

can be replaced by the graph edges u2i−1u2i, i = 1, . . . , ⌊ t
2⌋. The directed path has

t− 1 directed edges (nonzero entries in YG), and the ⌊ t
2⌋ graph edges cover t− 1 (if

t is odd) or t (if t is even) vertices. Thus, SMR(YG) = MR(YG) = term-rank(YG) =

the maximum order of a composite cycle of G. The next result follows from these

equalities; it is also easily derivable from (1.1).
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Proposition 6.1. Let G be a loop graph and let m denote the maximum order

of a composite cycle of G. Then MR(G) = m.

Because the maximum order of a composite cycle of a subgraph is less than or

equal to the maximum order of a composite cycle of a graph, the next corollary is

immediate.

Corollary 6.2. If H is a subgraph of G, then MR(H) ≤ MR(G).

If B is a (necessarily loopless) bipartite graph, then rankB is even for all B ∈

S(B) [16], so it is possible for a loop graph G to allow rank k, not allow rank k + 1,

and allow k + 2. But it is not possible for G to allow rank k, not allow rank k + 1,

not allow rank k + 2, and allow k +m for some m ≥ 3. The next proposition follows

from [17, Theorem 5.4].

Proposition 6.3. Suppose mr(G) ≤ k ≤ MR(G)− 1 Then G must allow rank k

or rank k + 1.

If G does not have a composite cycle of order r, then G does not allow rank

r, because Sr(A) = 0 for all A ∈ S(G) (see Remark 1.1). Thus, it follows from

Proposition 6.3 that for every k between mr(G) and MR(G) − 1, G must have a

composite cycle of order k or order k+1. But this can be shown for all k ≤ MR(G)−1

(not just those greater than the minimum rank) by a different method.

Remark 6.4. Let A be a real symmetric matrix. If all principal submatrices of

A of order k and k + 1 are singular, then rankA ≤ k − 1. This was established in

[8] by a technical proof, and in [4] it was observed that it follows from the fact that

for any real symmetric matrix A, rankA is the maximum k such that A has a k × k

nonsingular matrix [15, Corollary 8.9.2], and the fact that adding a row and column

adds at most two to the rank.

Proposition 6.5. Suppose G has neither a composite cycle of order k nor a

composite cycle of order k + 1. Then G does not have a composite cycle of order m

for all m ≥ k, and MR(G) ≤ k − 1.

Proof. Since G has neither a composite cycle of order k nor a composite cycle of

order k + 1, for A ∈ S(G), all principal submatrices of A of order k and k + 1 are

singular, so rankA ≤ k− 1. Thus, MR(G) ≤ k− 1, and by Proposition 6.1, G has no

composite cycle of order m ≥ k.

Of course it is possible for the characteristic polynomial of a particular matrix

to have several consecutive coefficients be zero and still have a nonzero determinant,

but this must be caused by cancellation of terms, not by absence of composite cycles.

Proposition 6.5 is not true for directed loop graphs: A loopless directed n-cycle has

an n-cycle and no other composite cycles.
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If G does not have a composite cycle of order r, then G does not allow rank r. In

a bipartite loop graph (which necessarily has no loops), all composite cycles are even.

The next example is a nonbipartite loop graph that has a gap in composite cycles

between minimum and maximum ranks, and thus necessarily has a gap in realizable

ranks.

Fig. 6.1. The graph G for Example 6.6 and its induced subgraph G′.

Example 6.6. Let G and G′ be the loop graphs shown in Figure 6.1. Since G

has a 3-cycle, G is not bipartite. We will show that mr(G) = 9, MR(G) = 12, but

there is no composite cycle of order 11, and thus, rank 11 is not realizable by any

matrix in S(G). Note that G is loopless and G′ is an induced subgraph of G. Since

G′ has a unique spanning composite cycle, 9 = mr(G′) ≤ mr(G). On the other hand,

the graph G can be covered by three copies of C0
4 and one C0

3, so

mr(G) ≤ 3mr(C0
4) + mr(C0

3) = 3 · 2 + 3 = 9.

As a consequence, mr(G) = 9. We can easily find composite cycles of orders 9, 10,

and 12 in G, implying MR(G) = 12. If G had a composite cycle C of order 11, then

C would contain an odd cycle or a loop, since 11 is odd. However, the triangle in the

center is the only odd cycle. But by choosing the triangle, we see that the order of C

must be less than or equal to 9. Hence, we cannot find a composite cycle of order 11,

and rank 11 is not realizable by any matrix in S(G). Finally, Proposition 6.3 ensures

rank 10 is realizable. In summary, the realizable ranks are 9, 10, and 12.

If G does not allow rank r for mr(G) < r < MR(G), does this imply the absence

of composite cycles of order r? The next example provides a negative answer.

Example 6.7. Let H be the loop graph P3 = (x, y, z), with a loop on y. Let Bn

be the loop graph obtained from H and Kn,n by identifying vertex z with a vertex of

Kn,n; B3 is shown in Figure 6.2. It can be seen that this graph Bn has a composite

cycle of every order ranging from 1 to 2n + 2 = |Bn|. Now we claim that the only

realizable ranks are {4, 6, . . . , 2n+2}. That is, no odd number between 4 and 2n+2

can be realized.

To see this, we set x and y to be the first and the second vertices and use Remark

1.3 to scale the matrix. Henceforth, we may assume any matrix A ∈ S(Bn) has the
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Fig. 6.2. An illustration of B3.

form

A =




0 1 0 0 · · · 0

1 1 1 0 · · · 0

0 1 0 0

.

.

.

0 0 0 0

.

.

.

.

.

.
. . .

0 0 · · · 0




+




0 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0

0 0 M

.

.

.

.

.

.

0 0




,

where M ∈ S(Kn,n). By subtracting the first row/column from the third row/column,

we obtain the matrix B :=

[
0 1

1 1

]
⊕ M , so rankB = rankA = rankM + 2. Since

we know M ∈ S(Kn,n) and the realizable ranks of M are {2, 4, . . . , 2n}, the realizable

ranks of Bn are

{2, 4, . . . , 2n}+ 2 = {4, 6, . . . , 2n+ 2}.

We now consider adding a new vertex adjacent to all existing vertices. The ideas

in the proof are similar to those in [16, Theorem 4.6], but since we expand it to include

the case of a new vertex with a loop, we include the brief proof.

Proposition 6.8. Suppose H is a loop graph of order n such that δ(H) ≥ 1, and

that the graph G is constructed from H by joining a single vertex v (with or without a

loop) to H. Suppose H allows rank k. Then G allows rank k + 1, and if v has a loop

then G allows rank k.

Proof. Given A ∈ S(H) with rankA = k, we can construct a matrix Ã in S(G)

with rank Ã = k+1 as follows, and if the new vertex v has a loop, the rank k matrix

B constructed is also in S(G). Without loss of generality, let the new vertex be n+1.

Since δ(H) ≥ 1, every row of A has a nonzero entry. By [16, Lemma 4.5], we can

choose a real vector x such that every entry of Ax is nonzero and x⊤Ax 6= 0. Let

B :=

[
A Ax

x⊤A x⊤Ax

]
. Then rankB = rankA = k, and if v has a loop B ∈ S(G).
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We can change the entry x⊤Ax to either 0 or 2x⊤Ax so that Ã =

[
A Ax

x⊤A 0

]
or

Ã =

[
A Ax

x⊤A 2x⊤Ax

]
. Then Ã ∈ S(G) and rank Ã = k + 1.

Corollary 6.9. K
ℓ(s)
n allows all ranks r such that mr(K

ℓ(s)
n ) ≤ r ≤ n =

MR(K
ℓ(s)
n ).

Proof. By Proposition 6.8, when we add a vertex with a loop, we may choose

to leave the rank unchanged or increase it by one. Suppose first that n − s ≥ 3.

Consider the induced subgraph obtained by taking all of the loopless vertices; this

subgraph is K
ℓ(0)
n−s. Since the subgraph has no loops, it must allow all ranks r such

that mr(K
ℓ(s)
n ) = 3 ≤ r ≤ (n− s) by Corollary 4.7 in [16]. Then K

ℓ(s)
n can be obtained

by joining s looped vertices to K
ℓ(0)
n−s without raising the rank, so K

ℓ(s)
n allows rank r

for all r such that mr(K
ℓ(s)
n ) ≤ r ≤ (n− s). For r with (n− s) ≤ r ≤ n, construct an

(n−s)×(n−s) matrix with full rank in S(K
ℓ(0)
n−s). By joining r−(n−s) looped vertices

while increasing rank by one at each step, we obtain a rank r matrix in S(K
ℓ(r−(n−s))
n−s ).

We then join (n− r) additional looped vertices to obtain K
ℓ(s)
n without increasing the

rank. Therefore, K
ℓ(s)
n allows all ranks r such that mr(K

ℓ(s)
n ) ≤ r ≤ n = MR(K

ℓ(s)
n ).

The case n− s ≤ 2 is similar.

Observation 6.10. Since n − 1 ≤ mr(Pn) ≤ MR(Pn) ≤ n, Pn trivially allows

all ranks r such that mr(Pn) ≤ r ≤ MR(Pn).

7. Additional topics and future research. In this section, we discuss exten-

sions to loop graphs of additional results for simple graphs and pose open questions

for future research.

7.1. Extreme minimum rank. Recall that a loop graph has minimum rank

equal to its order if and only if it has a unique spanning composite cycle. It is

well-known that for a simple graph G, mr(G) = |G| − 1 if and only if G is a path.

Question 7.1. What loop graphs G have mr(G) = |G| − 1?

Results in Section 5 characterize the loop configurations of paths and cycles with

minimum rank one less than order, but in general the question is open.

Minimum rank three has been characterized for loopless loop graphs (zero diag-

onal minimum rank) in [16] and it may be productive to investigate minimum rank

three for other loop configurations (such as all loops).

Question 7.2. What loop graphs G have mr(G) = 3?

However, it is known that for simple graphs there is an infinite family of forbidden

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 907-934, December 2014



ELA

930 C. Bozeman et al.

induced subgraphs for minimum rank three [20].

7.2. Minimum rank of additional families and small loop graphs. The

AIM Minimum Rank Catalog [1] lists the minimum rank of more than forty families

of graphs. Extensions of these results to loop graphs could be investigated, including

some very well-known graphs such as complete bipartite graphs.

Since the question of whether a loop graph has minimum rank equal to zero or

one is easily answered, by applying the forbidden subgraph test one can determine for

a loop graph whether minimum rank is equal to 0, 1, 2, or is ≥ 3. For any loop graph

of order n the unique spanning composite cycle test determines whether the graph

has minimum rank n or ≤ n − 1. These tests immediately determine the minimum

rank of all loop graphs of order at most four. Furthermore, if the zero forcing number

lower bound equals the unique spanning composite cycle test upper bound, then the

minimum rank is determined. These bounds have been implemented in the program

[23], and work continues to add additional methods to this program, such as checking

for graphs for which the minimum rank can be determined by other methods discussed

in this paper, such as trees (mr(T) = |T| − Z(T)) and cycles (Theorem 5.4), and

applying cut-vertex reduction [25] and P4 reduction (Lemma 4.2). This will give

the software the capability to determine the minimum rank of most loop graphs of

order five and possibly order six, at which point it may be feasible to complete the

determination of minimum rank of loop graphs of order five (or six) by construction

of matrices realizing the lower bounds, as was done for simple graphs of order at most

seven in [13].

7.3. No useful Colin de Verdière type parameters. In this section, we

present an example that shows that a Colin de Verdière type parameter, i.e. a minor

monotone lower bound on maximum nullity defined using the Strong Arnold Hypoth-

esis, is unlikely to exist. Definitions of Colin de Verdière type parameters, minor

monotonicity, and the Strong Arnold Hypothesis can be found in [3] or [14].

Example 7.3. Let H be the party hat graph in Figure 7.1. Then {1} is a zero

forcing set for H with a forcing process 4 → 5, 6 → 2, 3 → 3, 1 → 4, 2 → 6. Thus,

M(H) ≤ Z(H) ≤ 1. But H contains K3 and M(H) = 1 < 2 = 3− 1 = M(K3).

Since any matrix that has all entries nonzero, including a rank one matrix, sat-

isfies the Strong Arnold Hypothesis, the Strong Arnold Hypothesis does not seem to

imply minor monotonicity for loop graphs. Example 7.3 also implies that any minor

monotone parameter β with β ≤ M must have β(K3) ≤ 1, so any minor monotone

parameter below M seems unlikely to be useful.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 907-934, December 2014



ELA

Minimum Rank of Graphs With Loops 931

1

2

3

45

6

Fig. 7.1. The party hat graph H for Example 7.3.

7.4. GCC is not true for loop graphs. The Graph Complement Conjecture

(GCC) for simple graphs [14] is

mr(G) + mr(G) ≤ |G|+ 2.

GCC is not true for loop graphs, as the next example shows.

Example 7.4. Consider the path on 4 vertices P4 with loops on the two middle

vertices, which is shown in Figure 7.2. Observe that P4 is self complementary and

mr(P4) = 4 by Proposition 5.1, so

mr(P4) + mr(P4) = 4 + 4 = 8 > 6 = |P4|+ 2.

Fig. 7.2. The graph P4 for Example 7.4.

However, the question of whether there is a bound with a different additive con-

stant remains open (see [9] for the analogous question for simple graphs).

Question 7.5. Does there exist a positive integer d such that for all G,

mr(G) + mr(G) ≤ |G|+ d?
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Example 7.4 shows that if such d exists then d ≥ 4.

7.5. The δ Conjecture is not true for loop graphs. The δ Conjecture for

simple graphs [14] is δ(G) ≤ M(G). The δ Conjecture is not true for loop graphs,

because δ(C0
3) = 2 > 0 = M(C0

3). Since in the loopless case, we are reducing the

minimum number of nonzero entries per row, arguably the “δ Conjecture for loop

graphs” should be δ(G) − 1 ≤ M(G). However, C0
3 (or any odd cycle with no loops)

is still a counterexample, and illustrates the importance of symmetry (there is a

nonsymmetric matrix with the same nonzero pattern and rank two).

7.6. Minimum rank over other fields. In this section, we discuss extension

of our results in prior sections to fields other than the real numbers.

Low minimum rank over other fields. Barrett, van der Holst, and Loewy’s

characterization of minimum rank at most two (quoted here in Theorem 2.2) applies

to all infinite fields of characteristic not two, and the proof of Theorem 2.3 remains

valid for infinite fields of characteristic not two, characterizing loop graphs having

minimum rank at most two over such fields.

Barrett, van der Holst, and Loewy also have characterizations for infinite fields

of characteristic two [5] and for finite fields [6]. These results provide tools that

may allow characterizing minimum rank at most two over finite fields or fields of

characteristic two.

High minimum rank over other fields. For minimum rank equal to order

of the loop graph, the situation is entirely different for fields of characteristic two,

because a k-cycle with k ≥ 3 does not contribute to the determinant due to the fact

that a k-cycle contributes 2 ≡ 0 (mod 2) equal terms. For example, if charF = 2,

then mrF (C0
2s+1) = 2s, despite the fact that C0

2s+1 has a unique spanning composite

cycle.

In addition to assuming characteristic not two, the proof that a loopless loop

graph has minimum rank equal to its order if and only if it has a unique spanning

composite cycle [16, Theorem 3.9] uses the fact that we can find nonzero field elements

producing a nonzero value of a polynomial [16, Lemma 3.4]; this property is valid for

infinite fields. But the proof of [16, Theorem 3.9] also uses the quadratic formula to

extract a square root within the field [16, Lemma 3.5]. In the real numbers this is

achieved by showing that the number whose square root is being extracted can be

made positive. Thus, the proof does not immediately extend to proper subfields of the

real numbers, such as the rationals. But it does extend to algebraically closed fields of

characteristic not two (which are necessarily infinite). The proof of our Theorem 3.1

generalizing this to all loop graphs remains valid for any infinite field of characteristic
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not two whenever the loopless base case is established. Thus, Theorem 3.1 is valid for

algebraically closed fields of characteristic not two, in addition to the real numbers.

Question 7.6. Is there an example of loop graph G that does not have a unique

spanning composite cycle and a (finite) field F with charF 6= 2 such mrF (G) = |G|?

Such an example, if one exists, is likely loopless, since if there is a loop that is

in one spanning composite cycle and not in another then mrF (G) < |G| (because one

can solve a linear equation).

Schur complement techniques over other fields. The use of the Schur com-

plement in Lemma 4.1 is well known to be valid over any field. The proof of Lemma

4.2 (P4 reduction) remains valid over any field with at least 3 elements; the only case

where 3 are needed is in the construction of A[α] for the upper bound in the case

cxx 6= 0, where we need to avoid both 0 and −cxx.

Maximum and realizable ranks over other fields. Much of the discussion

in Section 6 relies on composite cycles, so we assume charF 6= 2. An infinite field

suffices to ensure that any polynomial that is not identically zero can be made nonzero

by a choice of values. With the exception of Corollary 6.9, all the results in Section 6

are valid for infinite fields of characteristic not two. Corollary 6.9 is valid for all fields

of characteristic zero, because the proof of the loopless case in [16] constructs integer

matrices.
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Meulen, and A. Wangsness). Zero forcing sets and the minimum rank of graphs. Linear

Algebra Appl., 428:1628–1648, 2008.

[3] F. Barioli, W. Barrett, S. Fallat, H.T. Hall, L. Hogben, B. Shader, P. van den Driessche, and

H. van der Holst. Parameters related to tree-width, zero forcing, and maximum nullity of

a graph. J. Graph Theory, 72:146–177, 2013.

[4] W. Barrett, S. Butler, M. Catral, S.M. Fallat, H.T. Hall, L. Hogben, P. van den Driessche, and

M. Young. The principal rank characteristic sequence over various fields. Linear Algebra

Appl., 459:222–236, 2014.

[5] W.W. Barrett, H. van der Holst, and R. Loewy. Graphs whose minimal rank is two. Electon.

J. Linear Algebra, 11:258–280, 2004.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 907-934, December 2014



ELA

934 C. Bozeman et al.

[6] W. Barrett, H. van der Holst, and R. Loewy. Graphs whose minimal rank is two: The finite

fields case. Electon. J. Linear Algebra, 14:32–42, 2005.

[7] C. Bozeman, AV. Ellsworth, L. Hogben, J.C.-H. Lin, G. Maurer, K. Nowak, A. Rodriguez,

and J. Strickland. Appendix to “Minimum rank of graphs with loops”. Available at

https://orion.math.iastate.edu/lhogben/research/LoopGraphAppendix.pdf.

[8] R.A. Brualdi, L. Deaett, D.D. Olesky, and P. van den Driessche. The principal rank characte-

ristic sequence of a real symmetric matrix. Linear Algebra Appl., 436:2137–2155, 2012.

[9] R. Brualdi, L. Hogben, and B. Shader. AIM Workshop on Spectra of Families of Matrices

Described by Graphs, Digraphs and Sign Patterns. Final report: Mathematical Results,

2007. Available at http://aimath.org/pastworkshops/matrixspectrumrep.pdf.

[10] G. Chen, F.J. Hall, Z. Li, and B. Wei. On ranks of matrices associated with trees. Graphs

Combin. 19:323–334, 2003.
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