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EIGENVALUE LOCALIZATION FOR COMPLEX MATRICES∗

IBRAHIM HALIL GÜMÜŞ† , OMAR HIRZALLAH‡ , AND FUAD KITTANEH§

Abstract. Let A be an n× n complex matrix with n ≥ 3. It is shown that at least n− 2 of the

eigenvalues of A lie in the disk
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where ‖A‖
2
, trA, and spd(A) denote the Frobenius norm, the trace, and the spread of A, respectively.

In particular, if A = [aij ] is normal, then at least n− 2 of the eigenvalues of A lie in the disk
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Moreover, the constant 3

2
can be replaced by 4 if the matrix A is Hermitian.
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1. Introduction. Let Mn(C) be the set of all n × n complex matrices. For a

matrix A ∈ Mn(C), let λj(A), j = 1, . . . , n, be the eigenvalues of A repeated according

to multiplicity, and let the symbols ‖A‖
2
and trA denote the Frobenius norm and

the trace of A, respectively. We have to keep in mind that the Frobenius norm is

unitarily invariant, that is, ‖UAV ‖
2
= ‖A‖

2
for all unitary matrices U, V in Mn(C)

and trA =
n
∑

j=1

λj(A).

An estimate for the eigenvalues of matrices [14] says that if A is an n × n real
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symmetric matrix, then
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for ℓ = 1, . . . , n. Moreover, a generalization of (1.1) for arbitrary matrices A ∈ Mn(C)

has been obtained in [11].

One of the interesting estimates that presents a refinement of (1.1) for nonnormal

matrices has been established in [12]. This refinement asserts that if A ∈ Mn(C),

then
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for ℓ = 1, . . . , n. An improvement of the bound for λℓ(A) − trA
n

given in (1.2) has

been established in [13], which asserts that if A ∈ Mn(C), then
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for ℓ = 1, . . . , n.

In this paper, we obtain bounds and localization results for the eigenvalues of

matrices. Our results, which involve the traces and the spreads of matrices, are

better than some known bounds and localization results. In particular, refinements

of (1.2) and (1.3) will be given.

2. Eigenvalue localization for nonnormal matrices. In this section, we

present refinements of (1.2) and (1.3) for nonnormal matrices. Throughout the paper,

we let the symbol Sℓ denote the set {1, . . . , n}\{ℓ} for ℓ = 1, . . . , n.

We start with the following result for scalars.

Lemma 2.1. Let z1, . . . , zn be complex numbers such that
n
∑

j=1

zj = 0. Then

|zℓ|2 +
1

2n

∑

j,k∈Sℓ

|zj − zk|2 =
n− 1

n

n
∑

j=1

|zj|2

for ℓ = 1, . . . , n.
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Proof. Let ℓ ∈ {1, . . . , n}. Then
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It follows from the identity (2.1) that
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as required.

Another result for scalars that we need is the following. Its proof is similar to

that of Lemma 2.1 and is left to the reader.

Lemma 2.2. Let z1, . . . , zn be complex numbers. Then
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Our first result is the following identity.

Theorem 2.3. Let A ∈ Mn(C) with n ≥ 3. Then
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Proof. Let zj = λj(A)− trA
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, j = 1, . . . , n. Then
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for ℓ = 1, . . . , n.

Also, we need the following bound for the eigenvalues of a given matrix

A ∈ Mn(C) [4].
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Lemma 2.4. Let A ∈ Mn(C). Then
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Remark 2.5. The bound given in Lemma 2.4 is sharper than the bounds:
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given earlier in [2] and [7], respectively. These bounds, in turn, are sharper than the

classical Schur’s inequality [15, p. 50].

Based on Theorem 2.3 and Lemma 2.4, we have the following localization result

for the eigenvalues of matrices. This result includes a refinement of (1.3).

Theorem 2.6. Let A ∈ Mn(C) with n ≥ 3. Then
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Proof. The result follows from Theorem 2.3 and Lemma 2.4.

We remark here that (2.3) has been obtained earlier in [13].

Applications of Theorem 2.6 are given in the following result. This result includes

a refinement of (1.2).
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Corollary 2.7. Let A ∈ Mn(C) with n ≥ 3. Then:
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Now, part (a) of the corollary follows from (2.3) and (2.6), while part (b) follows from

(2.4) and (2.7).
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given in (2.3) is sharper than that given in (2.4), which, in turn, is sharper than that
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This bound can be inferred from Lemma 2.4, (2.6), and (2.7), and it can also be

obtained from Theorem 2 in [3], concerning measures of nonnormality of matrices.

To give another application of Theorem 2.6, we need the following lemma [9].

Lemma 2.9. Let z1, . . . , zn be complex numbers. Then
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Based on Theorem 2.6 and Lemma 2.9, we have the following result. This result

presents another refinement of (1.3).

Corollary 2.10. Let A ∈ Mn(C) with n ≥ 3. Then
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for ℓ = 1, . . . ,m, where m is any integer satisfying rankA ≤ m ≤ n.

Another result analogous to (2.2) can be stated as follows.
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for ℓ = 1, . . . , n.
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Now, the result follows from Theorem 2.6 and (2.12).

The spread spd(A) of a matrix A ∈ Mn(C) is defined to be the maximum distance

between any two eigenvalues of A, that is,

spd(A) = max
j,k=1,...,n

|λj(A) − λk(A)| .

In the following result, we describe a disk that contains at least n − 2 of the

eigenvalues of a given matrix A ∈ Mn(C). A localization result for at least n − 2 of

the eigenvalues of A ∈ Mn(C) that improves (1.3) can be concluded from this result.
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Theorem 2.13. Let A ∈ Mn(C) with n ≥ 3. Then at least n−2 of the eigenvalues

of A lie in the disk
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∣

∣

∣

∣

2

+
n− 1

2n
spd2(A)

≤ n− 1

n







√

√

√

√

(

‖A‖2
2
− |trA|2

n

)2

− ‖A∗A−AA∗‖2
2

2






, (2.16)

and so
∣

∣

∣

∣

λℓ(A)−
trA

n

∣

∣

∣

∣

≤

√

√

√

√

√

√

n− 1

n







√

√

√

√

(

‖A‖2
2
− |trA|2

n

)2

− ‖A∗A−AA∗‖2
2

2
− spd2(A)

2






(2.17)

for all ℓ ∈ S. Since the set S contains n− 2 numbers, then (2.17) means that at least

n− 2 of the eigenvalues of A lie in the disk given in (2.13).

Remark 2.14. Theorem 2.13 guarantees that n− 2 of the eigenvalues lie in the

disk (2.13). The question that arise here is what about the remaining two eigenvalues.
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In fact, it is clear from the proof of Theorem 2.13 that the eigenvalues of the matrix

A ∈ Mn(C) where the spread is attained do not necessarily lie in the disk (2.13).

Moreover, if one of these eigenvalues is not simple, then according to the proof of

Theorem 2.13, we can see that this eigenvalue must lie in this disk.

The following lemma enables us to give a new bound for the eigenvalues of ma-

trices. The proof of this lemma follows by direct computations. We leave the details

for the interested reader.

Lemma 2.15. Let A ∈ Mn(C) with n ≥ 3. Then:

(a)
n
∑

j=1

∣

∣λj(A)− trA
n

∣

∣

2
=

n
∑

j=1

|λj(A)|2 − |trA|2

n
.

(b)
n
∑

ℓ=1

n
∑

j,k∈Sℓ

|λj(A)− λk(A)|2 = 2(n− 2)
∑

1≤j<k≤n

|λj(A)− λk(A)|2 .

Theorem 2.16. Let A ∈ Mn(C) with n ≥ 3. Then

n
∑

j=1

|λj(A)|2

≤ (n− 1)

√

√

√

√

(

‖A‖2
2
− |trA|2

n

)2

− ‖A∗A−AA∗‖2
2

2
+

|trA|2
n

− n− 2

2
spd2(A).

Proof. Observe that

n
∑

j=1

|λj(A)|2 −
|trA|2

n
+

n− 2

2
spd2(A)

≤
n
∑

j=1

∣

∣

∣

∣

λj(A)−
trA

n

∣

∣

∣

∣

2

+
n− 2

n

∑

1≤j<k≤n

|λj(A)− λk(A)|2

(by Lemmas 2.9 and 2.15 (a))

=
n
∑

ℓ=1

∣

∣

∣

∣

λj(A)−
trA

n

∣

∣

∣

∣

2

+
1

2n

n
∑

ℓ=1

n
∑

j,k∈Sℓ

|λj(A)− λk(A)|2

(by Lemma 2.15 (b))

=
n
∑

ℓ=1





∣

∣

∣

∣

λj(A)−
trA

n

∣

∣

∣

∣

2

+
1

2n

n
∑

j,k∈Sℓ

|λj(A)− λk(A)|2
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≤
n
∑

ℓ=1

n− 1

n







√

√

√

√

(

‖A‖2
2
− |trA|2

n

)2

− 1

2
‖A∗A−AA∗‖2

2







(by Theorem 2.6)

= (n− 1)

√

√

√

√

(

‖A‖2
2
− |trA|2

n

)2

− ‖A∗A−AA∗‖2
2

2
. (2.18)

Now, the result follows from (2.18).

3. Eigenvalue localization for normal matrices. In this section, we are

interested in estimates for at least n − 2 of the eigenvalues of a normal matrix A ∈
Mn(C). In order to do this, we need the following two lemmas of Bhatia and Sharma

[1] and Mirsky [9]. It should be mentioned here that Bhatia and Sharma did not

write the first lemma below explicitly in this form, but it can be deduced from their

results. Before presenting these lemmas, we need to define two functionals on Mn(C)

as follows: Let

drA =

n
∑

i,j=1

i6=j

aij

and

v(A) =
drA∗A

n
− |drA|2

n2
,

where A = [aij ] ∈ Mn(C).

Lemma 3.1. Let A = [aij ] ∈ Mn(C) be normal. Then

spd2(A) ≥ max (α1, β1) , (3.1)

where

α1 =
3

2
max

i,j=1,...,n







n
∑

k=1
k 6=i

|aki|2 +
n
∑

k=1
k 6=j

|akj |2 +
|aii − ajj |2

2







and

β1 = 3

(

‖A‖2
2

n
− |trA|2

n2
+ v(A)− 2Re trAdrA

n2

)

.
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Lemma 3.2. Let A = [aij ] ∈ Mn(C) be normal. Then

spd(A) ≥ max (α2, β2) , (3.2)

where

α2 =
√
3 max
i,j=1,...,n

i6=j

|aij |

and

β2 = max
i,j=1,...,n

i6=j





|aii − ajj |2 +
∣

∣

∣(aii − ajj)
2
+ 4aijaji

∣

∣

∣

2
+ |aij |2 + |aij |2



 .

Theorem 3.3. Let A = [aij ] ∈ Mn(C) be normal with n ≥ 3. Then at least n− 2

of the eigenvalues of A lie in the disk

∣

∣

∣

∣

z − trA

n

∣

∣

∣

∣

≤

√

√

√

√

n− 1

n

(

‖A‖2
2
− |trA|2

n
− max (α1, α

2
2
, β1, β

2
2
)

2

)

. (3.3)

In particular, at least n− 2 of the eigenvalues of A lie in the disk

∣

∣

∣

∣

z − trA

n

∣

∣

∣

∣

≤

√

√

√

√

√

n− 1

n



‖A‖2
2
− |trA|2

n
− 3

2
max

i,j=1,...,n
i6=j

|aij |2


. (3.4)

Proof. Let ℓ ∈ S, where S is the set defined in the proof of Theorem 2.13. Then
∣

∣

∣

∣

λℓ(A)−
trA

n

∣

∣

∣

∣

2

+
(n− 1)

2n
max

(

α1, α
2

2, β1, β
2

2

)

≤
∣

∣

∣

∣

λℓ(A)−
trA

n

∣

∣

∣

∣

2

+
n− 1

2n
spd2(A) (by Lemmas 3.1 and 3.2)

≤ n− 1

n

(

‖A‖2
2
− |trA|2

n

)

(by (2.17)). (3.5)

Now, (3.3) follows from Theorem 2.13 and (3.5), while (3.4) is a special case of (3.3).

The constant 3

2
in (3.4) can be improved if the matrix A is Hermitian. This

improvement can be achieved using a result of Mirsky [10] that says if A = [aij ] ∈
Mn(C) is Hermitian, then

spd2(A) ≥ max
i,j=1,...,n

i6=j

(

4 |aij |2 + (aii − ajj)
2
)

. (3.6)
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In fact, through Lemma 3.1, Bhatia and Sharma introduced a remarkable improve-

ment of (3.6). This improvement asserts if A = [aij ] ∈ Mn(C) is Hermitian with

n ≥ 3, then

spd2(A) ≥ 2 max
i,j=1,...,n







n
∑

k=1
k 6=i

|aik|2 +
n
∑

k=1
k 6=j

|akj |2 +
(aii − ajj)

2

2






. (3.7)

Based on (3.7) and using a proof similar to that given for Theorem 3.3, we have

the following result.

Theorem 3.4. Let A = [aij ] ∈ Mn(C) be Hermitian with n ≥ 3. Then at least
n− 2 of the eigenvalues of A lie in the disk

∣

∣

∣

∣

z −
trA

n

∣

∣

∣

∣

≤

√

√

√

√

√

√

n− 1

n







‖A‖2
2

2
−

|trA|2

n
− 2 max

i,j=1,...,n







n
∑

k=1

k 6=i

|aik|
2 +

n
∑

k=1

k 6=j

|akj |
2 +

(aii − ajj)
2

2












. (3.8)

An application of (3.4) can be seen as follows. Applications of (3.3) and (3.8) can

be deduced by a similar argument.

Corollary 3.5. Let A = [aij ] ∈ Mn(C) be normal with n ≥ 2. Then all the

eigenvalues of A lie in the disk

∣

∣

∣

∣

z − trA

n

∣

∣

∣

∣

≤

√

√

√

√

√

2n− 1

n



‖A‖2
2
− |trA|2

n
− 3

4
max

i,j=1,...,n
i6=j

|aij |2


. (3.9)

Proof. Let B = [bij ] =

[

A 0

0 A

]

. Then B ∈ M2n(C) is normal and the eigen-

values of B are the same as those of A with duplicate multiplicities. It follows from

(3.4), applied to the matrix B, that the disk

∣

∣

∣

∣

z − trB

2n

∣

∣

∣

∣

≤

√

√

√

√

√

2n− 1

2n



‖B‖2
2
− |trB|2

2n
− 3

2
max

i,j=1,...,n
i6=j

|bij |2


 (3.10)

contains at least 2n − 2 of the eigenvalues of B. Since the eigenvalues of B are not

simple, it follows from Remark 2.14 that these eigenvalues lie in the disk (3.10). In
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particular, the eigenvalues of A lie in this disk. Now, the result follows in view of the

facts that ‖B‖2
2
= 2 ‖A‖2

2
, trB = 2 trA, and max

i,j=1,...,n
i6=j

|bij |2 = max
i,j=1,...,n

i6=j

|aij |2.

Remark 3.6. Theorems 3.3, 3.4, and Corollary 3.5 are based on the lower bounds

for the spreads of normal matrices mentioned in this paper. Related localization

results can be obtained using further lower bounds for the spreads of normal matrices

(see, e.g., [5], [6], and [8]).

In the following result, we utilize Theorem 2.6 and the spectral theorem for normal

matrices to investigate the equality conditions of (1.1).

Corollary 3.7. Let A ∈ Mn(C) with n ≥ 3. Then

∣

∣

∣

∣

λℓ(A)−
trA

n

∣

∣

∣

∣

=

√

√

√

√

n− 1

n

(

‖A‖2
2
− |trA|2

n

)

. (3.11)

for some ℓ ∈ {1, . . . , n} if and only if A is a scalar matrix or A is normal with only

two distinct eigenvalues one of multiplicity n−1 and the other is of multiplicity one.

Our final result follows from Theorem 2.13, Corollary 3.7, and Remark 2.14.

Corollary 3.8. Let A ∈ Mn(C) with n ≥ 3. If

∣

∣

∣

∣

λℓ(A)−
trA

n

∣

∣

∣

∣

=

√

√

√

√

n− 1

n

(

‖A‖2
2
− |trA|2

n

)

(3.12)

for some ℓ ∈ {1, . . . , n}, then A is normal and at least n− 1 of the eigenvalues of A

lie in the disk (2.13).
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