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Abstract. This paper extends the concept of tropical tensor product defined by Butkovič and

Fiedler to general idempotent dioids. Then, it proposes an algorithm in order to solve the fixed-point

type Sylvester matrix equations of the form X = A⊗X ⊕ X ⊗B ⊕C. An application is discussed

in efficiently solving the minimum cardinality path problem in Cartesian product graphs.
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1. Preliminaries.

Definition 1.1. (Dioid) [1, p. 154] A dioid is a set D endowed with two opera-

tions denoted by ⊕ and ⊗ (called ‘sum’ or ‘addition’ and ‘product’ or ‘multiplication’)

satisfying the following properties:

1. Associativity of addition.

2. Commutativity of addition.

3. Associativity of multiplication.

4. Distributivity of multiplication with respect to addition.

5. Existence of a neutral element, i.e., ∃ε ∈ D : ∀a ∈ D, a⊕ ε = a.

6. Absorbing neutral element, i.e., ∀a ∈ D, a⊗ ε = ε⊗ a = ε.

7. Existence of an identity element, i.e., ∃e ∈ D : ∀a ∈ D, a⊗ e = e⊗ a = a.

8. Idempotency of addition, i.e., ∀a ∈ D, a⊕ a = a.

Note that the last property is not included in the definition of a dioid in some

references. See, e.g., [5, 6].

Definition 1.2. [1, p. 155] (Commutative dioid) A dioid is commutative if its
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multiplication is commutative.

We will denote a⊗ · · · ⊗ a
︸ ︷︷ ︸

k times

by ak, k ∈ N, and a0 = e.

An order relation is a binary relation (denoted by ≥ ) which is reflexive, transitive

and antisymmetric, and the order is total if each pair of elements is comparable;

otherwise, the order is partial. Also a set endowed with a total or partial order

relation is a totally or partially ordered set, respectively.

Theorem 1.3. [1, p. 160] (Order relation) In a dioid D, one has the following

equivalence:

∀a, b : a = a⊕ b ⇔ ∃c : a = b⊕ c.

Moreover, these equivalent statements define a (partial) order relation denoted by ≥

as follows:

a ≥ b ⇔ a = a⊕ b.

This order relation is compatible with addition, namely

a ≥ b ⇒ {∀c , a⊕ c ≥ b⊕ c},

and multiplication, that is,

a ≥ b ⇒ {∀c , a⊗ c ≥ b⊗ c}.

The same result is valid for the left product. Two elements a and b in D always have

an upper bound, namely a⊕ b, and ε is the bottom element of D.

Definition 1.4. [1, p. 162] (Complete dioid) A dioid is complete if it is closed

for infinite sums and Property 4 of Definition 1.1 extends to infinite sums.

In a complete dioid, the top element of the dioid, denoted by T exists and is equal

to the sum of all elements in D. The top element is always absorbing for addition

since obviously ∀a,T ⊕ a = T. Also T ⊗ ε = ε, because of Property 6 of Definition

1.1.

Remark 1.5. The set of n× n matrices endowed with two operations ⊕ and ⊗

denoted by (Dn×n,⊕,⊗) is also a dioid. Here, for two given matrices A,B ∈ Dn×n,

S = A⊕B, where for all i and j, Sij is defined as:

Sij = Aij ⊕Bij ,

and R = A⊗B, where for all i and j, Rij is defined as:

Rij =

n⊕

k=1

Aik ⊗Bkj .
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The only point that deserves attention is the existence of an identity element. Thanks

to Property 6 of Definition 1.1, the usual identity matrix with entries equal to e on

the diagonal and to ε elsewhere is the identity element of Dn×n.This identity matrix

will also be denoted by I and the neutral matrix will simply be denoted by ε. Notice

that if D is a commutative dioid, this is not the case for Dn×n in general. Even if

D is a totally ordered set, Dn×n is only partially ordered. If D is complete, Dn×n is

complete too [1, p. 194].

Definition 1.6. [5, p. 93] (Quasi-inverse) We call the quasi-inverse of element

a ∈ D, denoted by a∗, the limit, when it exists, of the sequence a(k) where, for every

k ∈ N,

a(k) = e⊕ a⊕ a2 ⊕ · · · ⊕ ak.

Theorem 1.7. [5, p. 94] If a ∈ D has a quasi-inverse a∗, then ∀b ∈ D, a∗ ⊗ b

(resp., b⊗ a∗) is the minimal solution of the equations:

x = a⊗ x⊕ b (resp., x = x⊗ a⊕ b).

Definition 1.8. [5, p. 97] (p-stable element) For an integer p ≥ 0, an element a

is said to be p-stable if and only if a(p+1) = a(p). We then have

a(p+2) = e⊕ a⊗ a(p+1) = e⊕ a⊗ a(p) = a(p+1).

Hence, by induction

a(p+r) = a(p), for all nonnegative integers r.

For each p-stable element a ∈ D, we therefore deduce the existence of a∗, the quasi-

inverse of a, defined as:

a∗ = lim
k→+∞

a(k) = a(p),

which satisfies the equations

a∗ = a⊗ a∗ ⊕ e = a∗ ⊗ a⊕ e.(1.1)

Proposition 1.9. [5, p. 100] If element a is p-stable, then a∗⊗ b is the minimal

solution to x = a⊗ x⊕ b.

Remark 1.10. [5, p. 101] Since Dn×n is a dioid if D is a dioid, Theorem 1.7 can

also be applied to matrix equations of the form:

X = A⊗X ⊕B,

for a p-stable matrix A ∈ Dn×n.
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2. The main part.

Definition 2.1. For two matrices Y and Z of dimensions m × n and r × s,

respectively, the tensor product of Y and Z over a dioid is the following mr × ns

matrix

Y ⊠ Z :=






Y ⊗ z11 · · · Y ⊗ z1s
...

. . .
...

Y ⊗ zr1 · · · Y ⊗ zrs




 .

This definition was first introduced by Butkovič and Fiedler [2, p. 3] in the context

of the special dioid of max-plus algebra.

In this paper, we consider the fixed-point type Sylvester matrix equations of the

form

X = A⊗X ⊕ X ⊗B ⊕ C,(2.1)

where A ∈ Dm×m, B ∈ Dn×n and C ∈ Dm×n are given matrices while X ∈ Dm×n is

unknown. Here, D is a complete and commutative dioid.

The vec operator stacks the columns of a matrix of size m × n to obtain a long

vector of size mn× 1.

Lemma 2.2. For matrices A,B,C and D of compatible sizes, where the entries

are from a commutative dioid, we have:

1. vec(A⊗B ⊗ C) = (A⊠ CT )⊗ vec(B).

2. (A⊠B)⊗ (C ⊠D) = (A⊗ C)⊠ (B ⊗D).

Proof. The proof of parts 1 and 2 are similar to those of Theorem 7 and Theorem

3 of Butkovič and Fiedler [2, p. 4], respectively.

As a result of the first part of the above lemma, we deduce that the fixed-point

type Sylvester matrix equation (2.1) can be written in the following form of a fixed-

point type linear system of equations where the entries are from a commutative dioid.

x = P ⊗ x⊕ c, where P := A⊠ I ⊕ I ⊠BT , c := vec(C), x := vec(X).(2.2)

Here, P is a matrix of size mn×mn and c and x are vectors of length mn.

Remark 2.3. By the second part of Lemma 2.2 for matrices A,B of compatible

sizes with entries over a commutative dioid, we have

(A⊠ I)⊗ (I ⊠B) = A⊠B = (I ⊠B)⊗ (A⊠ I).
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Lemma 2.4. Let (D,⊕,⊗) be a commutative dioid and A,B ∈ Dn×n. Then,

BT ⊗AT = (A⊗B)T .

Proof. The proof of this result is easy by consulting the corresponding result in

any standard linear algebra textbook.

Lemma 2.5. Suppose that A and B are square matrices with entries over a

commutative dioid. Then,

1. (I ⊠A)k = I ⊠Ak,

2. (B ⊠ I)k = Bk
⊠ I.

Proof. It is trivial that (I ⊠A)1 = I ⊠A1. Now, by induction on the power k, let

(I ⊠A)k−1 = I ⊠Ak−1. So,

(I ⊠A)k−1 ⊗ (I ⊠A) = I ⊠Ak−1 ⊗ (I ⊠A).

Therefore, by the second part of Lemma 2.2 we have (I ⊠A)k = I⊠Ak and the proof

is complete. The proof of part 2 is similar.

Here, we provide a sufficient condition for the existence of a solution to equation

(2.1). Let G(A) and G(B) be graphs associated with the matrices A and B, respec-

tively. Suppose that the weight of all the circuits in G(A) and G(B) are p-stable.

Then, A∗ and B∗ exist [5, p. 126]. For example, in the (min,+) dioid the aforemen-

tioned condition is equivalent to G(A) and G(B) having no circuit with a negative

weight [5, p. 98]. Our main result is the following.

Theorem 2.6. Suppose that A ∈ Dm×m, B ∈ Dn×n and C ∈ Dm×n are given

matrices, where D is a complete, commutative dioid and A∗ and B∗ exist. Then, the

minimal solution to the fixed-point type Sylvester matrix equation

X = A⊗X ⊕ X ⊗B ⊕ C

is A∗ ⊗ C ⊗B∗.

Proof. In order to find the minimal solution to (2.1), it is sufficient to find the

minimal solution to (2.2), that is, P ∗ ⊗ c, where P = A ⊠ I ⊕ I ⊠ BT . See, e.g., [6,

p. 103] and [5, pp. 127–128]. We have

P ∗ ⊗ vec(C) = (A⊠ I ⊕ I ⊠BT )∗ ⊗ vec(C)

=

[
∞⊕

k=0

(A⊠ I ⊕ I ⊠BT )k

]

⊗ vec(C)
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= I ⊗ vecC ⊕ (A⊠ I ⊕ I ⊠BT )⊗ vec(C)

⊕ (A⊠ I ⊕ I ⊠BT )2 ⊗ vec(C)⊕ · · · .

By Remark 2.3, we know that (A⊠I)⊗(I⊠BT ) = (I⊠BT )⊗(A⊠I). Therefore,

since ⊕ is idempotent,

P ∗ ⊗ vec(C) =

(
∞⊕

q=0

q
⊕

k=0

(A⊠ I)q−k ⊗ (I ⊠BT )k

)

⊗ vec(C).

By the second part of Lemma 2.2 and Lemma 2.5, it is easy to see that

P ∗ ⊗ vec(C) =

(
∞⊕

q=0

q
⊕

k=0

Aq−k
⊠ (BT )k

)

⊗ vec(C).

According to Lemma 2.4, we have

P ∗ ⊗ vec(C) =

(
∞⊕

q=0

q
⊕

k=0

Aq−k
⊠ (Bk)T

)

⊗ vec(C),

which, by the first part of Lemma 2.2, means that

P ∗ ⊗ vec(C) =

∞⊕

q=0

q
⊕

k=0

vec(Aq−k ⊗ C ⊗Bk)

= vec(
∞⊕

q=0

q
⊕

k=0

Aq−k ⊗ C ⊗Bk)

= vec(A∗ ⊗ C ⊗B∗).

The last equality is based on the definition of the product of two power series ([1, p.

198]), where A∗ and B∗ exist, A∗ ⊗ C =
⊕

∞

k=0 A
k ⊗ C and B∗ =

⊕
∞

k=0 B
k.

Corollary 2.7. Suppose that A ∈ Dm×m, B ∈ Dn×n and C ∈ Dn×m are given

matrices, where D is a complete, commutative dioid. The minimal solution to the

fixed-point type Sylvester matrix equation

X = X ⊗A ⊕ B ⊗X ⊕ C(2.3)

is B∗ ⊗ C ⊗A∗.

Proof. Similar to (2.2), the fixed-point type Sylvester matrix equation (2.3) can

be written in the following form of a fixed-point type linear system of equations with

entries over a commutative dioid.

x = P ⊗ x⊕ c, where P := I ⊠AT ⊕B ⊠ I, c := vec(C), x := vec(X).(2.4)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 882-891, December 2014



ELA

888 B. Hashemi, M.M. Khalilabadi, and H. Tavakolipour

Some tedious manipulations similar to those in the proof of Theorem 2.6 yield

B∗ ⊗ C ⊗A∗ as the minimal solution.

Cohen et al. [3, Theorem 17] proved that the minimal solution to the fixed-point

type Sylvester matrix equation (2.1) is A∗ ⊗ C ⊗ B∗, where A,B,C ∈ Dn×n and

(D,⊕,⊗) is a complete dioid. Here, we have considered the case where A ∈ Dm×m,

B ∈ Dn×n, C ∈ Dm×n and (D,⊕,⊗) is a commutative dioid. Note that, here, the

sizes of matrices are not necessarily the same. This means that A, B and C can be

from different dioids. We have actually proved a result stronger than [3, Theorem 17]

using a different approach, namely, the tensor product of matrices over dioids.

3. An application in solving the minimum cardinality path problem in

Cartesian product graphs. To find the path with the smallest number of arcs, we

consider the following structure: D = N∪{∞}, ⊕ = min, ⊗ = +, ε = ∞ and e = 0.

See, e.g., [5, p. 159]. Let G be an undirected graph that has n vertices g1, g2, . . . , gn.

The set of arcs in G is denoted by E(G). We define the adjacency matrix A = A(G)

associated with G as follows:

aij =

{
∞, if arc (i,j) does not exist;

1, otherwise.

The following properties are valid ([5, pp. 125,160] and [6, p. 97]).

• A∗ exists and A∗ =
⊕n−1

k=0 A
k, where A0 = I.

• A∗

ij represents the number of arcs in the minimum cardinality path between

i and j.

Recall that the Cartesian product of G and H is a graph, denoted as G�H , whose

vertex set is V (G)×V (H), where × is the Cartesian product. Two vertices (g, h) and

(g′, h′) are adjacent precisely if g = g′ and hh′ ∈ E(H), or gg′ ∈ E(G) and h = h′.

Thus,

V (G�H) = {(g, h)|g ∈ V (G) and h ∈ V (H)},

E(G�H) = {(g, h)(g′, h′)|g = g′, hh′ ∈ E(H), or gg′ ∈ E(G), h = h′}.

See e.g., Chapters 4 and 5 in [7] for details and examples. See also [8, 9] for applica-

tions of fixed-point type Sylvester matrix equations over semirings for modeling large

product graphs arising from real-life problems.

Lemma 3.1. Let G and H be finite graphs with sets of vertices

V (G) = {g1, g2, . . . , gm} and V (H) = {h1, h2, . . . , hn},
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respectively. Also, let the vertices of G�H be ordered as

V (G�H) = {(g1, h1), . . . , (g1, hn), (g2, h1), . . . , (g2, hn), . . . , (gm, h1), . . . , (gm, hn)}.

Then,

A(G�H) = In ⊠A(G) ⊕A(H)⊠ Im,

where In denotes the n×n identity matrix and ⊠ is the tensor product of the matrices.

Proof. Partition A(G�H) into n× n block matrices as follows:

A(G�H) =








A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm







.

For i = 1, 2, . . . ,m, we must count an edge in entry jk of Aii if there exists an edge

between hj and hk. Counting only these edges we have A(H)⊠Im. For i = 1, 2, . . . , n,

we must count an edge in entry ii of Ajk if there exists an edge from gj to gk.

Counting only these edges, we have In⊠A(G). Thus, we have accounted for all edges

in A(G�H) and counting them all together, we add (⊕) the two expressions above

to get the result. This is justified because ε = ∞ is the neutral element of ⊕.

Remark 3.2. On the basis of the above comments, we see that computing A∗

is needed in order to solve the minimum cardinality path problem between every

two nodes of graph G. The time complexity of computing the quasi-inverse of A,

i.e., A∗, is O(n3), e.g., by the generalized escalator method [5, p. 156] or the Floyd-

Warshall algorithm [4, pp. 629,633]. This means that solving the same problem for the

Cartesian product of two graphs G and H needs computing P ∗ where P = A(G�H).

This is especially useful for graphs which are known a priori to be the Cartesian

product of other graphs, like lattice or grid graphs. Note that the number of vertices

in G�H is mn, i.e., P is a matrix of size mn × mn. Therefore, roughly, we have a

problem with solution algorithms of the onerous computational complexity O(m3n3).

Our proposed approach, based on Corollary 2.7, reduces this cost to O(m3+n3). The

reason is that we only need to compute A(G)∗, A(H)∗ and the product of the three

matrices in the min-plus dioid, and these all involve a cubic time complexity.

Example 3.3. Consider the graphs G, H and G�H in Figure 3.1.

A(G) =





∞ 1 ∞

1 ∞ 1

∞ 1 ∞



 and A(H) =

[
∞ 1

1 ∞

]

are the adjacency matrices of graphs G and H , respectively. We are interested in
finding the length of the paths with the minimum number of arcs from all nodes of
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Fig. 3.1. Graphs G, H and their Cartesian product in Example 1.

G�H to node (g1, h1). By Lemma 3.1, the adjacency matrix of A(G�H) is P =
I ⊠ A(G)T ⊕ A(H) ⊠ I, where A(G)T = A(G) (since the adjacency matrix of an
undirected graph is symmetric).

I⊠A(G)T =



















∞ ∞ 1 ∞ ∞ ∞

∞ ∞ ∞ 1 ∞ ∞

1 ∞ ∞ ∞ 1 ∞

∞ 1 ∞ ∞ ∞ 1

∞ ∞ 1 ∞ ∞ ∞

∞ ∞ ∞ 1 ∞ ∞



















, A(H)⊠I =



















∞ 1 ∞ ∞ ∞ ∞

1 ∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ 1 ∞ ∞

∞ ∞ 1 ∞ ∞ ∞

∞ ∞ ∞ ∞ ∞ 1

∞ ∞ ∞ ∞ 1 ∞



















,

and

P =












∞ 1 1 ∞ ∞ ∞

1 ∞ ∞ 1 ∞ ∞

1 ∞ ∞ 1 1 ∞

∞ 1 1 ∞ ∞ 1

∞ ∞ 1 ∞ ∞ 1

∞ ∞ ∞ 1 1 ∞












.

Finding the paths with the minimum number of arcs from all nodes of G�H to

(g1, g2) is equivalent to finding the minimal solution to the fixed-point type equation

x = P ⊗ x ⊕ c in (N ∪ {∞},min,+) where c = (0 ∞ ∞ ∞ ∞ ∞)T . So, we need to

find P ∗ ⊗ c. By Corollary 2.7

P ∗ ⊗ c = vec(A(H)∗ ⊗ C ⊗A(G)∗).

We have

A(G)∗ =





0 1 2

1 0 1

2 1 0



 , A(H)∗ =

[
0 1

1 0

]

, and C =

[
0 ∞ ∞

∞ ∞ ∞

]

.

Note that A(H) is 1-stable so that by the comments following Definition 1.8 we see

that A(H)∗ = A(H)(1). Similarly, A(G) is 2-stable and we have A(G)∗ = A(G)(2).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 882-891, December 2014



ELA

Fixed-Point Type Matrix Equations Over Dioids 891

We therefore have

vec(A(H)∗ ⊗ C ⊗A(G)∗) = vec

([
0 1 2

1 2 3

])

=
[
0 1 1 2 2 3

]T
.

So, the number of arcs of paths with minimum cardinality from (g1, h1) to (g1, h1),

(g1, h2), (g2, h1), (g2, h2), (g3, h1) and (g3, h2) are 0, 1, 1, 2, 2 and 3, respectively.
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