A NOTE ON THE SPECTRAL RADIUS OF A PRODUCT OF COMPANION MATRICES*

E.S. KEY^{\dagger} AND H. VOLKMER ${ }^{\dagger}$

Abstract

Conditions are given on the coefficients of the characteristic polynomials of a set of k companion matrices to ensure that the spectral radius of their product is bounded by t^{k} where $0<t<1$.

Key words. Companion matrices, Matrix products, Spectral radius.

AMS subject classifications. 15A42, 15B99.

1. Introduction. In a recent paper [2] on population dynamics, A. Blumenthal and B. Fernandez used a bound on the spectral radius of a finite product of companion matrices [2, Lemma 5.5]. In light of the authors' work [4] on products of companion matrices, B. Fernandez inquired of the authors if they could supply a proof of their Lemma 5.5, which we have done in Theorem 1 in Section 3 below. In Section 2, we point out that a special case of our result is connected to the well-known EneströmKakaya theorem [1, Theorem 1.2] on the location of zeros of a polynomial.
2. The Eneström-Kakaya theorem. Consider the n by n companion matrix

$$
C=\left[\begin{array}{cccccc}
-a_{1} & -a_{2} & -a_{3} & \cdots & -a_{n-1} & -a_{n} \tag{2.1}\\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

Its characteristic polynomial is

$$
p(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n} .
$$

By the Eneström-Kakaya theorem [1. Theorem 1.2], the assumption

$$
\begin{equation*}
1 \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0 \tag{2.2}
\end{equation*}
$$

[^0]implies that all zeros λ of $p(\lambda)$ satisfy $|\lambda| \leq 1$. Therefore, under assumption (2.2), the spectral radius $\rho(C)$ of C is at most 1 .

We can prove this result using matrix notation as follows. Let A be the $n+1$ by $n+1$ matrix

$$
A=\left[\begin{array}{ll}
C & 0 \tag{2.3}\\
u & 1
\end{array}\right],
$$

where $u=(0,0, \ldots, 0,1)$ is a row vector of dimension n. Let B be the $n+1$ by $n+1$ companion matrix

$$
B=\left[\begin{array}{cccccc}
1-a_{1} & a_{1}-a_{2} & a_{2}-a_{3} & \cdots & a_{n-1}-a_{n} & a_{n} \tag{2.4}\\
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

and let L be the $n+1$ by $n+1$ matrix with 1 's on the main diagonal, -1 's on the super diagonal and 0 entries everywhere else. By calculation, we verify that

$$
A L=L B
$$

so

$$
\begin{equation*}
L^{-1} A L=B \tag{2.5}
\end{equation*}
$$

Therefore, A, B are similar and so $\rho(A)=\rho(B)$. We obtain

$$
\rho(C) \leq \rho(A)=\rho(B)=1,
$$

where B is a stochastic matrix [3, page 526], that is, a nonnegative matrix whose row sums are all 1.
3. An extension. We use the same idea to prove the following lemma.

Lemma 3.1. Let $C_{i}, i=1, \ldots, k$, be companion matrices of the form (2.1) with first rows $-\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, respectively. Suppose that

$$
\begin{equation*}
1 \geq a_{i 1} \geq a_{i 2} \geq \cdots \geq a_{i n} \geq 0 \text { for } i=1,2, \ldots, k . \tag{3.1}
\end{equation*}
$$

Then

$$
\rho\left(C_{1} C_{2} \cdots C_{k}\right) \leq 1
$$

Proof. We form the matrices A_{i}, B_{i} as before and note that

$$
\rho\left(C_{1} C_{2} \cdots C_{k}\right) \leq \rho\left(A_{1} A_{2} \cdots A_{k}\right)=\rho\left(B_{1} B_{2} \cdots B_{k}\right)=1
$$

since $B_{1} B_{2} \cdots B_{k}$ is a row stochastic matrix.
We now obtain our main result.
Theorem 3.2. Let $C_{i}, i=1, \ldots, k$, be companion matrices of the form (2.1) with first rows $-\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, respectively. Suppose that

$$
\begin{equation*}
a_{i 0}:=1>a_{i 1}>a_{i 2}>\cdots>a_{i n} \geq 0 \text { for } i=1,2, \ldots, k \tag{3.2}
\end{equation*}
$$

Define

$$
t=\max _{i=1}^{k} \max _{j=1}^{n} \frac{a_{i, j}}{a_{i, j-1}}<1
$$

Then

$$
\rho\left(C_{1} C_{2} \cdots C_{k}\right) \leq t^{k}<1
$$

Proof. We define $\tilde{a}_{i, j}=t^{-j} a_{i, j}$ and corresponding companion matrices \tilde{C}_{i}. Let $W=\operatorname{diag}\left(1, t^{-1}, \ldots, t^{-n+1}\right)$. Then

$$
C_{i}=t W \tilde{C}_{i} W^{-1}
$$

Therefore,

$$
\rho\left(C_{1} C_{2} \cdots C_{k}\right)=t^{k} \rho\left(\tilde{C}_{1} \tilde{C}_{2} \cdots \tilde{C}_{k}\right) \leq t^{k}
$$

where we applied Lemma 3.1 to the matrices \tilde{C}_{i}.

Acknowledgment. We wish to thank the referee for his kind remarks.

REFERENCES

[1] P. Borwein and T. Erdélyi. Polynomials and Polynomial Inequalities. Springer-Verlag, New York, 1995.
[2] A. Blumenthal and B. Fernandez. Population dynamics and globally coupled degrade-and-fire oscilaltors. Submitted, available at http://hal.archives-ouvertes.fr/hal-00986128.
[3] R. Horn and C. Johnson. Matrix Analysis. Cambrdige University Press, Cambridge, 1985.
[4] E. Key and H. Volkmer. Eigenvalue multiplicities of products of companion matrices. Electron. J. Linear Algebra, 11:103-114, 2004.

[^0]: *Received by the editors on June 16, 2014. Accepted for publication on December 9, 2014 Handling Editor: Bryan L. Shader.
 ${ }^{\dagger}$ Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201-0413, USA (ericskey@uwm.edu, volkmer@uwm.edu).

