

INEQUALITIES FOR RELATIVE OPERATOR ENTROPIES*

PAWEL A. KLUZA[†] AND MAREK NIEZGODA[†]

Abstract. In this paper, operator inequalities are provided for operator entropies transformed by a strictly positive linear map. Some results by Furuichi et al. [S. Furuichi, K. Yanagi, and K. Kuriyama. A note on operator inequalities of Tsallis relative operator entropy. Linear Algebra Appl., 407:19–31, 2005.], Furuta [T. Furuta. Two reverse inequalities associated with Tsallis relative operator entropy via generalized Kantorovich constant and their applications. Linear Algebra Appl., 412:526–537, 2006.], and Zou [L. Zou. Operator inequalities associated with Tsallis relative operator entropy. Math. Inequal. Appl., 18:401–406, 2015.] are extended. In particular, the obtained inequalities are specified for relative operator entropy and Tsallis relative operator entropy. In addition, some bounds for generalized relative operator entropy are established.

Key words. Operator monotone function, f-connection, Operator mean, Relative operator entropy, Tsallis relative operator entropy, Positive linear map.

AMS subject classifications. 94A17, 47A64, 15A39.

1. Introduction. We start with some notation (see [2, p. 112]).

As usual, the symbol $\mathbb{M}_n(\mathbb{C})$ denotes the C^* -algebra of $n \times n$ complex matrices. For matrices $X, Y \in \mathbb{M}_n(\mathbb{C})$, we write $Y \leq X$ (resp., Y < X) if X - Y is positive semidefinite (resp., positive definite).

A linear map $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is said to be *positive* if $0 \leq \Phi(X)$ for $0 \leq X \in \mathbb{M}_n(\mathbb{C})$. If $0 < \Phi(X)$ for $0 < X \in \mathbb{M}_n(\mathbb{C})$ then Φ is said to be *strictly positive*.

A real function $f:J\to\mathbb{R}$ defined on interval $J\subset\mathbb{R}$ is called an *operator monotone function*, if for all Hermitian matrices A and B (of the same order) with spectra in J

$$A \leq B$$
 implies $f(A) \leq f(B)$.

Let $f: J \to \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. Let A be an $n \times n$ positive definite matrix and B be an $n \times n$ Hermitian matrix such that the spectrum $\operatorname{Sp}(A^{-1/2}BA^{-1/2}) \subset J$. Then the operator σ_f given by

(1.1)
$$A\sigma_f B = A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2}$$

^{*}Received by the editors on May 22, 2014. Accepted for publication on October 10, 2014. Handling Editor: Harm Bart.

[†]Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland (pawel.kluza@up.lublin.pl, marek.niezgoda@up.lublin.pl).

P.A. Kluza and M. Niezgoda

is called f-connection (cf. [11, 12]). See [15] for an extension of (1.1).

Note that for the functions pt + 1 - p and t^p , the definition of Eq. (1.1) leads to the arithmetic and geometric operator means (1.2) and (1.3), respectively.

For A > 0, B > 0 and $p \in [0,1]$, the *p-arithmetic mean* is defined as follows

$$A\nabla_p B = (1-p)A + pB.$$

For A > 0, B > 0 and $p \in [0, 1]$, the *p-geometric mean* is defined by (see [12, 17])

(1.3)
$$A\sharp_{p}B = A^{1/2}(A^{-1/2}BA^{-1/2})^{p}A^{1/2}.$$

We now give definitions of some operator entropies.

For A > 0, B > 0, the relative operator entropy is defined by (see [4])

(1.4)
$$S(A,B) = A^{1/2} \log(A^{-1/2}BA^{-1/2})A^{1/2}.$$

For A > 0, B > 0 and $p \in \mathbb{R}$, the generalized relative operator entropy is given by (see [14, 18])

$$(1.5) S_n(A,B) = A^{1/2} (A^{-1/2} B A^{-1/2})^p \log(A^{-1/2} B A^{-1/2}) A^{1/2}.$$

For A > 0, B > 0 and 0 , the*Tsallis relative operator entropy*is defined as follows (see [18])

(1.6)
$$T_p(A,B) = \frac{A\sharp_p B - A}{p}.$$

It is not hard to check that (1.4), (1.5) and (1.6) are of the form (1.1) for the functions $\log t$, $t^p \log t$ and $\ln_p t = \frac{t^p-1}{p}$, respectively.

In recent years there has been a growing interest in the study of entropies and means [5, 6, 7, 8, 9, 16, 19].

Theorem A. (Furuichi et al. [7, Theorem 3.6]) For $A>0,\ B>0,\ 1\geq p>0$ and $a>0,\ the$ following inequality holds:

$$(1.7) A\sharp_p B - \frac{1}{a}A\sharp_{p-1}B + \frac{1-a^p}{pa^p}A \le T_p(A,B) \le \frac{1}{a}B - \frac{1-a^p}{pa^p}A\sharp_p B - A.$$

The next known double inequalities are consequences of (1.7) (see [5, 7, 8, 19]):

$$A - AB^{-1}A \le T_p(A, B) \le B - A,$$

$$A - AB^{-1}A < S(A, B) < B - A,$$

and

$$(1 - \log a)A - \frac{1}{a}AB^{-1}A \le S(A, B) \le (\log a - 1)A + \frac{1}{a}B$$
 for $a > 0$.

THEOREM B. (Zou [19, Theorem 2.2]) For A > 0, B > 0, $1 \ge p > 0$ and a > 0, the following inequality holds:

$$(1.8) - \left(\log a + \frac{1 - a^p}{pa^p}\right) A + a^{-p} T_{-p}(A, B) \le S(A, B) \le T_p(A, B) - \frac{1 - a^p}{p} A \sharp_p B - (\log a) A.$$

It is easily seen that (1.8) implies a result in [7]:

$$T_{-n}(A,B) \leq S(A,B) \leq T_n(A,B).$$

THEOREM C. (Furuta [9, Theorem 2.1]) Let A and B be $n \times n$ positive definite matrices such that $M_1I \geq A \geq m_1I > 0$ and $M_2I \geq B \geq m_2I > 0$. Put $m = \frac{m_2}{M_1}$, $M = \frac{M_2}{m_1}$, $h = \frac{M}{m} = \frac{M_1M_2}{m_1m_2} > 1$ and $p \in (0,1]$. Let Φ be normalized positive linear map on $B(H) = \mathbb{M}_n(\mathbb{C})$. Then the following inequalities hold:

$$(1.9) \ \Phi(T_p(A,B)) \le T_p(\Phi(A),\Phi(B)) \le \Phi(T_p(A,B)) + \left(\frac{1 - K(p)}{p}\right) \Phi(A) \sharp_p \Phi(B)$$

and

$$(1.10) \Phi(T_n(A,B)) \le T_n(\Phi(A),\Phi(B)) \le \Phi(T_n(A,B)) + F(p)\Phi(A),$$

where K(p) is the generalized Kantorovich constant defined by

$$K(p) = \frac{h^p - h}{(p-1)(h-1)} \left(\frac{(p-1)(h^p - 1)}{p(h^p - h)}\right)^p$$

and

$$F(p) = \frac{m^p}{p} \left(\frac{h^p - h}{h - 1} \right) (1 - K(p)^{\frac{1}{p - 1}}) \ge 0.$$

For a positive concave function $g: J \to \mathbb{R}_+$ defined on an interval J = [m, M] with m < M, we define (see [13])

$$(1.11) \qquad a_g = \tfrac{g(M) - g(m)}{M - m} \ , \quad b_g = \tfrac{Mg(m) - mg(M)}{M - m} \quad \text{and} \quad c_g = \min_{t \in J} \tfrac{a_g t + b_g}{g(t)} \ .$$

853

In order to unify our further studies, we introduce the notion of relative g-entropy as follows. Let $g: J \to \mathbb{R}$ be a continuous function defined on an interval $J \subset \mathbb{R}$. For A > 0, B > 0 with the spectrum of $A^{-1/2}BA^{-1/2}$ in J, we define the relative g-entropy of A and B as

(1.12)
$$S_a(A,B) = A\sigma_a B = A^{1/2} g(A^{-1/2}BA^{-1/2})A^{1/2}.$$

In the present paper, our aim is to provide some further operator inequalities for entropies and means transformed by a strictly positive linear map Φ .

2. Furuta type inequalities. Throughout f(t, p) is a real function of two variables $t \in J$ and $p \in P = (0, p_0], 0 < p_0 \le 1$. We use the notation

(2.1)
$$f_p(t) = f(t, p)$$
 for $t \in J$ and $p \in P$,

(2.2)
$$g_p(t) = g(t,p) = \frac{f(t,p) - f(t,0)}{p}$$
 for $t \in J$ and $p \in P$.

If there exist the following limits, then we write

(2.3)
$$f_0(t) = f(t,0) = \lim_{p \to 0^+} f(t,p) \quad \text{for } t \in J,$$

(2.4)
$$g_0(t) = g(t,0) = \lim_{p \to 0^+} g(t,p) \quad \text{for } t \in J.$$

For example, by substituting $f(t,p) = t^p$ for t > 0, $0 , we get <math>f_0(t) = 1$, $g(t,p) = \ln_p(t)$ and $g_0(t) = \log t$.

LEMMA 2.1. Let f(t,p) be a real function of two variables $t \in J$ and $p \in P = (0,p_0], \ 0 < p_0 \le 1$, with an interval $J \subset (0,\infty)$. Assume f(t,0) = 1, $t \in J$. For $n \times n$ positive definite matrices A and B with spectrum $\operatorname{Sp}(A^{-1/2}BA^{-1/2}) \subset J$, the following identity holds:

(2.5)
$$S_{g_p}(A, B) = \frac{S_{f_p}(A, B) - A}{p} \text{ for } p \in P,$$

where f_p and g_p are defined by (2.1)-(2.2).

Proof. By (1.12) and (2.2) we establish the equalities

(2.6)
$$\frac{S_{f_p}(A,B) - A}{p} = \frac{A\sigma_{f_p}B - A}{p}$$

$$= \frac{A^{1/2}f_p(A^{-1/2}BA^{-1/2})A^{1/2} - A^{1/2}IA^{1/2}}{p}$$

$$= A^{1/2}\frac{f_p(A^{-1/2}BA^{-1/2}) - I}{p}A^{1/2}.$$

Denoting $Z = A^{-1/2}BA^{-1/2}$ and using spectral decomposition of Z, we obtain

$$Z = U^* \operatorname{diag}(\mu_1, \mu_2, \dots, \mu_n) U$$

for some $n \times n$ unitary matrix U (i.e., $U^*U = UU^* = I$) with the eigenvalues $\mu_1, \mu_2, \dots, \mu_n$ of Z. Thus, we get

$$f_p(Z) = f_p(A^{-1/2}BA^{-1/2}) = U^* \operatorname{diag}(f_p(\mu_1), f_p(\mu_2), \dots, f_p(\mu_n))U$$

= $U^* \operatorname{diag}(f(\mu_1, p), f(\mu_2, p), \dots, f(\mu_n, p))U.$

Therefore, from (2.6), we derive

$$\begin{split} \frac{S_{f_p}(A,B)-A}{p} &= A^{1/2} \frac{f_p(Z)-U^*U}{p} A^{1/2} \\ &= A^{1/2} \frac{U^* \operatorname{diag}\left(f(\mu_1,p),f(\mu_2,p),\ldots,f(\mu_n,p)\right)U-U^*IU}{p} A^{1/2} \\ &= A^{1/2} U^* \operatorname{diag}\left(\frac{f(\mu_1,p)-1}{p},\frac{f(\mu_2,p)-1}{p},\ldots,\frac{f(\mu_n,p)-1}{p}\right) U A^{1/2} \\ &= A^{1/2} U^* \operatorname{diag}\left(g(\mu_1,p),g(\mu_2,p),\ldots,g(\mu_n,p)\right)U A^{1/2} \\ &= A^{1/2} g_p\left(U^* \operatorname{diag}\left(\mu_1,\mu_2,\ldots,\mu_n\right)U\right) A^{1/2} \\ &= A^{1/2} g_p\left(A^{-1/2} B A^{-1/2}\right) A^{1/2} = A \sigma_{q_n} B = S_{q_n}(A,B). \end{split}$$

This proves (2.5). \square

In the forthcoming theorem, we extend Furuta's inequality (1.9) from the functions $t \to t^p$, $p \in (0,1]$, to positive operator monotone functions $t \to f_p(t)$ on J = [m.M], 0 < m < M.

Theorem 2.2. Let f(t,p) be a real function of two variables $t \in J = [m,M]$ with 0 < m < M, and $p \in P = (0,p_0]$ with $0 < p_0 \le 1$. Let f(t,0) = 1, $t \in J$. Assume that $f_p > 0$, $p \in P$, is operator monotone on J. Let A and B be $n \times n$ positive definite matrices such that $mA \le B \le MA$.

If $\Phi: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map, then

(2.7)
$$S_{g_p}(\Phi(A), \Phi(B)) \le \Phi(S_{g_p}(A, B)) + \frac{1 - c_{f_p}}{p} \Phi(A) \sigma_{f_p} \Phi(B),$$

where f_p and g_p , $p \in P$, are defined by (2.1) and (2.2), respectively, and $c_{f_p} = \min_{t \in J} \frac{a_{f_p}t + b_{f_p}}{f_p(t)}$ with $a_{f_p} = \frac{f_p(M) - f_p(m)}{M - m}$ and $b_{f_p} = \frac{Mf_p(m) - mf_p(M)}{M - m}$.

If in addition
$$\frac{1-c_{fp}}{p} \to d$$
 as $p \to 0$, then

(2.8)
$$S_{g_0}(\Phi(A), \Phi(B)) \le \Phi(S_{g_0}(A, B)) + d\Phi(A),$$

where f_0 and g_0 are defined by (2.3) and (2.4), respectively.

Proof. It is not hard to verify that the assertion of [13, Corollary 3.4] can be extended to the case $0 < mA \le B \le MA$. In consequence, since $f_p > 0$ is operator monotone on J, the following inequality is met (cf. [13, Corollary 3.4]):

$$(2.9) c_{f_n}\Phi(A)\sigma_{f_n}\Phi(B) \le \Phi(A\sigma_{f_n}B).$$

In addition, $\Phi(A)\sigma_{f_0}\Phi(B)=\Phi(A)$, because $f_0\equiv 1$. So, it follows from (2.5) and (2.9) that

$$\Phi(A)\sigma_{g_p}\Phi(B) - \frac{1 - c_{f_p}}{p}\Phi(A)\sigma_{f_p}\Phi(B) = \frac{c_{f_p}\Phi(A)\sigma_{f_p}\Phi(B) - \Phi(A)}{p}$$

$$\leq \frac{\Phi(A\sigma_{f_p}B) - \Phi(A)}{p}$$

$$= \Phi\left(\frac{A\sigma_{f_p}B - A}{p}\right) = \Phi(A\sigma_{g_p}B).$$

Therefore, we have

(2.10)
$$\Phi(A)\sigma_{g_p}\Phi(B) \le \Phi(A\sigma_{g_p}B) + \frac{1 - c_{f_p}}{n}\Phi(A)\sigma_{f_p}\Phi(B).$$

Now, the inequality (2.7) can be deduced from (2.10) via (1.12).

By passing to the limit in (2.7) as $p \to 0$, we get $\Phi(A)\sigma_{f_p}\Phi(B) \to \Phi(A)\sigma_{f_0}\Phi(B)$, $A\sigma_{g_p}B \to A\sigma_{g_0}B$ and $\Phi(A)\sigma_{f_p}\Phi(B) \to \Phi(A)\sigma_{f_0}\Phi(B) = \Phi(A)$. Thus, (2.7) leads to (2.8). This completes the proof of Theorem 2.2. \square

For A > 0, B > 0 and $p, q \ge 0$, $p + q \le 1$, the (p, q)-generalized relative operator entropy is defined by

$$(2.11) S_{p,q}(A,B) = A^{1/2} (A^{-1/2} B A^{-1/2})^p (\log(A^{-1/2} B A^{-1/2}))^q A^{1/2}.$$

Notice that for q=0 one has $S_{p,q}(A,B)=A\sharp_p B$, and for q=1 and p=0, $S_{p,q}(A,B)=S(A,B)$.

It is worth emphasing that the function $J \ni t \to t^p(\log t)^q$, $p, q \ge 0$, $p + q \le 1$, is operator monotone on any interval J = [m, M], 1 < m < M (see [1, Corollary 2.7]).

Below we give an interpretation of statement (2.7) for the (p,q)-generalized relative operator entropy.

Corollary 2.3. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$, 1 < m < M.

If $\Phi: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map, then

$$(2.12) S_{p,q}(\Phi(A), \Phi(B)) \le \Phi(S_{p,q}(A,B)) + \frac{1 - c_{f_{p,q}}}{p} \Phi(A) \sigma_{f_{p,q}} \Phi(B),$$

where $p, q \ge 0$, $p + q \le 1$, and $S_{p,q}$ is the (p,q)-generalized relative operator entropy defined by (2.11), and $c_{f_{p,q}}$ is defined by (1.11).

Proof. Apply Theorem 2.2 to the functions $f_{p,q}(t) = pt^p(\log t)^q + 1$, $f_{0,q}(t) = 1$, and $g_{p,q}(t) = t^p(\log t)^q$, $t \in [m, M]$ with fixed q and $p \in [0, p_0]$, $p_0 = 1 - q$. \square

3. Extending Furuichi et al. and Zou's results. In this section, we develop some results due to Furuichi et al. [7] and Zou [19]. To do so, we involve star-shaped functions.

Remind that a real nonnegative function F on $[0, p_0)$, $0 < p_0 \le \infty$, with F(0) = 0 is said to be star-shaped if $F(\alpha p) \le \alpha F(p)$ for $p \in [0, p_0]$ and $0 \le \alpha \le 1$.

Theorem 3.1. With the definitions (2.1)–(2.4) for a real function f(t,p) of two variables $t \in J \subset (0,\infty)$ with an interval J and $p \in P = [0,1]$, assume that for each $t \in J$ the function $p \to f(t,p) - f(t,0)$, $p \in P$, is positive and star-shaped. Let $\varphi: J \to J$, i.e., $\varphi(t) \in J$ for $t \in J$. Let A and B be $n \times n$ positive definite matrices such that the spectrum $\operatorname{Sp}(A^{-1/2}BA^{-1/2}) \subset J$. Then for any $p \in (0,1]$, the following two inequalities hold:

$$(3.1) S_{q_n}(A, B) \le S_{q_1}(A, S_{\varphi}(A, B)) - S_{h_n}(A, B),$$

$$(3.2) S_{q_0}(A, B) \le S_{q_n}(A, S_{\omega}(A, B)) - S_{h_0}(A, B),$$

where

(3.3)
$$h_{\nu}(t) = h(t, p) = g(\varphi(t), p) - g(t, p) \quad \text{for } t \in J,$$

(3.4)
$$h_0(t) = h(t,0) = g(\varphi(t),0) - g(t,0) \text{ for } t \in J.$$

Proof. The function $(0,1]\ni p\to \frac{f(t,p)-f(t,0)}{p}=g(t,p)$ is nondecreasing [3, Lemma 3], i.e.,

$$0 < p_1 \le p_2 \le 1$$
 implies $\frac{f(t, p_1) - f(t, 0)}{p_1} \le \frac{f(t, p_2) - f(t, 0)}{p_2}$.

Hence,

$$g(t,0) = \lim_{p_1 \to 0^+} \frac{f(t,p_1) - f(t,0)}{p_1} \le \frac{f(t,p_2) - f(t,0)}{p_2}$$
 for any $0 < p_2 \le 1$.

857

P.A. Kluza and M. Niezgoda

Consequently, the following double inequality is valid:

(3.5)
$$g(t,0) \le g(t,p) \le g(t,1)$$
 for any $0 .$

To prove (3.1), we employ the inequality $g(t,p) \leq g(t,1)$ for $t \in J$, $0 (see (3.5)). Since <math>\varphi(t) \in J$ for $t \in J$, we obtain

$$g(\varphi(t), p) \le g(\varphi(t), 1)$$
 for $t \in J$,

or, equivalently,

$$g(t,p) \le g(\varphi(t),1) - [g(\varphi(t),p) - g(t,p)]$$
 for $t \in J$.

So, by (3.3), we find that

$$g(t,p) \le g(\varphi(t),1) - h(t,p)$$
 for $t \in J$.

In other words, we have

(3.6)
$$g_p(t) \le g_1(\varphi(t)) - h_p(t) \text{ for } t \in J.$$

By denoting $Z = A^{-1/2}BA^{-1/2}$ and making use of (3.6), we get

$$g_p(Z) \le g_1(\varphi(Z)) - h_p(Z).$$

Hence,

$$A^{1/2}g_p(Z)A^{1/2} \le A^{1/2}g_1(\varphi(Z))A^{1/2} - A^{1/2}h_p(Z)A^{1/2},$$

which means

$$(3.7) A\sigma_{a_n}B \le A\sigma_{a_1\circ\varphi}B - A\sigma_{h_n}B.$$

However, we can show that

$$(3.8) A\sigma_{q_1 \circ \varphi} B = A\sigma_{q_1} (A\sigma_{\varphi} B).$$

Indeed, by using (1.1), we derive

$$\begin{split} A\sigma_{g_1\circ\varphi}B &= A^{1/2}(g_1\circ\varphi)(A^{-1/2}BA^{-1/2})A^{1/2} = A^{1/2}g_1(\varphi(A^{-1/2}BA^{-1/2}))A^{1/2} \\ &= A^{1/2}g_1(A^{-1/2}A^{1/2}\varphi(A^{-1/2}BA^{-1/2})A^{1/2}A^{-1/2})A^{1/2} \\ &= A^{1/2}g_1(A^{-1/2}(A\sigma_\varphi B)A^{-1/2})A^{1/2} = A\sigma_{g_1}(A\sigma_\varphi B), \end{split}$$

completing the proof of (3.8).

859

So, by virtue of (3.7)–(3.8), we infer that

$$S_{q_n}(A, B) \le S_{q_1}(A, A\sigma_{\varphi}B) - S_{h_n}(A, B),$$

which proves (3.1).

We shall show (3.2). According to the inequality $g(t,0) \leq g(t,p)$ for $t \in J$, 0 (see (3.5)), we get

$$g(\varphi(t), 0) \le g(\varphi(t), p)$$
 for $t \in J$,

because $\varphi(t) \in J$ for $t \in J$. So, by (3.4), we have

$$g(t,0) \le g(t,p) - [g(t,p) - g(\varphi(t),p)] - h(t,0)$$
 for $t \in J$,

which means

(3.9)
$$g_0(t) \le g_p(t) - [g_p(t) - g_p(\varphi(t))] - h_0(t) \text{ for } t \in J.$$

With the notation $Z = A^{-1/2}BA^{-1/2}$, inequality (3.9) gives

$$g_0(Z) \le g_p(Z) - [g_p(Z) - g_p(\varphi(Z))] - h_0(Z).$$

Next, by pre- and post-multiplying by $A^{1/2}$ we obtain

$$A^{1/2}g_0(Z)A^{1/2} \le A^{1/2}g_p(Z)A^{1/2} - \left[A^{1/2}g_p(Z)A^{1/2} - A^{1/2}g_p(\varphi(Z))A^{1/2}\right] - A^{1/2}h_0(Z)A^{1/2}.$$

This amounts to

$$(3.10) A\sigma_{a_0}B \le A\sigma_{a_n}B - [A\sigma_{a_n}B - A\sigma_{a_n\circ\varphi}B] - A\sigma_{h_0}B.$$

Similarly as in (3.8), we have

$$(3.11) A\sigma_{g_p \circ \varphi} B = A\sigma_{g_p}(A\sigma_{\varphi} B).$$

Therefore, (3.10)–(3.11) lead to

$$S_{g_0}(A, B) \le S_{g_p}(A, B) - [S_{g_p}(A, B) - S_{g_p}(A, A\sigma_{\varphi}B)] - S_{h_0}(A, B),$$

completing the proof of (3.2).

Remark 3.2. According to [3, Theorem 5], Theorem 3.1 remains valid if the star-shapedness of the function $p \to f(t,p) - f(t,0)$, is replaced by convexity or convexity on the average.

REMARK 3.3. (i). It is not hard to verify that Theorem 3.1, Eq. (3.1), reduces to Theorem A, with the following specification

$$f_p(t) = t^p$$
, $g_p(t) = \ln_p t = \frac{t^p - 1}{p}$, $g_1(t) = t - 1$, $\varphi(t) = \frac{t}{a}$, $a > 0$.

P.A. Kluza and M. Niezgoda

(ii). Likewise, Theorem 3.1, Eq. (3.2), becomes Theorem B, whenever

$$f_p(t) = t^p$$
, $g_0(t) = \log t$, $g_p(t) = \frac{t^p - 1}{p}$, $\varphi(t) = at$, $a > 0$.

In the next corollary, we provide analogs of Theorem A and Theorem B for the generalized relative operator entropy defined by (1.5).

COROLLARY 3.4. Let A and B be $n \times n$ positive definite matrices such that the spectrum $\operatorname{Sp}(A^{-1/2}BA^{-1/2}) \subset (1,\infty)$. Then for any $p \in P = (0,1]$ and $a \geq 1$, the following two inequalities hold:

$$(3.12) S_p(A,B) \le a^{1-p}(\log a)B + a^{1-p}S_1(A,B) - (\log a)A\sharp_p B,$$

(3.13)
$$a^{-p}S(A,B) + (a^{-p}\log a)A - (\log a)A\sharp_p B \le S_p(A,B),$$

where S_p is the generalized relative operator entropy defined by (1.5), and S is the relative operator entropy defined by (1.4).

Proof. We apply Theorem 3.1 to the functions $f(t,p) = pt^p \log t$, f(t,0) = 0, $g_p(t) = g(t,p) = t^p \log t$, $g_0(t) = g(t,0) = \log t$, and $\varphi(t) = at$, $a \ge 1$, for $t \in J = (1,\infty)$ and $p \in (0,1]$. So, it is easily seen that $S_{\varphi}(A,B) = aB$.

Next, we shall show the identity

(3.14)
$$S_a(A, aB) = (a^q \log a) A \sharp_a B + a^q S_a(A, B) \text{ for } q \in (0, 1].$$

Indeed, we have

$$S_q(A, aB) = A^{1/2}g_q(A^{-1/2}(aB)A^{-1/2})A^{1/2} = A^{1/2}g_q(aA^{-1/2}BA^{-1/2})A^{1/2}.$$

By denoting $Z = A^{-1/2}BA^{-1/2}$, we write $Z = U^*(\operatorname{diag} \mu_i)U$ with unitary U and the eigenvalues μ_i , $i = 1, \ldots, n$, of Z. Hence,

$$\begin{split} g_q(aZ) &= g_q(U^*(\operatorname{diag} a\mu_i)U) = U^*(\operatorname{diag} g_q(a\mu_i))U \\ &= U^*(\operatorname{diag} ((a\mu_i)^q \log(a\mu_i)))U \\ &= U^*(\operatorname{diag} (a^q\mu_i^q \log a + a^q\mu_i^q \log \mu_i))U \\ &= U^*(\operatorname{diag} ((a^q \log a)\mu_i^q))U + U^*(\operatorname{diag} (a^q\mu_i^q \log \mu_i))U \\ &= (a^q \log a)U^*(\operatorname{diag} \mu_i^q)U + a^qU^*(\operatorname{diag} (\mu_i^q \log \mu_i))U \\ &= (a^q \log a)Z^q + a^q g_q(Z). \end{split}$$

By pre- and post-multiplying by $A^{1/2}$ we obtain

$$S_q(A, aB) = S_{g_q}(A, aB) = A^{1/2}g_q(aZ)A^{1/2}$$

$$= (a^q \log a)A^{1/2}Z^qA^{1/2} + a^qA^{1/2}g_q(Z)A^{1/2}$$

$$= (a^q \log a)A\sharp_a B + a^qS_a(A, B),$$

861

completing the proof of (3.14).

(i). In order to prove (3.12), we derive

$$h_p(t) = h(t, p) = g(\varphi(t), p) - g(t, p)$$
$$= (at)^p \log(at) - t^p \log t$$
$$= (a^p \log a)t^p + (a^p - 1)t^p \log t \quad \text{for } t \in J.$$

For this reason,

$$S_{h_p}(A, B) = (a^p \log a)A\sharp_p B + (a^p - 1)S_p(A, B).$$

By employing (3.14) with q = 1, we establish

(3.15)
$$S_1(A, aB) = (a \log a)B + aS_1(A, B).$$

In fact, for q = 1, we have $A \sharp_q B = B$. Consequently, (3.14) quarantees (3.15).

Now, by utilizing (3.1) we conclude that

$$S_p(A, B) \le (a \log a)B + aS_1(A, B) - (a^p \log a)A\sharp_p B - (a^p - 1)S_p(A, B),$$

which gives (3.12).

(ii). We shall show (3.13). By virtue of (3.2) we get

(3.16)
$$S(A,B) \le S_p(A,aB) - S_{h_0}(A,B).$$

Putting q = p into (3.14) yields

$$S_n(A, aB) = (a^p \log a)A\sharp_n B + a^p S_n(A, B).$$

It is obvious that

$$h_0(t) = h(t, 0) = g(at, 0) - g(t, 0) = \log(at) - \log t = \log a$$
 for $t \in J$.

Hence, $S_{h_0}(A, B) = (\log a)A$.

It now follows from (3.16) that

$$S(A, B) \le a^p S_p(A, B) + (a^p \log a) A \sharp_p B - (\log a) A.$$

Thus we obtain (3.13), as desired. \square

We are now in a position to show a complement to Furuta type inequality (2.7).

THEOREM 3.5. With the definitions (2.1)–(2.4) for a real function f(t,p) of two variables $t \in J = (0,\infty)$ and $p \in P = (0,1]$, assume that for each $t \in J$ the function

 $p \to f(t,p) - f(t,0), \ p \in P$, is positive and star-shaped. Let $\varphi: J \to J$ be such that $\varphi(t) = at \in J, \ a > 0$, for $t \in J$. Suppose that $g_1(t) = \alpha t + \beta, \ \alpha > 0$, is an affine function, and that g_2 is an concave function with its chord function $t \to a_{g_2}t + b_{g_2}$, $t \in J, \ a_{g_2} > 0$ (see (1.11)). Let A and B be $n \times n$ positive definite matrices.

If $\Phi: \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map, then for any $p \in P$,

$$(3.17) \quad S_{g_p}(\Phi(A), \Phi(B)) \le \frac{\alpha a}{a_{g_2}} \Phi(S_{g_2}(A, B)) - S_{h_p}(\Phi(A), \Phi(B)) + \left(\beta - \alpha a \frac{b_{g_2}}{a_{g_2}}\right) \Phi(A),$$

where
$$h_p(t) = h(t, p) = g(at, p) - g(t, p)$$
 for $t \in J$.

Proof. As in the proof of Theorem 3.1 (see (3.5)), we have $g_p(t) \leq g_1(t)$ for $t \in J$, and

$$g_p(t) \le g_1(at) - h_p(t) = \alpha at + \beta - h_p(t)$$
 for $t \in J$.

Since g_2 is concave with its chord function $t \to a_{g_2}t + b_{g_2}$, $t \in J$, $a_{g_2} > 0$ (see (1.11)), we get

$$a_{q_2}t + b_{q_2} \leq g_2(t)$$
 for $t \in J$.

By using the last two inequalities, we obtain

$$g_p(t) + h_p(t) - \beta \le \alpha \varphi(t) = \alpha a t = \frac{\alpha a}{a_{g_2}} a_{g_2} t \le \frac{\alpha a}{a_{g_2}} (g_2(t) - b_{g_2})$$
 for $t \in J$.

In consequence, for $Z = A^{-1/2}BA^{-1/2}$ and $W = C^{-1/2}DC^{-1/2}$ with $C = \Phi(A)$ and $D = \Phi(B)$, we find that

$$(3.18) g_p(W) + h_p(W) - \beta I \le \alpha a W,$$

$$\alpha a Z \le \frac{\alpha a}{a_{g_2}} (g_2(Z) - b_{g_2} I).$$

Thus, we obtain

$$\begin{split} &C^{1/2}g_p(W)C^{1/2} + C^{1/2}h_p(W)C^{1/2} - \beta C \leq \alpha aC^{1/2}WC^{1/2},\\ &\alpha aA^{1/2}ZA^{1/2} \leq \frac{\alpha a}{a_{g_2}}\left(A^{1/2}g_2(Z)A^{1/2} - b_{g_2}A\right). \end{split}$$

That is,

(3.19)
$$C\sigma_{g_p}D + C\sigma_{h_p}D - \beta C \le \alpha a D,$$
$$\alpha a B \le \frac{\alpha a}{a_{g_2}} \left(A\sigma_{g_2}B - b_{g_2}A \right).$$

Hence,

(3.20)
$$\alpha a \Phi(B) \le \frac{\alpha a}{a_{g_2}} \left(\Phi(A \sigma_{g_2} B) - b_{g_2} \Phi(A) \right).$$

863

But (3.19) can be rewritten as

$$(3.21) \Phi(A)\sigma_{q_p}\Phi(B) + \Phi(A)\sigma_{h_p}\Phi(B) - \beta\Phi(A) \le \alpha a\Phi(B).$$

Now, by combining (3.21) and (3.20), we establish

$$\Phi(A)\sigma_{g_p}\Phi(B) + \Phi(A)\sigma_{h_p}\Phi(B) - \beta\Phi(A) \le \frac{\alpha a}{a_{g_2}} \left(\Phi(A\sigma_{g_2}B) - b_{g_2}\Phi(A)\right).$$

So, we infer that

$$\Phi(A)\sigma_{g_p}\Phi(B) \le \frac{\alpha a}{a_{g_2}}\Phi(A\sigma_{g_2}B) - \Phi(A)\sigma_{h_p}\Phi(B) + \left(\beta - \alpha a \frac{b_{g_2}}{a_{g_2}}\right)\Phi(A),$$

which is equivalent to (3.17). \square

COROLLARY 3.6. With the assumptions of Theorem 3.5, if in addition $g_2 = g_1$ then (3.17) reduces to

$$(3.22) S_{g_p}(\Phi(A), \Phi(B)) \le a\Phi(S_{g_1}(A, B)) - S_{h_p}(\Phi(A), \Phi(B)) + \beta(1 - a)\Phi(A).$$

If additionally Φ is the identity, then (3.22) yields

$$(3.23) S_{a_n}(A,B) \le aS_{a_1}(A,B) - S_{h_n}(A,B) + \beta (1-a) A.$$

Remark 3.7. By letting $\alpha = 1$, $\beta = -1$ and

$$f_p(t) = t^p$$
, $g_p(t) = \ln_p t = \frac{t^p - 1}{p}$, $\varphi(t) = \frac{t}{a}$, $h_p(t) = t^p \ln_p \frac{1}{a}$, $1 \ge a > 0$,

inequality (3.23) becomes the result (1.7) due to Furuichi et al. (see Theorem A).

Acknowledgment. The authors wish to thank anonymous referees for helpful suggestions improving the readability of the paper.

REFERENCES

- J. S. Aujla and H. L. Vasudeva. Some convex and monotone matrix functions. *Linear Algebra Appl.*, 248:47–60, 1996.
- [2] R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
- [3] A.M. Bruckner and E. Ostrow. Some function classes related to the class of convex functions. Pacific J. Math., 12:1203–1215, 1962.
- [4] J.I. Fujii and E. Kamei. Relative operator entropy in noncommutative information theory. Math. Japon., 34:341–348, 1989.
- [5] J.I. Fujii and E. Kamei. Uhlmann's interpolation method for operator means. Math. Japon., 34:541–547, 1989.

P.A. Kluza and M. Niezgoda

- [6] S. Furuichi, K. Yanagi, and K. Kuriyama. Fundamental properties of Tsallis relative entropy. J. Math. Phys., 45:4868–4877, 2004.
- [7] S. Furuichi, K. Yanagi, and K. Kuriyama. A note on operator inequalities of Tsallis relative operator entropy. *Linear Algebra Appl.*, 407:19–31, 2005.
- [8] T. Furuta. Invitation to Linear Operators: From Matrix to Linear Operator. CRC Press, 2002.
- [9] T. Furuta. Two reverse inequalities associated with Tsallis relative operator entropy via generalized Kantorovich constant and their applications. *Linear Algebra Appl.*, 412:526– 537, 2006.
- [10] T. Furuta, J. Mićić, J. Pečarić, and Y. Seo. Mond-Pečarić Method in Operator Inequalities. Element, Zagreb, 2005.
- [11] R. Kaur, M. Singh, and J.S. Aujla. Generalized matrix version of reverse Hölder inequality. Linear Algebra Appl., 434:636–640, 2011.
- [12] F. Kubo and T. Ando. Means of positive linear operators. Math. Ann., 246:205-224, 1980.
- [13] J. Mićić, J. Pečarić, and Y. Seo. Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method. Linear Algebra Appl., 318:87–107, 2000.
- [14] M.S. Moslehian, F. Mirzapour, and A. Morassaei. Operator entropy inequalities. Colloq. Math., 130:159–168, 2013.
- [15] M. Niezgoda. Choi-Davis-Jensen's inequality and generalized inverses of linear operators. Electron. J. Linear Algebra, 26:406–416, 2013.
- [16] M. Niezgoda. On f-connections of positive definite matrices. Ann. Funct. Anal., 5:147–157, 2014.
- [17] Y. Seo. Reverses of Ando's inequality for positive linear maps. Math. Inequal. Appl., 14:905–910, 2011.
- [18] K. Yanagi, K. Kuriyama, and S. Furuichi. Generalized Shannon inequality based on Tsallis relative operator entropy. *Linear Algebra Appl.*, 394:109–118, 2005.
- [19] L. Zou. Operator inequalities associated with Tsallis relative operator entropy. Math. Inequal. Appl., 18:401–406, 2015.