INEQUALITIES FOR RELATIVE OPERATOR ENTROPIES*

PAWEL A. KLUZA ${ }^{\dagger}$ AND MAREK NIEZGODA ${ }^{\dagger}$

Abstract

In this paper, operator inequalities are provided for operator entropies transformed by a strictly positive linear map. Some results by Furuichi et al. [S. Furuichi, K. Yanagi, and K. Kuriyama. A note on operator inequalities of Tsallis relative operator entropy. Linear Algebra Appl., 407:19-31, 2005.], Furuta [T. Furuta. Two reverse inequalities associated with Tsallis relative operator entropy via generalized Kantorovich constant and their applications. Linear Algebra Appl., 412:526-537, 2006.], and Zou [L. Zou. Operator inequalities associated with Tsallis relative operator entropy. Math. Inequal. Appl., 18:401-406, 2015.] are extended. In particular, the obtained inequalities are specified for relative operator entropy and Tsallis relative operator entropy. In addition, some bounds for generalized relative operator entropy are established.

Key words. Operator monotone function, f-connection, Operator mean, Relative operator entropy, Tsallis relative operator entropy, Positive linear map.

AMS subject classifications. 94A17, 47A64, 15A39.

1. Introduction. We start with some notation (see [2, p. 112]).

As usual, the symbol $\mathbb{M}_{n}(\mathbb{C})$ denotes the C^{*}-algebra of $n \times n$ complex matrices. For matrices $X, Y \in \mathbb{M}_{n}(\mathbb{C})$, we write $Y \leq X$ (resp., $\left.Y<X\right)$ if $X-Y$ is positive semidefinite (resp., positive definite).

A linear map $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is said to be positive if $0 \leq \Phi(X)$ for $0 \leq X \in$ $\mathbb{M}_{n}(\mathbb{C})$. If $0<\Phi(X)$ for $0<X \in \mathbb{M}_{n}(\mathbb{C})$ then Φ is said to be strictly positive.

A real function $f: J \rightarrow \mathbb{R}$ defined on interval $J \subset \mathbb{R}$ is called an operator monotone function, if for all Hermitian matrices A and B (of the same order) with spectra in J

$$
A \leq B \quad \text { implies } \quad f(A) \leq f(B)
$$

Let $f: J \rightarrow \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. Let A be an $n \times n$ positive definite matrix and B be an $n \times n$ Hermitian matrix such that the spectrum $\mathrm{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset J$. Then the operator σ_{f} given by

$$
\begin{equation*}
A \sigma_{f} B=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1.1}
\end{equation*}
$$

[^0]is called f-connection (cf. [11, 12]). See [15] for an extension of (1.1).
Note that for the functions $p t+1-p$ and t^{p}, the definition of Eq. (1.1) leads to the arithmetic and geometric operator means (1.2) and (1.3), respectively.

For $A>0, B>0$ and $p \in[0,1]$, the p-arithmetic mean is defined as follows

$$
\begin{equation*}
A \nabla_{p} B=(1-p) A+p B . \tag{1.2}
\end{equation*}
$$

For $A>0, B>0$ and $p \in[0,1]$, the p-geometric mean is defined by (see [12, 17])

$$
\begin{equation*}
A \not \sharp_{p} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{p} A^{1 / 2} . \tag{1.3}
\end{equation*}
$$

We now give definitions of some operator entropies.
For $A>0, B>0$, the relative operator entropy is defined by (see [4])

$$
\begin{equation*}
S(A, B)=A^{1 / 2} \log \left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1.4}
\end{equation*}
$$

For $A>0, B>0$ and $p \in \mathbb{R}$, the generalized relative operator entropy is given by (see [14, 18])

$$
\begin{equation*}
S_{p}(A, B)=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{p} \log \left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1.5}
\end{equation*}
$$

For $A>0, B>0$ and $0<p \leq 1$, the Tsallis relative operator entropy is defined as follows (see [18])

$$
\begin{equation*}
T_{p}(A, B)=\frac{A \not \sharp_{p} B-A}{p} . \tag{1.6}
\end{equation*}
$$

It is not hard to check that (1.4), (1.5) and (1.6) are of the form (1.1) for the functions $\log t, t^{p} \log t$ and $\ln _{p} t=\frac{t^{p}-1}{p}$, respectively.

In recent years there has been a growing interest in the study of entropies and means [5, 6, 7, 8, 9, 16, 19.

Theorem A. (Furuichi et al. [7, Theorem 3.6]) For $A>0, B>0,1 \geq p>0$ and $a>0$, the following inequality holds:

$$
\begin{equation*}
A \not \sharp_{p} B-\frac{1}{a} A \not \sharp_{p-1} B+\frac{1-a^{p}}{p a^{p}} A \leq T_{p}(A, B) \leq \frac{1}{a} B-\frac{1-a^{p}}{p a^{p}} A \not \sharp_{p} B-A . \tag{1.7}
\end{equation*}
$$

The next known double inequalities are consequences of (1.7) (see [5, 7, 8, 19):

$$
A-A B^{-1} A \leq T_{p}(A, B) \leq B-A
$$

$$
A-A B^{-1} A \leq S(A, B) \leq B-A
$$

and

$$
(1-\log a) A-\frac{1}{a} A B^{-1} A \leq S(A, B) \leq(\log a-1) A+\frac{1}{a} B \quad \text { for } a>0
$$

Theorem B. (Zou [19, Theorem 2.2]) For $A>0, B>0,1 \geq p>0$ and $a>0$, the following inequality holds:
(1.8) $-\left(\log a+\frac{1-a^{p}}{p a^{p}}\right) A+a^{-p} T_{-p}(A, B) \leq S(A, B) \leq T_{p}(A, B)-\frac{1-a^{p}}{p} A \not \sharp_{p} B-(\log a) A$.

It is easily seen that (1.8) implies a result in [7:

$$
T_{-p}(A, B) \leq S(A, B) \leq T_{p}(A, B)
$$

Theorem C. (Furuta [9, Theorem 2.1]) Let A and B be $n \times n$ positive definite matrices such that $M_{1} I \geq A \geq m_{1} I>0$ and $M_{2} I \geq B \geq m_{2} I>0$. Put $m=\frac{m_{2}}{M_{1}}$, $M=\frac{M_{2}}{m_{1}}, h=\frac{M}{m}=\frac{M_{1} M_{2}}{m_{1} m_{2}}>1$ and $p \in(0,1]$. Let Φ be normalized positive linear map on $B(H)=\mathbb{M}_{n}(\mathbb{C})$. Then the following inequalities hold:

$$
\begin{equation*}
\Phi\left(T_{p}(A, B)\right) \leq T_{p}(\Phi(A), \Phi(B)) \leq \Phi\left(T_{p}(A, B)\right)+\left(\frac{1-K(p)}{p}\right) \Phi(A) \sharp_{p} \Phi(B) \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi\left(T_{p}(A, B)\right) \leq T_{p}(\Phi(A), \Phi(B)) \leq \Phi\left(T_{p}(A, B)\right)+F(p) \Phi(A) \tag{1.10}
\end{equation*}
$$

where $K(p)$ is the generalized Kantorovich constant defined by

$$
K(p)=\frac{h^{p}-h}{(p-1)(h-1)}\left(\frac{(p-1)\left(h^{p}-1\right)}{p\left(h^{p}-h\right)}\right)^{p}
$$

and

$$
F(p)=\frac{m^{p}}{p}\left(\frac{h^{p}-h}{h-1}\right)\left(1-K(p)^{\frac{1}{p-1}}\right) \geq 0 .
$$

For a positive concave function $g: J \rightarrow \mathbb{R}_{+}$defined on an interval $J=[m, M]$ with $m<M$, we define (see [13)

$$
\begin{equation*}
a_{g}=\frac{g(M)-g(m)}{M-m}, \quad b_{g}=\frac{M g(m)-m g(M)}{M-m} \quad \text { and } \quad c_{g}=\min _{t \in J} \frac{a_{g} t+b_{g}}{g(t)} . \tag{1.11}
\end{equation*}
$$

In order to unify our further studies, we introduce the notion of relative g-entropy as follows. Let $g: J \rightarrow \mathbb{R}$ be a continuous function defined on an interval $J \subset \mathbb{R}$. For $A>0, B>0$ with the spectrum of $A^{-1 / 2} B A^{-1 / 2}$ in J, we define the relative g-entropy of A and B as

$$
\begin{equation*}
S_{g}(A, B)=A \sigma_{g} B=A^{1 / 2} g\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1.12}
\end{equation*}
$$

In the present paper, our aim is to provide some further operator inequalities for entropies and means transformed by a strictly positive linear map Φ.
2. Furuta type inequalities. Throughout $f(t, p)$ is a real function of two variables $t \in J$ and $p \in P=\left(0, p_{0}\right], 0<p_{0} \leq 1$. We use the notation

$$
\begin{align*}
& f_{p}(t)=f(t, p) \quad \text { for } t \in J \text { and } p \in P \tag{2.1}\\
& g_{p}(t)=g(t, p)=\frac{f(t, p)-f(t, 0)}{p} \quad \text { for } t \in J \text { and } p \in P . \tag{2.2}
\end{align*}
$$

If there exist the following limits, then we write

$$
\begin{array}{ll}
f_{0}(t)=f(t, 0)=\lim _{p \rightarrow 0^{+}} f(t, p) & \text { for } t \in J \\
g_{0}(t)=g(t, 0)=\lim _{p \rightarrow 0^{+}} g(t, p) & \text { for } t \in J \tag{2.4}
\end{array}
$$

For example, by substituting $f(t, p)=t^{p}$ for $t>0,0<p \leq p_{0}=1$, we get $f_{0}(t)=1, g(t, p)=\ln _{p}(t)$ and $g_{0}(t)=\log t$.

Lemma 2.1. Let $f(t, p)$ be a real function of two variables $t \in J$ and $p \in P=$ $\left(0, p_{0}\right], 0<p_{0} \leq 1$, with an interval $J \subset(0, \infty)$. Assume $f(t, 0)=1, t \in J$. For $n \times n$ positive definite matrices A and B with spectrum $\operatorname{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset J$, the following identity holds:

$$
\begin{equation*}
S_{g_{p}}(A, B)=\frac{S_{f_{p}}(A, B)-A}{p} \quad \text { for } p \in P \tag{2.5}
\end{equation*}
$$

where f_{p} and g_{p} are defined by (2.1)-(2.2).
Proof. By (1.12) and (2.2) we establish the equalities

$$
\begin{align*}
\frac{S_{f_{p}}(A, B)-A}{p} & =\frac{A \sigma_{f_{p}} B-A}{p} \\
& =\frac{A^{1 / 2} f_{p}\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}-A^{1 / 2} I A^{1 / 2}}{p} \tag{2.6}\\
& =A^{1 / 2} \frac{f_{p}\left(A^{-1 / 2} B A^{-1 / 2}\right)-I}{p} A^{1 / 2} .
\end{align*}
$$

Denoting $Z=A^{-1 / 2} B A^{-1 / 2}$ and using spectral decomposition of Z, we obtain

$$
Z=U^{*} \operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) U
$$

for some $n \times n$ unitary matrix U (i.e., $U^{*} U=U U^{*}=I$) with the eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of Z. Thus, we get

$$
\begin{aligned}
f_{p}(Z) & =f_{p}\left(A^{-1 / 2} B A^{-1 / 2}\right)=U^{*} \operatorname{diag}\left(f_{p}\left(\mu_{1}\right), f_{p}\left(\mu_{2}\right), \ldots, f_{p}\left(\mu_{n}\right)\right) U \\
& =U^{*} \operatorname{diag}\left(f\left(\mu_{1}, p\right), f\left(\mu_{2}, p\right), \ldots, f\left(\mu_{n}, p\right)\right) U
\end{aligned}
$$

Therefore, from (2.6), we derive

$$
\begin{aligned}
\frac{S_{f_{p}}(A, B)-A}{p} & =A^{1 / 2} \frac{f_{p}(Z)-U^{*} U}{p} A^{1 / 2} \\
& =A^{1 / 2} \frac{U^{*} \operatorname{diag}\left(f\left(\mu_{1}, p\right), f\left(\mu_{2}, p\right), \ldots, f\left(\mu_{n}, p\right)\right) U-U^{*} I U}{p} A^{1 / 2} \\
& =A^{1 / 2} U^{*} \operatorname{diag}\left(\frac{f\left(\mu_{1}, p\right)-1}{p}, \frac{f\left(\mu_{2}, p\right)-1}{p}, \ldots, \frac{f\left(\mu_{n}, p\right)-1}{p}\right) U A^{1 / 2} \\
& =A^{1 / 2} U^{*} \operatorname{diag}\left(g\left(\mu_{1}, p\right), g\left(\mu_{2}, p\right), \ldots, g\left(\mu_{n}, p\right)\right) U A^{1 / 2} \\
& =A^{1 / 2} g_{p}\left(U^{*} \operatorname{diag}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) U\right) A^{1 / 2} \\
& =A^{1 / 2} g_{p}\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}=A \sigma_{g_{p}} B=S_{g_{p}}(A, B)
\end{aligned}
$$

This proves (2.5). \square
In the forthcoming theorem, we extend Furuta's inequality (1.9) from the functions $t \rightarrow t^{p}, p \in(0,1]$, to positive operator monotone functions $t \rightarrow f_{p}(t)$ on $J=[m \cdot M], 0<m<M$.

Theorem 2.2. Let $f(t, p)$ be a real function of two variables $t \in J=[m, M]$ with $0<m<M$, and $p \in P=\left(0, p_{0}\right]$ with $0<p_{0} \leq 1$. Let $f(t, 0)=1, t \in J$. Assume that $f_{p}>0, p \in P$, is operator monotone on J. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map, then

$$
\begin{equation*}
S_{g_{p}}(\Phi(A), \Phi(B)) \leq \Phi\left(S_{g_{p}}(A, B)\right)+\frac{1-c_{f_{p}}}{p} \Phi(A) \sigma_{f_{p}} \Phi(B) \tag{2.7}
\end{equation*}
$$

where f_{p} and $g_{p}, p \in P$, are defined by (2.1) and (2.2), respectively, and $c_{f_{p}}=$ $\min _{t \in J} \frac{a_{f_{p}} t+b_{f_{p}}}{f_{p}(t)}$ with $a_{f_{p}}=\frac{f_{p}(M)-f_{p}(m)}{M-m}$ and $b_{f_{p}}=\frac{M f_{p}(m)-m f_{p}(M)}{M-m}$.

If in addition $\frac{1-c_{f_{p}}}{p} \rightarrow d$ as $p \rightarrow 0$, then

$$
\begin{equation*}
S_{g_{0}}(\Phi(A), \Phi(B)) \leq \Phi\left(S_{g_{0}}(A, B)\right)+d \Phi(A) \tag{2.8}
\end{equation*}
$$

where f_{0} and g_{0} are defined by (2.3) and 2.4), respectively.
Proof. It is not hard to verify that the assertion of [13, Corollary 3.4] can be extended to the case $0<m A \leq B \leq M A$. In consequence, since $f_{p}>0$ is operator monotone on J, the following inequality is met (cf. [13, Corollary 3.4]):

$$
\begin{equation*}
c_{f_{p}} \Phi(A) \sigma_{f_{p}} \Phi(B) \leq \Phi\left(A \sigma_{f_{p}} B\right) \tag{2.9}
\end{equation*}
$$

In addition, $\Phi(A) \sigma_{f_{0}} \Phi(B)=\Phi(A)$, because $f_{0} \equiv 1$. So, it follows from (2.5) and (2.9) that

$$
\begin{aligned}
\Phi(A) \sigma_{g_{p}} \Phi(B)-\frac{1-c_{f_{p}}}{p} \Phi(A) \sigma_{f_{p}} \Phi(B) & =\frac{c_{f_{p}} \Phi(A) \sigma_{f_{p}} \Phi(B)-\Phi(A)}{p} \\
& \leq \frac{\Phi\left(A \sigma_{f_{p}} B\right)-\Phi(A)}{p} \\
& =\Phi\left(\frac{A \sigma_{f_{p}} B-A}{p}\right)=\Phi\left(A \sigma_{g_{p}} B\right)
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\Phi(A) \sigma_{g_{p}} \Phi(B) \leq \Phi\left(A \sigma_{g_{p}} B\right)+\frac{1-c_{f_{p}}}{p} \Phi(A) \sigma_{f_{p}} \Phi(B) \tag{2.10}
\end{equation*}
$$

Now, the inequality (2.7) can be deduced from (2.10) via (1.12).
By passing to the limit in (2.7) as $p \rightarrow 0$, we get $\Phi(A) \sigma_{f_{p}} \Phi(B) \rightarrow \Phi(A) \sigma_{f_{0}} \Phi(B)$, $A \sigma_{g_{p}} B \rightarrow A \sigma_{g_{0}} B$ and $\Phi(A) \sigma_{f_{p}} \Phi(B) \rightarrow \Phi(A) \sigma_{f_{0}} \Phi(B)=\Phi(A)$. Thus, (2.7) leads to (2.8). This completes the proof of Theorem [2.2, \square

For $A>0, B>0$ and $p, q \geq 0, p+q \leq 1$, the (p, q)-generalized relative operator entropy is defined by

$$
\begin{equation*}
S_{p, q}(A, B)=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{p}\left(\log \left(A^{-1 / 2} B A^{-1 / 2}\right)\right)^{q} A^{1 / 2} \tag{2.11}
\end{equation*}
$$

Notice that for $q=0$ one has $S_{p, q}(A, B)=A \not \sharp_{p} B$, and for $q=1$ and $p=0$, $S_{p, q}(A, B)=S(A, B)$.

It is worth emphasing that the function $J \ni t \rightarrow t^{p}(\log t)^{q}, p, q \geq 0, p+q \leq 1$, is operator monotone on any interval $J=[m, M], 1<m<M$ (see [1, Corollary 2.7]).

Below we give an interpretation of statement (2.7) for the (p, q)-generalized relative operator entropy.

Corollary 2.3. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A, 1<m<M$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map, then

$$
\begin{equation*}
S_{p, q}(\Phi(A), \Phi(B)) \leq \Phi\left(S_{p, q}(A, B)\right)+\frac{1-c_{f_{p, q}}}{p} \Phi(A) \sigma_{f_{p, q}} \Phi(B) \tag{2.12}
\end{equation*}
$$

where $p, q \geq 0, p+q \leq 1$, and $S_{p, q}$ is the (p, q)-generalized relative operator entropy defined by (2.11), and $c_{f_{p, q}}$ is defined by (1.11).

Proof. Apply Theorem 2.2 to the functions $f_{p, q}(t)=p t^{p}(\log t)^{q}+1, f_{0, q}(t)=1$, and $g_{p, q}(t)=t^{p}(\log t)^{q}, t \in[m, M]$ with fixed q and $p \in\left[0, p_{0}\right], p_{0}=1-q$.
3. Extending Furuichi et al. and Zou's results. In this section, we develop some results due to Furuichi et al. [7] and Zou [19]. To do so, we involve star-shaped functions.

Remind that a real nonnegative function F on $\left[0, p_{0}\right), 0<p_{0} \leq \infty$, with $F(0)=0$ is said to be star-shaped if $F(\alpha p) \leq \alpha F(p)$ for $p \in\left[0, p_{0}\right]$ and $0 \leq \alpha \leq 1$.

Theorem 3.1. With the definitions (2.1)-2.4) for a real function $f(t, p)$ of two variables $t \in J \subset(0, \infty)$ with an interval J and $p \in P=[0,1]$, assume that for each $t \in J$ the function $p \rightarrow f(t, p)-f(t, 0), p \in P$, is positive and star-shaped. Let $\varphi: J \rightarrow J$, i.e., $\varphi(t) \in J$ for $t \in J$. Let A and B be $n \times n$ positive definite matrices such that the spectrum $\operatorname{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset J$. Then for any $p \in(0,1]$, the following two inequalities hold:

$$
\begin{gather*}
S_{g_{p}}(A, B) \leq S_{g_{1}}\left(A, S_{\varphi}(A, B)\right)-S_{h_{p}}(A, B) \tag{3.1}\\
S_{g_{0}}(A, B) \leq S_{g_{p}}\left(A, S_{\varphi}(A, B)\right)-S_{h_{0}}(A, B) \tag{3.2}
\end{gather*}
$$

where

$$
\begin{array}{ll}
h_{p}(t)=h(t, p)=g(\varphi(t), p)-g(t, p) & \text { for } t \in J \\
h_{0}(t)=h(t, 0)=g(\varphi(t), 0)-g(t, 0) & \text { for } t \in J . \tag{3.4}
\end{array}
$$

Proof. The function $(0,1] \ni p \rightarrow \frac{f(t, p)-f(t, 0)}{p}=g(t, p)$ is nondecreasing 3, Lemma 3], i.e.,

$$
0<p_{1} \leq p_{2} \leq 1 \quad \text { implies } \quad \frac{f\left(t, p_{1}\right)-f(t, 0)}{p_{1}} \leq \frac{f\left(t, p_{2}\right)-f(t, 0)}{p_{2}}
$$

Hence,

$$
g(t, 0)=\lim _{p_{1} \rightarrow 0^{+}} \frac{f\left(t, p_{1}\right)-f(t, 0)}{p_{1}} \leq \frac{f\left(t, p_{2}\right)-f(t, 0)}{p_{2}} \quad \text { for any } 0<p_{2} \leq 1
$$

ELA

Consequently, the following double inequality is valid:

$$
\begin{equation*}
g(t, 0) \leq g(t, p) \leq g(t, 1) \quad \text { for any } 0<p \leq 1 \tag{3.5}
\end{equation*}
$$

To prove (3.1), we employ the inequality $g(t, p) \leq g(t, 1)$ for $t \in J, 0<p \leq 1$ (see (3.5)). Since $\varphi(t) \in J$ for $t \in J$, we obtain

$$
g(\varphi(t), p) \leq g(\varphi(t), 1) \quad \text { for } t \in J
$$

or, equivalently,

$$
g(t, p) \leq g(\varphi(t), 1)-[g(\varphi(t), p)-g(t, p)] \text { for } t \in J
$$

So, by (3.3), we find that

$$
g(t, p) \leq g(\varphi(t), 1)-h(t, p) \quad \text { for } t \in J
$$

In other words, we have

$$
\begin{equation*}
g_{p}(t) \leq g_{1}(\varphi(t))-h_{p}(t) \quad \text { for } t \in J \tag{3.6}
\end{equation*}
$$

By denoting $Z=A^{-1 / 2} B A^{-1 / 2}$ and making use of (3.6), we get

$$
g_{p}(Z) \leq g_{1}(\varphi(Z))-h_{p}(Z)
$$

Hence,

$$
A^{1 / 2} g_{p}(Z) A^{1 / 2} \leq A^{1 / 2} g_{1}(\varphi(Z)) A^{1 / 2}-A^{1 / 2} h_{p}(Z) A^{1 / 2}
$$

which means

$$
\begin{equation*}
A \sigma_{g_{p}} B \leq A \sigma_{g_{1} \circ \varphi} B-A \sigma_{h_{p}} B \tag{3.7}
\end{equation*}
$$

However, we can show that

$$
\begin{equation*}
A \sigma_{g_{1} \circ \varphi} B=A \sigma_{g_{1}}\left(A \sigma_{\varphi} B\right) \tag{3.8}
\end{equation*}
$$

Indeed, by using (1.1), we derive

$$
\begin{aligned}
A \sigma_{g_{1} \circ \varphi} B & =A^{1 / 2}\left(g_{1} \circ \varphi\right)\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}=A^{1 / 2} g_{1}\left(\varphi\left(A^{-1 / 2} B A^{-1 / 2}\right)\right) A^{1 / 2} \\
& =A^{1 / 2} g_{1}\left(A^{-1 / 2} A^{1 / 2} \varphi\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} A^{-1 / 2}\right) A^{1 / 2} \\
& =A^{1 / 2} g_{1}\left(A^{-1 / 2}\left(A \sigma_{\varphi} B\right) A^{-1 / 2}\right) A^{1 / 2}=A \sigma_{g_{1}}\left(A \sigma_{\varphi} B\right),
\end{aligned}
$$

completing the proof of (3.8).

So, by virtue of (3.7)-(3.8), we infer that

$$
S_{g_{p}}(A, B) \leq S_{g_{1}}\left(A, A \sigma_{\varphi} B\right)-S_{h_{p}}(A, B)
$$

which proves (3.1).
We shall show (3.2). According to the inequality $g(t, 0) \leq g(t, p)$ for $t \in J$, $0<p \leq 1$ (see (3.5)), we get

$$
g(\varphi(t), 0) \leq g(\varphi(t), p) \quad \text { for } t \in J
$$

because $\varphi(t) \in J$ for $t \in J$. So, by (3.4), we have

$$
g(t, 0) \leq g(t, p)-[g(t, p)-g(\varphi(t), p)]-h(t, 0) \quad \text { for } t \in J
$$

which means

$$
\begin{equation*}
g_{0}(t) \leq g_{p}(t)-\left[g_{p}(t)-g_{p}(\varphi(t))\right]-h_{0}(t) \quad \text { for } t \in J \tag{3.9}
\end{equation*}
$$

With the notation $Z=A^{-1 / 2} B A^{-1 / 2}$, inequality (3.9) gives

$$
g_{0}(Z) \leq g_{p}(Z)-\left[g_{p}(Z)-g_{p}(\varphi(Z))\right]-h_{0}(Z)
$$

Next, by pre- and post-multiplying by $A^{1 / 2}$ we obtain $A^{1 / 2} g_{0}(Z) A^{1 / 2} \leq A^{1 / 2} g_{p}(Z) A^{1 / 2}-\left[A^{1 / 2} g_{p}(Z) A^{1 / 2}-A^{1 / 2} g_{p}(\varphi(Z)) A^{1 / 2}\right]-A^{1 / 2} h_{0}(Z) A^{1 / 2}$.

This amounts to

$$
\begin{equation*}
A \sigma_{g_{0}} B \leq A \sigma_{g_{p}} B-\left[A \sigma_{g_{p}} B-A \sigma_{g_{p} \circ \varphi} B\right]-A \sigma_{h_{0}} B \tag{3.10}
\end{equation*}
$$

Similarly as in (3.8), we have

$$
\begin{equation*}
A \sigma_{g_{p} \circ \varphi} B=A \sigma_{g_{p}}\left(A \sigma_{\varphi} B\right) \tag{3.11}
\end{equation*}
$$

Therefore, (3.10)-(3.11) lead to

$$
S_{g_{0}}(A, B) \leq S_{g_{p}}(A, B)-\left[S_{g_{p}}(A, B)-S_{g_{p}}\left(A, A \sigma_{\varphi} B\right)\right]-S_{h_{0}}(A, B)
$$

completing the proof of (3.2).
Remark 3.2. According to [3, Theorem 5], Theorem[3.1]remains valid if the starshapedness of the function $p \rightarrow f(t, p)-f(t, 0)$, is replaced by convexity or convexity on the average.

Remark 3.3. (i). It is not hard to verify that Theorem 3.1. Eq. (3.1), reduces to Theorem A, with the following specification

$$
f_{p}(t)=t^{p}, \quad g_{p}(t)=\ln _{p} t=\frac{t^{p}-1}{p}, \quad g_{1}(t)=t-1, \quad \varphi(t)=\frac{t}{a}, a>0
$$

(ii). Likewise, Theorem 3.1, Eq. (3.2), becomes Theorem B, whenever

$$
f_{p}(t)=t^{p}, \quad g_{0}(t)=\log t, \quad g_{p}(t)=\frac{t^{p}-1}{p}, \quad \varphi(t)=a t, a>0 .
$$

In the next corollary, we provide analogs of Theorem A and Theorem B for the generalized relative operator entropy defined by (1.5).

Corollary 3.4. Let A and B be $n \times n$ positive definite matrices such that the spectrum $\operatorname{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset(1, \infty)$. Then for any $p \in P=(0,1]$ and $a \geq 1$, the following two inequalities hold:

$$
\begin{align*}
& S_{p}(A, B) \leq a^{1-p}(\log a) B+a^{1-p} S_{1}(A, B)-(\log a) A \not \sharp_{p} B, \tag{3.12}\\
& a^{-p} S(A, B)+\left(a^{-p} \log a\right) A-(\log a) A \not \sharp_{p} B \leq S_{p}(A, B), \tag{3.13}
\end{align*}
$$

where S_{p} is the generalized relative operator entropy defined by (1.5), and S is the relative operator entropy defined by (1.4).

Proof. We apply Theorem 3.1 to the functions $f(t, p)=p t^{p} \log t, f(t, 0)=0$, $g_{p}(t)=g(t, p)=t^{p} \log t, g_{0}(t)=g(t, 0)=\log t$, and $\varphi(t)=a t, a \geq 1$, for $t \in J=$ $(1, \infty)$ and $p \in(0,1]$. So, it is easily seen that $S_{\varphi}(A, B)=a B$.

Next, we shall show the identity

$$
\begin{equation*}
S_{q}(A, a B)=\left(a^{q} \log a\right) A \not \sharp_{q} B+a^{q} S_{q}(A, B) \quad \text { for } q \in(0,1] \text {. } \tag{3.14}
\end{equation*}
$$

Indeed, we have

$$
S_{q}(A, a B)=A^{1 / 2} g_{q}\left(A^{-1 / 2}(a B) A^{-1 / 2}\right) A^{1 / 2}=A^{1 / 2} g_{q}\left(a A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}
$$

By denoting $Z=A^{-1 / 2} B A^{-1 / 2}$, we write $Z=U^{*}\left(\operatorname{diag} \mu_{i}\right) U$ with unitary U and the eigenvalues $\mu_{i}, i=1, \ldots, n$, of Z. Hence,

$$
\begin{aligned}
g_{q}(a Z) & =g_{q}\left(U^{*}\left(\operatorname{diag} a \mu_{i}\right) U\right)=U^{*}\left(\operatorname{diag} g_{q}\left(a \mu_{i}\right)\right) U \\
& \left.=U^{*}\left(\operatorname{diag}\left(\left(a \mu_{i}\right)^{q} \log \left(a \mu_{i}\right)\right)\right)\right) U \\
& =U^{*}\left(\operatorname{diag}\left(a^{q} \mu_{i}^{q} \log a+a^{q} \mu_{i}^{q} \log \mu_{i}\right)\right) U \\
& =U^{*}\left(\operatorname{diag}\left(\left(a^{q} \log a\right) \mu_{i}^{q}\right)\right) U+U^{*}\left(\operatorname{diag}\left(a^{q} \mu_{i}^{q} \log \mu_{i}\right)\right) U \\
& =\left(a^{q} \log a\right) U^{*}\left(\operatorname{diag} \mu_{i}^{q}\right) U+a^{q} U^{*}\left(\operatorname{diag}\left(\mu_{i}^{q} \log \mu_{i}\right)\right) U \\
& =\left(a^{q} \log a\right) Z^{q}+a^{q} g_{q}(Z) .
\end{aligned}
$$

By pre- and post-multiplying by $A^{1 / 2}$ we obtain

$$
\begin{aligned}
S_{q}(A, a B) & =S_{g_{q}}(A, a B)=A^{1 / 2} g_{q}(a Z) A^{1 / 2} \\
& =\left(a^{q} \log a\right) A^{1 / 2} Z^{q} A^{1 / 2}+a^{q} A^{1 / 2} g_{q}(Z) A^{1 / 2} \\
& =\left(a^{q} \log a\right) A \not \sharp_{q} B+a^{q} S_{q}(A, B),
\end{aligned}
$$

completing the proof of (3.14).
(i). In order to prove (3.12), we derive

$$
\begin{aligned}
h_{p}(t) & =h(t, p)=g(\varphi(t), p)-g(t, p) \\
& =(a t)^{p} \log (a t)-t^{p} \log t \\
& =\left(a^{p} \log a\right) t^{p}+\left(a^{p}-1\right) t^{p} \log t \quad \text { for } t \in J .
\end{aligned}
$$

For this reason,

$$
S_{h_{p}}(A, B)=\left(a^{p} \log a\right) A \not \sharp_{p} B+\left(a^{p}-1\right) S_{p}(A, B) .
$$

By employing (3.14) with $q=1$, we establish

$$
\begin{equation*}
S_{1}(A, a B)=(a \log a) B+a S_{1}(A, B) \tag{3.15}
\end{equation*}
$$

In fact, for $q=1$, we have $A \not \sharp_{q} B=B$. Consequently, (3.14) quarantees (3.15).
Now, by utilizing (3.1) we conclude that

$$
S_{p}(A, B) \leq(a \log a) B+a S_{1}(A, B)-\left(a^{p} \log a\right) A \not \sharp_{p} B-\left(a^{p}-1\right) S_{p}(A, B)
$$

which gives (3.12).
(ii). We shall show (3.13). By virtue of (3.2) we get

$$
\begin{equation*}
S(A, B) \leq S_{p}(A, a B)-S_{h_{0}}(A, B) \tag{3.16}
\end{equation*}
$$

Putting $q=p$ into (3.14) yields

$$
S_{p}(A, a B)=\left(a^{p} \log a\right) A \sharp_{p} B+a^{p} S_{p}(A, B) .
$$

It is obvious that

$$
h_{0}(t)=h(t, 0)=g(a t, 0)-g(t, 0)=\log (a t)-\log t=\log a \quad \text { for } t \in J
$$

Hence, $S_{h_{0}}(A, B)=(\log a) A$.
It now follows from (3.16) that

$$
S(A, B) \leq a^{p} S_{p}(A, B)+\left(a^{p} \log a\right) A \sharp_{p} B-(\log a) A .
$$

Thus we obtain (3.13), as desired.
We are now in a position to show a complement to Furuta type inequality (2.7).
Theorem 3.5. With the definitions (2.1)- 2.4) for a real function $f(t, p)$ of two variables $t \in J=(0, \infty)$ and $p \in P=(0,1]$, assume that for each $t \in J$ the function
$p \rightarrow f(t, p)-f(t, 0), p \in P$, is positive and star-shaped. Let $\varphi: J \rightarrow J$ be such that $\varphi(t)=a t \in J, a>0$, for $t \in J$. Suppose that $g_{1}(t)=\alpha t+\beta, \alpha>0$, is an affine function, and that g_{2} is an concave function with its chord function $t \rightarrow a_{g_{2}} t+b_{g_{2}}$, $t \in J, a_{g_{2}}>0($ see (1.11)). Let A and B be $n \times n$ positive definite matrices.

$$
\text { If } \Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C}) \text { is a strictly positive linear map, then for any } p \in P
$$

$$
\begin{equation*}
S_{g_{p}}(\Phi(A), \Phi(B)) \leq \frac{\alpha a}{a_{g_{2}}} \Phi\left(S_{g_{2}}(A, B)\right)-S_{h_{p}}(\Phi(A), \Phi(B))+\left(\beta-\alpha a \frac{b_{g_{2}}}{a_{g_{2}}}\right) \Phi(A), \tag{3.17}
\end{equation*}
$$

where $h_{p}(t)=h(t, p)=g(a t, p)-g(t, p)$ for $t \in J$.
Proof. As in the proof of Theorem 3.1(see (3.5)), we have $g_{p}(t) \leq g_{1}(t)$ for $t \in J$, and

$$
g_{p}(t) \leq g_{1}(a t)-h_{p}(t)=\alpha a t+\beta-h_{p}(t) \text { for } t \in J
$$

Since g_{2} is concave with its chord function $t \rightarrow a_{g_{2}} t+b_{g_{2}}, t \in J, a_{g_{2}}>0$ (see (1.11)), we get

$$
a_{g_{2}} t+b_{g_{2}} \leq g_{2}(t) \text { for } t \in J
$$

By using the last two inequalities, we obtain

$$
g_{p}(t)+h_{p}(t)-\beta \leq \alpha \varphi(t)=\alpha a t=\frac{\alpha a}{a_{g_{2}}} a_{g_{2}} t \leq \frac{\alpha a}{a_{g_{2}}}\left(g_{2}(t)-b_{g_{2}}\right) \quad \text { for } t \in J
$$

In consequence, for $Z=A^{-1 / 2} B A^{-1 / 2}$ and $W=C^{-1 / 2} D C^{-1 / 2}$ with $C=\Phi(A)$ and $D=\Phi(B)$, we find that

$$
\begin{align*}
& g_{p}(W)+h_{p}(W)-\beta I \leq \alpha a W, \\
& \alpha a Z \leq \frac{\alpha a}{a_{g_{2}}}\left(g_{2}(Z)-b_{g_{2}} I\right) . \tag{3.18}
\end{align*}
$$

Thus, we obtain

$$
\begin{aligned}
& C^{1 / 2} g_{p}(W) C^{1 / 2}+C^{1 / 2} h_{p}(W) C^{1 / 2}-\beta C \leq \alpha a C^{1 / 2} W C^{1 / 2} \\
& \alpha a A^{1 / 2} Z A^{1 / 2} \leq \frac{\alpha a}{a_{g_{2}}}\left(A^{1 / 2} g_{2}(Z) A^{1 / 2}-b_{g_{2}} A\right)
\end{aligned}
$$

That is,

$$
\begin{align*}
& C \sigma_{g_{p}} D+C \sigma_{h_{p}} D-\beta C \leq \alpha a D, \tag{3.19}\\
& \alpha a B \leq \frac{\alpha a}{a_{g_{2}}}\left(A \sigma_{g_{2}} B-b_{g_{2}} A\right) .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\alpha a \Phi(B) \leq \frac{\alpha a}{a_{g_{2}}}\left(\Phi\left(A \sigma_{g_{2}} B\right)-b_{g_{2}} \Phi(A)\right) . \tag{3.20}
\end{equation*}
$$

But (3.19) can be rewritten as

$$
\begin{equation*}
\Phi(A) \sigma_{g_{p}} \Phi(B)+\Phi(A) \sigma_{h_{p}} \Phi(B)-\beta \Phi(A) \leq \alpha a \Phi(B) \tag{3.21}
\end{equation*}
$$

Now, by combining (3.21) and (3.20), we establish

$$
\Phi(A) \sigma_{g_{p}} \Phi(B)+\Phi(A) \sigma_{h_{p}} \Phi(B)-\beta \Phi(A) \leq \frac{\alpha a}{a_{g_{2}}}\left(\Phi\left(A \sigma_{g_{2}} B\right)-b_{g_{2}} \Phi(A)\right)
$$

So, we infer that

$$
\Phi(A) \sigma_{g_{p}} \Phi(B) \leq \frac{\alpha a}{a_{g_{2}}} \Phi\left(A \sigma_{g_{2}} B\right)-\Phi(A) \sigma_{h_{p}} \Phi(B)+\left(\beta-\alpha a \frac{b_{g_{2}}}{a_{g_{2}}}\right) \Phi(A)
$$

which is equivalent to (3.17).
Corollary 3.6. With the assumptions of Theorem 3.5, if in addition $g_{2}=g_{1}$ then (3.17) reduces to
$(3.22) \quad S_{g_{p}}(\Phi(A), \Phi(B)) \leq a \Phi\left(S_{g_{1}}(A, B)\right)-S_{h_{p}}(\Phi(A), \Phi(B))+\beta(1-a) \Phi(A)$.

If additionally Φ is the identity, then (3.22) yields

$$
\begin{equation*}
S_{g_{p}}(A, B) \leq a S_{g_{1}}(A, B)-S_{h_{p}}(A, B)+\beta(1-a) A \tag{3.23}
\end{equation*}
$$

Remark 3.7. By letting $\alpha=1, \beta=-1$ and

$$
f_{p}(t)=t^{p}, \quad g_{p}(t)=\ln _{p} t=\frac{t^{p}-1}{p}, \quad \varphi(t)=\frac{t}{a}, \quad h_{p}(t)=t^{p} \ln _{p} \frac{1}{a}, 1 \geq a>0
$$

inequality (3.23) becomes the result (1.7) due to Furuichi et al. (see Theorem A).
Acknowledgment. The authors wish to thank anonymous referees for helpful suggestions improving the readability of the paper.

REFERENCES

[1] J. S. Aujla and H. L. Vasudeva. Some convex and monotone matrix functions. Linear Algebra Appl., 248:47-60, 1996.
[2] R. Bhatia. Matrix Analysis. Springer-Verlag, New York, 1997.
[3] A.M. Bruckner and E. Ostrow. Some function classes related to the class of convex functions. Pacific J. Math., 12:1203-1215, 1962.
[4] J.I. Fujii and E. Kamei. Relative operator entropy in noncommutative information theory. Math. Japon., 34:341-348, 1989.
[5] J.I. Fujii and E. Kamei. Uhlmann's interpolation method for operator means. Math. Japon., 34:541-547, 1989.
[6] S. Furuichi, K. Yanagi, and K. Kuriyama. Fundamental properties of Tsallis relative entropy. J. Math. Phys., 45:4868-4877, 2004.
[7] S. Furuichi, K. Yanagi, and K. Kuriyama. A note on operator inequalities of Tsallis relative operator entropy. Linear Algebra Appl., 407:19-31, 2005.
[8] T. Furuta. Invitation to Linear Operators: From Matrix to Linear Operator. CRC Press, 2002.
[9] T. Furuta. Two reverse inequalities associated with Tsallis relative operator entropy via generalized Kantorovich constant and their applications. Linear Algebra Appl., 412:526537, 2006.
[10] T. Furuta, J. Mićić, J. Pečarić, and Y. Seo. Mond-Pečarić Method in Operator Inequalities. Element, Zagreb, 2005.
[11] R. Kaur, M. Singh, and J.S. Aujla. Generalized matrix version of reverse Hölder inequality. Linear Algebra Appl., 434:636-640, 2011.
[12] F. Kubo and T. Ando. Means of positive linear operators. Math. Ann., 246:205-224, 1980.
[13] J. Mićić, J. Pečarić, and Y. Seo. Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method. Linear Algebra Appl., 318:87-107, 2000.
[14] M.S. Moslehian, F. Mirzapour, and A. Morassaei. Operator entropy inequalities. Colloq. Math., 130:159-168, 2013.
[15] M. Niezgoda. Choi-Davis-Jensen's inequality and generalized inverses of linear operators. Electron. J. Linear Algebra, 26:406-416, 2013.
[16] M. Niezgoda. On f-connections of positive definite matrices. Ann. Funct. Anal., 5:147-157, 2014.
[17] Y. Seo. Reverses of Ando's inequality for positive linear maps. Math. Inequal. Appl., 14:905910, 2011.
[18] K. Yanagi, K. Kuriyama, and S. Furuichi. Generalized Shannon inequality based on Tsallis relative operator entropy. Linear Algebra Appl., 394:109-118, 2005.
[19] L. Zou. Operator inequalities associated with Tsallis relative operator entropy. Math. Inequal. Appl., 18:401-406, 2015.

[^0]: *Received by the editors on May 22, 2014. Accepted for publication on October 10, 2014. Handling Editor: Harm Bart.
 ${ }^{\dagger}$ Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland (pawel.kluza@up.lublin.pl, marek.niezgoda@up.lublin.pl).

