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INEQUALITIES FOR RELATIVE OPERATOR ENTROPIES∗

PAWEL A. KLUZA† AND MAREK NIEZGODA†

Abstract. In this paper, operator inequalities are provided for operator entropies transformed

by a strictly positive linear map. Some results by Furuichi et al. [S. Furuichi, K. Yanagi, and

K. Kuriyama. A note on operator inequalities of Tsallis relative operator entropy. Linear Algebra

Appl., 407:19–31, 2005.], Furuta [T. Furuta. Two reverse inequalities associated with Tsallis relative

operator entropy via generalized Kantorovich constant and their applications. Linear Algebra Appl.,

412:526–537, 2006.], and Zou [L. Zou. Operator inequalities associated with Tsallis relative operator

entropy. Math. Inequal. Appl., 18:401–406, 2015.] are extended. In particular, the obtained

inequalities are specified for relative operator entropy and Tsallis relative operator entropy. In

addition, some bounds for generalized relative operator entropy are established.
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1. Introduction. We start with some notation (see [2, p. 112]).

As usual, the symbol Mn(C) denotes the C∗-algebra of n× n complex matrices.

For matrices X,Y ∈ Mn(C), we write Y ≤ X (resp., Y < X) if X − Y is positive

semidefinite (resp., positive definite).

A linear map Φ : Mn(C) → Mk(C) is said to be positive if 0 ≤ Φ(X) for 0 ≤ X ∈

Mn(C). If 0 < Φ(X) for 0 < X ∈ Mn(C) then Φ is said to be strictly positive.

A real function f : J → R defined on interval J ⊂ R is called an operator

monotone function, if for all Hermitian matrices A and B (of the same order) with

spectra in J

A ≤ B implies f(A) ≤ f(B).

Let f : J → R be a continuous function on an interval J ⊂ R. Let A be an n× n

positive definite matrix and B be an n× n Hermitian matrix such that the spectrum

Sp (A−1/2BA−1/2) ⊂ J . Then the operator σf given by

AσfB = A1/2f(A−1/2BA−1/2)A1/2(1.1)
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is called f -connection (cf. [11, 12]). See [15] for an extension of (1.1).

Note that for the functions pt+ 1− p and tp, the definition of Eq. (1.1) leads to

the arithmetic and geometric operator means (1.2) and (1.3), respectively.

For A > 0, B > 0 and p ∈ [0, 1], the p-arithmetic mean is defined as follows

A∇pB = (1− p)A+ pB.(1.2)

For A > 0, B > 0 and p ∈ [0, 1], the p-geometric mean is defined by (see [12, 17])

A♯pB = A1/2(A−1/2BA−1/2)pA1/2.(1.3)

We now give definitions of some operator entropies.

For A > 0, B > 0, the relative operator entropy is defined by (see [4])

S(A,B) = A1/2 log(A−1/2BA−1/2)A1/2.(1.4)

For A > 0, B > 0 and p ∈ R, the generalized relative operator entropy is given by

(see [14, 18])

Sp(A,B) = A1/2(A−1/2BA−1/2)p log(A−1/2BA−1/2)A1/2.(1.5)

For A > 0, B > 0 and 0 < p ≤ 1, the Tsallis relative operator entropy is defined

as follows (see [18])

Tp(A,B) =
A♯pB −A

p
.(1.6)

It is not hard to check that (1.4), (1.5) and (1.6) are of the form (1.1) for the

functions log t, tp log t and lnp t =
tp−1
p , respectively.

In recent years there has been a growing interest in the study of entropies and

means [5, 6, 7, 8, 9, 16, 19].

Theorem A. (Furuichi et al. [7, Theorem 3.6]) For A > 0, B > 0, 1 ≥ p > 0

and a > 0, the following inequality holds:

A♯pB −
1

a
A♯p−1B +

1− ap

pap
A ≤ Tp(A,B) ≤

1

a
B −

1− ap

pap
A♯pB −A.(1.7)

The next known double inequalities are consequences of (1.7) (see [5, 7, 8, 19]):

A−AB−1A ≤ Tp(A,B) ≤ B −A,
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A−AB−1A ≤ S(A,B) ≤ B −A,

and

(1− log a)A−
1

a
AB−1A ≤ S(A,B) ≤ (log a− 1)A+

1

a
B for a > 0.

Theorem B. (Zou [19, Theorem 2.2]) For A > 0, B > 0, 1 ≥ p > 0 and a > 0,
the following inequality holds:

−

(

log a+
1− ap

pap

)

A+a
−p

T−p(A,B) ≤ S(A,B) ≤ Tp(A,B)−
1− ap

p
A♯pB−(log a)A.(1.8)

It is easily seen that (1.8) implies a result in [7]:

T−p(A,B) ≤ S(A,B) ≤ Tp(A,B).

Theorem C. (Furuta [9, Theorem 2.1]) Let A and B be n × n positive definite

matrices such that M1I ≥ A ≥ m1I > 0 and M2I ≥ B ≥ m2I > 0. Put m = m2

M1
,

M = M2

m1
, h = M

m = M1M2

m1m2
> 1 and p ∈ (0, 1]. Let Φ be normalized positive linear

map on B(H) = Mn(C). Then the following inequalities hold:

Φ(Tp(A,B)) ≤ Tp(Φ(A),Φ(B)) ≤ Φ(Tp(A,B)) +

(

1−K(p)

p

)

Φ(A)♯pΦ(B)(1.9)

and

Φ(Tp(A,B)) ≤ Tp(Φ(A),Φ(B)) ≤ Φ(Tp(A,B)) + F (p)Φ(A),(1.10)

where K(p) is the generalized Kantorovich constant defined by

K(p) =
hp − h

(p− 1)(h− 1)

(

(p− 1)(hp − 1)

p(hp − h)

)p

and

F (p) =
mp

p

(

hp − h

h− 1

)

(1−K(p)
1

p−1 ) ≥ 0.

For a positive concave function g : J → R+ defined on an interval J = [m,M ]

with m < M , we define (see [13])

ag = g(M)−g(m)
M−m , bg = Mg(m)−mg(M)

M−m and cg = min
t∈J

agt+bg
g(t) .(1.11)
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In order to unify our further studies, we introduce the notion of relative g-entropy

as follows. Let g : J → R be a continuous function defined on an interval J ⊂ R.

For A > 0, B > 0 with the spectrum of A−1/2BA−1/2 in J , we define the relative

g-entropy of A and B as

Sg(A,B) = AσgB = A1/2g(A−1/2BA−1/2)A1/2.(1.12)

In the present paper, our aim is to provide some further operator inequalities for

entropies and means transformed by a strictly positive linear map Φ.

2. Furuta type inequalities. Throughout f(t, p) is a real function of two vari-

ables t ∈ J and p ∈ P = (0, p0], 0 < p0 ≤ 1. We use the notation

fp(t) = f(t, p) for t ∈ J and p ∈ P ,(2.1)

gp(t) = g(t, p) =
f(t, p)− f(t, 0)

p
for t ∈ J and p ∈ P .(2.2)

If there exist the following limits, then we write

f0(t) = f(t, 0) = lim
p→0+

f(t, p) for t ∈ J ,(2.3)

g0(t) = g(t, 0) = lim
p→0+

g(t, p) for t ∈ J .(2.4)

For example, by substituting f(t, p) = tp for t > 0, 0 < p ≤ p0 = 1, we get

f0(t) = 1, g(t, p) = lnp(t) and g0(t) = log t.

Lemma 2.1. Let f(t, p) be a real function of two variables t ∈ J and p ∈ P =

(0, p0], 0 < p0 ≤ 1, with an interval J ⊂ (0,∞). Assume f(t, 0) = 1, t ∈ J . For

n × n positive definite matrices A and B with spectrum Sp (A−1/2BA−1/2) ⊂ J , the

following identity holds:

Sgp(A,B) =
Sfp(A,B)−A

p
for p ∈ P ,(2.5)

where fp and gp are defined by (2.1)–(2.2).

Proof. By (1.12) and (2.2) we establish the equalities

Sfp(A,B)−A

p
=

AσfpB −A

p

=
A1/2fp(A

−1/2BA−1/2)A1/2 −A1/2IA1/2

p
(2.6)

= A1/2 fp(A
−1/2BA−1/2)− I

p
A1/2.
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Denoting Z = A−1/2BA−1/2 and using spectral decomposition of Z, we obtain

Z = U∗diag (µ1, µ2, . . . , µn)U

for some n × n unitary matrix U (i.e., U∗U = UU∗ = I) with the eigenvalues

µ1, µ2, . . . , µn of Z. Thus, we get

fp(Z) = fp(A
−1/2BA−1/2) = U∗diag (fp(µ1), fp(µ2), . . . , fp(µn))U

= U∗diag (f(µ1, p), f(µ2, p), . . . , f(µn, p))U.

Therefore, from (2.6), we derive

Sfp(A,B)−A

p
= A1/2 fp(Z)− U∗U

p
A1/2

= A1/2U
∗diag (f(µ1, p), f(µ2, p), . . . , f(µn, p))U − U∗IU

p
A1/2

= A1/2U∗diag

(

f(µ1, p)− 1

p
,
f(µ2, p)− 1

p
, . . . ,

f(µn, p)− 1

p

)

UA1/2

= A1/2U∗diag (g(µ1, p), g(µ2, p), . . . , g(µn, p))UA1/2

= A1/2gp (U
∗diag (µ1, µ2, . . . , µn)U)A1/2

= A1/2gp (A
−1/2BA−1/2)A1/2 = AσgpB = Sgp(A,B).

This proves (2.5).

In the forthcoming theorem, we extend Furuta’s inequality (1.9) from the func-

tions t → tp, p ∈ (0, 1], to positive operator monotone functions t → fp(t) on

J = [m.M ], 0 < m < M .

Theorem 2.2. Let f(t, p) be a real function of two variables t ∈ J = [m,M ] with

0 < m < M , and p ∈ P = (0, p0] with 0 < p0 ≤ 1. Let f(t, 0) = 1, t ∈ J . Assume

that fp > 0, p ∈ P , is operator monotone on J . Let A and B be n×n positive definite

matrices such that mA ≤ B ≤ MA.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map, then

Sgp(Φ(A),Φ(B)) ≤ Φ(Sgp(A,B)) +
1− cfp

p
Φ(A)σfpΦ(B),(2.7)

where fp and gp, p ∈ P , are defined by (2.1) and (2.2), respectively, and cfp =

min
t∈J

afp t+bfp
fp(t)

with afp =
fp(M)−fp(m)

M−m and bfp =
Mfp(m)−mfp(M)

M−m .

If in addition
1−cfp

p → d as p → 0, then

Sg0(Φ(A),Φ(B)) ≤ Φ(Sg0(A,B)) + dΦ(A),(2.8)
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where f0 and g0 are defined by (2.3) and (2.4), respectively.

Proof. It is not hard to verify that the assertion of [13, Corollary 3.4] can be

extended to the case 0 < mA ≤ B ≤ MA. In consequence, since fp > 0 is operator

monotone on J , the following inequality is met (cf. [13, Corollary 3.4]):

cfpΦ(A)σfpΦ(B) ≤ Φ(AσfpB).(2.9)

In addition, Φ(A)σf0Φ(B) = Φ(A), because f0 ≡ 1. So, it follows from (2.5) and (2.9)

that

Φ(A)σgpΦ(B)−
1− cfp

p
Φ(A)σfpΦ(B) =

cfpΦ(A)σfpΦ(B)− Φ(A)

p

≤
Φ(AσfpB)− Φ(A)

p

= Φ

(

AσfpB −A

p

)

= Φ(AσgpB).

Therefore, we have

Φ(A)σgpΦ(B) ≤ Φ(AσgpB) +
1− cfp

p
Φ(A)σfpΦ(B).(2.10)

Now, the inequality (2.7) can be deduced from (2.10) via (1.12).

By passing to the limit in (2.7) as p → 0, we get Φ(A)σfpΦ(B) → Φ(A)σf0Φ(B),

AσgpB → Aσg0B and Φ(A)σfpΦ(B) → Φ(A)σf0Φ(B) = Φ(A). Thus, (2.7) leads to

(2.8). This completes the proof of Theorem 2.2.

For A > 0, B > 0 and p, q ≥ 0, p+ q ≤ 1, the (p, q)-generalized relative operator

entropy is defined by

Sp,q(A,B) = A1/2(A−1/2BA−1/2)p(log(A−1/2BA−1/2))qA1/2.(2.11)

Notice that for q = 0 one has Sp,q(A,B) = A♯pB, and for q = 1 and p = 0,

Sp,q(A,B) = S(A,B).

It is worth emphasing that the function J ∋ t → tp(log t)q, p, q ≥ 0, p+ q ≤ 1, is

operator monotone on any interval J = [m,M ], 1 < m < M (see [1, Corollary 2.7]).

Below we give an interpretation of statement (2.7) for the (p, q)-generalized rela-

tive operator entropy.

Corollary 2.3. Let A and B be n × n positive definite matrices such that

mA ≤ B ≤ MA, 1 < m < M .
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If Φ : Mn(C) → Mk(C) is a strictly positive linear map, then

Sp,q(Φ(A),Φ(B)) ≤ Φ(Sp,q(A,B)) +
1− cfp,q

p
Φ(A)σfp,qΦ(B),(2.12)

where p, q ≥ 0, p+ q ≤ 1, and Sp,q is the (p, q)-generalized relative operator entropy

defined by (2.11), and cfp,q is defined by (1.11).

Proof. Apply Theorem 2.2 to the functions fp,q(t) = ptp(log t)q + 1, f0,q(t) = 1,

and gp,q(t) = tp(log t)q, t ∈ [m,M ] with fixed q and p ∈ [0, p0], p0 = 1− q.

3. Extending Furuichi et al. and Zou’s results. In this section, we develop

some results due to Furuichi et al. [7] and Zou [19]. To do so, we involve star-shaped

functions.

Remind that a real nonnegative function F on [0, p0), 0 < p0 ≤ ∞, with F (0) = 0

is said to be star-shaped if F (αp) ≤ αF (p) for p ∈ [0, p0] and 0 ≤ α ≤ 1.

Theorem 3.1. With the definitions (2.1)–(2.4) for a real function f(t, p) of two

variables t ∈ J ⊂ (0,∞) with an interval J and p ∈ P = [0, 1], assume that for

each t ∈ J the function p → f(t, p) − f(t, 0), p ∈ P , is positive and star-shaped. Let

ϕ : J → J , i.e., ϕ(t) ∈ J for t ∈ J . Let A and B be n× n positive definite matrices

such that the spectrum Sp (A−1/2BA−1/2) ⊂ J . Then for any p ∈ (0, 1], the following

two inequalities hold:

Sgp(A,B) ≤ Sg1(A,Sϕ(A,B))− Shp
(A,B),(3.1)

Sg0(A,B) ≤ Sgp(A,Sϕ(A,B)) − Sh0
(A,B),(3.2)

where

hp(t) = h(t, p) = g(ϕ(t), p)− g(t, p) for t ∈ J ,(3.3)

h0(t) = h(t, 0) = g(ϕ(t), 0)− g(t, 0) for t ∈ J .(3.4)

Proof. The function (0, 1] ∋ p →
f(t,p)−f(t,0)

p = g(t, p) is nondecreasing [3,

Lemma 3], i.e.,

0 < p1 ≤ p2 ≤ 1 implies
f(t, p1)− f(t, 0)

p1
≤

f(t, p2)− f(t, 0)

p2
.

Hence,

g(t, 0) = lim
p1→0+

f(t, p1)− f(t, 0)

p1
≤

f(t, p2)− f(t, 0)

p2
for any 0 < p2 ≤ 1.
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Consequently, the following double inequality is valid:

g(t, 0) ≤ g(t, p) ≤ g(t, 1) for any 0 < p ≤ 1.(3.5)

To prove (3.1), we employ the inequality g(t, p) ≤ g(t, 1) for t ∈ J , 0 < p ≤ 1 (see

(3.5)). Since ϕ(t) ∈ J for t ∈ J , we obtain

g(ϕ(t), p) ≤ g(ϕ(t), 1) for t ∈ J ,

or, equivalently,

g(t, p) ≤ g(ϕ(t), 1)− [g(ϕ(t), p)− g(t, p)] for t ∈ J .

So, by (3.3), we find that

g(t, p) ≤ g(ϕ(t), 1)− h(t, p) for t ∈ J .

In other words, we have

gp(t) ≤ g1(ϕ(t)) − hp(t) for t ∈ J .(3.6)

By denoting Z = A−1/2BA−1/2 and making use of (3.6), we get

gp(Z) ≤ g1(ϕ(Z))− hp(Z).

Hence,

A1/2gp(Z)A1/2 ≤ A1/2g1(ϕ(Z))A1/2 −A1/2hp(Z)A1/2,

which means

AσgpB ≤ Aσg1◦ϕB −Aσhp
B.(3.7)

However, we can show that

Aσg1◦ϕB = Aσg1 (AσϕB).(3.8)

Indeed, by using (1.1), we derive

Aσg1◦ϕB = A1/2(g1 ◦ ϕ)(A
−1/2BA−1/2)A1/2 = A1/2g1(ϕ(A

−1/2BA−1/2))A1/2

= A1/2g1(A
−1/2A1/2ϕ(A−1/2BA−1/2)A1/2A−1/2)A1/2

= A1/2g1(A
−1/2(AσϕB)A−1/2)A1/2 = Aσg1 (AσϕB),

completing the proof of (3.8).
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So, by virtue of (3.7)–(3.8), we infer that

Sgp(A,B) ≤ Sg1(A,AσϕB)− Shp
(A,B),

which proves (3.1).

We shall show (3.2). According to the inequality g(t, 0) ≤ g(t, p) for t ∈ J ,

0 < p ≤ 1 (see (3.5)), we get

g(ϕ(t), 0) ≤ g(ϕ(t), p) for t ∈ J ,

because ϕ(t) ∈ J for t ∈ J . So, by (3.4), we have

g(t, 0) ≤ g(t, p)− [g(t, p)− g(ϕ(t), p)]− h(t, 0) for t ∈ J ,

which means

g0(t) ≤ gp(t)− [gp(t)− gp(ϕ(t))] − h0(t) for t ∈ J .(3.9)

With the notation Z = A−1/2BA−1/2, inequality (3.9) gives

g0(Z) ≤ gp(Z)− [gp(Z)− gp(ϕ(Z))] − h0(Z).

Next, by pre- and post-multiplying by A1/2 we obtain

A
1/2

g0(Z)A1/2
≤ A

1/2
gp(Z)A1/2

− [A1/2
gp(Z)A1/2

− A
1/2

gp(ϕ(Z))A1/2]− A
1/2

h0(Z)A1/2
.

This amounts to

Aσg0B ≤ AσgpB − [AσgpB −Aσgp◦ϕB]−Aσh0
B.(3.10)

Similarly as in (3.8), we have

Aσgp◦ϕB = Aσgp(AσϕB).(3.11)

Therefore, (3.10)–(3.11) lead to

Sg0(A,B) ≤ Sgp(A,B)− [Sgp(A,B) − Sgp(A,AσϕB)]− Sh0
(A,B),

completing the proof of (3.2).

Remark 3.2. According to [3, Theorem 5], Theorem 3.1 remains valid if the star-

shapedness of the function p → f(t, p)− f(t, 0), is replaced by convexity or convexity

on the average.

Remark 3.3. (i). It is not hard to verify that Theorem 3.1, Eq. (3.1), reduces

to Theorem A, with the following specification

fp(t) = tp , gp(t) = lnp t =
tp − 1

p
, g1(t) = t− 1 , ϕ(t) =

t

a
, a > 0.
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(ii). Likewise, Theorem 3.1, Eq. (3.2), becomes Theorem B, whenever

fp(t) = tp , g0(t) = log t , gp(t) =
tp − 1

p
, ϕ(t) = at , a > 0.

In the next corollary, we provide analogs of Theorem A and Theorem B for the

generalized relative operator entropy defined by (1.5).

Corollary 3.4. Let A and B be n × n positive definite matrices such that the

spectrum Sp (A−1/2BA−1/2) ⊂ (1,∞). Then for any p ∈ P = (0, 1] and a ≥ 1, the

following two inequalities hold:

Sp(A,B) ≤ a1−p(log a)B + a1−pS1(A,B)− (log a)A♯pB,(3.12)

a−pS(A,B) + (a−p log a)A− (log a)A♯pB ≤ Sp(A,B),(3.13)

where Sp is the generalized relative operator entropy defined by (1.5), and S is the

relative operator entropy defined by (1.4).

Proof. We apply Theorem 3.1 to the functions f(t, p) = ptp log t, f(t, 0) = 0,

gp(t) = g(t, p) = tp log t, g0(t) = g(t, 0) = log t, and ϕ(t) = at, a ≥ 1, for t ∈ J =

(1,∞) and p ∈ (0, 1]. So, it is easily seen that Sϕ(A,B) = aB.

Next, we shall show the identity

Sq(A, aB) = (aq log a)A♯qB + aqSq(A,B) for q ∈ (0, 1].(3.14)

Indeed, we have

Sq(A, aB) = A1/2gq(A
−1/2(aB)A−1/2)A1/2 = A1/2gq(aA

−1/2BA−1/2)A1/2.

By denoting Z = A−1/2BA−1/2, we write Z = U∗(diag µi)U with unitary U and the

eigenvalues µi, i = 1, . . . , n, of Z. Hence,

gq(aZ) = gq(U
∗(diag aµi)U) = U∗(diag gq(aµi))U

= U∗(diag ((aµi)
q log(aµi)))U

= U∗(diag (aqµq
i log a+ aqµ

q
i logµi))U

= U∗(diag ((aq log a)µq
i ))U + U∗(diag (aqµq

i logµi))U

= (aq log a)U∗(diag µq
i )U + aqU∗(diag (µq

i logµi))U

= (aq log a)Zq + aqgq(Z).

By pre- and post-multiplying by A1/2 we obtain

Sq(A, aB) = Sgq (A, aB) = A1/2gq(aZ)A1/2

= (aq log a)A1/2ZqA1/2 + aqA1/2gq(Z)A1/2

= (aq log a)A♯qB + aqSq(A,B),

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 851-864, December 2014



ELA

Inequalities for Relative Operator Entropies 861

completing the proof of (3.14).

(i). In order to prove (3.12), we derive

hp(t) = h(t, p) = g(ϕ(t), p)− g(t, p)

= (at)p log(at)− tp log t

= (ap log a)tp + (ap − 1)tp log t for t ∈ J .

For this reason,

Shp
(A,B) = (ap log a)A♯pB + (ap − 1)Sp(A,B).

By employing (3.14) with q = 1, we establish

S1(A, aB) = (a log a)B + aS1(A,B).(3.15)

In fact, for q = 1, we have A♯qB = B. Consequently, (3.14) quarantees (3.15).

Now, by utilizing (3.1) we conclude that

Sp(A,B) ≤ (a log a)B + aS1(A,B)− (ap log a)A♯pB − (ap − 1)Sp(A,B),

which gives (3.12).

(ii). We shall show (3.13). By virtue of (3.2) we get

S(A,B) ≤ Sp(A, aB) − Sh0
(A,B).(3.16)

Putting q = p into (3.14) yields

Sp(A, aB) = (ap log a)A♯pB + apSp(A,B).

It is obvious that

h0(t) = h(t, 0) = g(at, 0)− g(t, 0) = log(at)− log t = log a for t ∈ J .

Hence, Sh0
(A,B) = (log a)A.

It now follows from (3.16) that

S(A,B) ≤ apSp(A,B) + (ap log a)A♯pB − (log a)A.

Thus we obtain (3.13), as desired.

We are now in a position to show a complement to Furuta type inequality (2.7).

Theorem 3.5. With the definitions (2.1)–(2.4) for a real function f(t, p) of two

variables t ∈ J = (0,∞) and p ∈ P = (0, 1], assume that for each t ∈ J the function
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p → f(t, p) − f(t, 0), p ∈ P , is positive and star-shaped. Let ϕ : J → J be such that

ϕ(t) = at ∈ J , a > 0, for t ∈ J . Suppose that g1(t) = αt + β, α > 0, is an affine

function, and that g2 is an concave function with its chord function t → ag2t + bg2 ,

t ∈ J , ag2 > 0 (see (1.11)). Let A and B be n× n positive definite matrices.

If Φ : Mn(C) → Mk(C) is a strictly positive linear map, then for any p ∈ P ,

Sgp(Φ(A),Φ(B)) ≤
αa

ag2

Φ(Sg2(A,B))− Shp(Φ(A),Φ(B)) +

(

β − αa
bg2
ag2

)

Φ(A),(3.17)

where hp(t) = h(t, p) = g(at, p)− g(t, p) for t ∈ J .

Proof. As in the proof of Theorem 3.1 (see (3.5)), we have gp(t) ≤ g1(t) for t ∈ J ,

and

gp(t) ≤ g1(at)− hp(t) = αat+ β − hp(t) for t ∈ J .

Since g2 is concave with its chord function t → ag2t+ bg2 , t ∈ J , ag2 > 0 (see (1.11)),

we get

ag2t+ bg2 ≤ g2(t) for t ∈ J .

By using the last two inequalities, we obtain

gp(t) + hp(t)− β ≤ αϕ(t) = αat =
αa

ag2
ag2t ≤

αa

ag2
(g2(t)− bg2) for t ∈ J .

In consequence, for Z = A−1/2BA−1/2 and W = C−1/2DC−1/2 with C = Φ(A) and

D = Φ(B), we find that

gp(W ) + hp(W )− βI ≤ αaW,

αaZ ≤
αa

ag2
(g2(Z)− bg2I) .(3.18)

Thus, we obtain

C1/2gp(W )C1/2 + C1/2hp(W )C1/2 − βC ≤ αaC1/2WC1/2,

αaA1/2ZA1/2 ≤
αa

ag2

(

A1/2g2(Z)A1/2 − bg2A
)

.

That is,

CσgpD + Cσhp
D − βC ≤ αaD,(3.19)

αaB ≤
αa

ag2
(Aσg2B − bg2A) .

Hence,

αaΦ(B) ≤
αa

ag2
(Φ(Aσg2B)− bg2Φ(A)) .(3.20)
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But (3.19) can be rewritten as

Φ(A)σgpΦ(B) + Φ(A)σhp
Φ(B)− βΦ(A) ≤ αaΦ(B).(3.21)

Now, by combining (3.21) and (3.20), we establish

Φ(A)σgpΦ(B) + Φ(A)σhp
Φ(B)− βΦ(A) ≤

αa

ag2
(Φ(Aσg2B)− bg2Φ(A)) .

So, we infer that

Φ(A)σgpΦ(B) ≤
αa

ag2
Φ(Aσg2B)− Φ(A)σhp

Φ(B) +

(

β − αa
bg2
ag2

)

Φ(A),

which is equivalent to (3.17).

Corollary 3.6. With the assumptions of Theorem 3.5, if in addition g2 = g1

then (3.17) reduces to

Sgp(Φ(A),Φ(B)) ≤ aΦ(Sg1(A,B)) − Shp
(Φ(A),Φ(B)) + β (1− a)Φ(A).(3.22)

If additionally Φ is the identity, then (3.22) yields

Sgp(A,B) ≤ aSg1(A,B)− Shp
(A,B) + β (1− a)A.(3.23)

Remark 3.7. By letting α = 1, β = −1 and

fp(t) = tp , gp(t) = lnp t =
tp − 1

p
, ϕ(t) =

t

a
, hp(t) = tp lnp

1

a
, 1 ≥ a > 0,

inequality (3.23) becomes the result (1.7) due to Furuichi et al. (see Theorem A).
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