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A DETERMINANTAL INEQUALITY FOR POSITIVE

DEFINITE MATRICES∗
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Abstract. Let A,B,C be n× n positive semidefinite matrices. It is known that

det(A+ B + C) + detC ≥ det(A+ C) + det(B + C),

which includes

det(A+B) ≥ detA+ detB

as a special case. In this article, a relation between these two inequalities is proved, namely,

det(A+ B + C) + detC − (det(A+ C) + det(B + C)) ≥ det(A+ B)− (detA+ detB).
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1. Introduction. Let A,B be n × n positive semidefinite matrices. It is well

known that

det(A+B) ≥ detA+ detB. (1.1)

There are many generalizations and extensions of (1.1) in the literature. For

example, (1.1) is a simple consequence of the Minkowski inequality [3, p. 510]:

(det(A+B))1/n ≥ (detA)1/n + (detB)1/n.

Haynsworth [2] and later Hartfiel [1] obtained a refinement of (1.1) as follows:

det(A+B) ≥
(
1 +

n−1∑

k=1

detBk

detAk

)
detA+

(
1 +

n−1∑

k=1

detAk

detBk

)
detB

+(2n − 2n)
√
detAB,

where Ak, Bk, k = 1, . . . , n − 1, denote the k-th leading principal submatrices of

positive definite matrices A and B, respectively.
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Another attractive extension of (1.1) is the following (assuming C is also an n×n

positive semidefinite matrix)

det(A+B + C) + detC ≥ det(A+ C) + det(B + C). (1.2)

Inequality (1.2) can be found e.g., in [8, p. 215, Problem 36].

Setting C = 0, (1.2) reduces to (1.1). But that is not the only relation between

(1.1) and (1.2). In this article, we shall reveal one more connection between them.

That is, the difference in (1.1) is dominated by the difference in (1.2). More precisely,

we have the following result.

Theorem 1.1. Let A,B,C be n× n positive semidefinite matrices. Then

det(A+B + C) + detC − (det(A+ C) + det(B + C))

≥ det(A+B)− (detA+ detB).
(1.3)

Inequality (1.3), to some extent, can be regarded as an analogue of the classical

Hlawka’s inequality ([6, p. 171]): Let V be an inner product space and let x, y, z ∈ V .
Then

‖x+ y + z‖+ ‖x‖+ ‖y‖+ ‖z‖ ≥ ‖x+ y‖+ ‖y + z‖+ ‖z + x‖,

where the norm ‖ · ‖ denotes the norm induced by the inner product.

2. Auxiliary results and proofs. The first lemma coincides with Theorem 1.1

in the case where A,B,C are diagonal.

Lemma 2.1. Let ai, bi, ci ≥ 0, i = 1, . . . , n. Then

n∏

i=1

(ai + bi + ci) +

n∏

i=1

ci −
(

n∏

i=1

(ai + ci) +

n∏

i=1

(bi + ci)

)

≥
n∏

i=1

(ai + bi)−
(

n∏

i=1

ai +

n∏

i=1

bi

)
.

(2.1)

Proof. There is no loss of generality to assume ci > 0, i = 1, . . . , n. Firstly,

we show a special case of (2.1) by assuming ci = 1, i = 1, . . . , n. The proof is by

induction. The base case n = 1 is trivial. Assume that for n = m ≥ 2, it holds that

m∏

i=1

(ai + bi + 1) + 1−
(

m∏

i=1

(ai + 1) +

m∏

i=1

(bi + 1)

)

≥
m∏

i=1

(ai + bi)−
(

m∏

i=1

ai +

m∏

i=1

bi

)
.
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For n = m+ 1, compute

m+1∏

i=1

(ai + bi + 1) = (am+1 + bm+1 + 1)

m∏

i=1

(ai + bi + 1)

≥ (am+1 + bm+1 + 1)

×
(

m∏

i=1

(ai + bi) +

m∏

i=1

(ai + 1) +

m∏

i=1

(bi + 1)−
m∏

i=1

ai −
m∏

i=1

bi − 1

)

=

m+1∏

i=1

(ai + bi) +

m+1∏

i=1

(ai + 1) +

m+1∏

i=1

(bi + 1)−
m+1∏

i=1

ai −
m+1∏

i=1

bi − 1

+

{
m∏

i=1

(ai + bi) + bm+1

m∏

i=1

(ai + 1) + am+1

m∏

i=1

(bi + 1)

−(am+1 + 1)

m∏

i=1

bi − (bm+1 + 1)

m∏

i=1

ai − (am+1 + bm+1)

}

≥
m+1∏

i=1

(ai + bi) +

m+1∏

i=1

(ai + 1) +

m+1∏

i=1

(bi + 1)−
m+1∏

i=1

ai −
m+1∏

i=1

bi − 1

+

{
m∏

i=1

ai +
m∏

i=1

bi + bm+1

(
1 +

m∏

i=1

ai

)
+ am+1

(
1 +

m∏

i=1

bi

)

−(am+1 + 1)

m∏

i=1

bi − (bm+1 + 1)

m∏

i=1

ai − (am+1 + bm+1)

}

=

m+1∏

i=1

(ai + bi) +

m+1∏

i=1

(ai + 1) +

m+1∏

i=1

(bi + 1)−
m+1∏

i=1

ai −
m+1∏

i=1

bi − 1.

We have thus proved

n∏

i=1

(âi + b̂i + 1) + 1−
(

n∏

i=1

(âi + 1) +

n∏

i=1

(̂bi + 1)

)

≥
n∏

i=1

(âi + b̂i)−
(

n∏

i=1

âi +

n∏

i=1

b̂i

) (2.2)

for any âi, b̂i ≥ 0, i = 1, . . . , n.

The general case follows from (2.2) by taking âi =
ai

ci
, b̂i =

bi

ci
, i = 1, . . . , n, and

then multiplying both sides of (2.2) with
∏n

i=1 ci.

For a vector x ∈ Rn, we denote by x↓ = (x↓
1, . . . , x

↓
n) ∈ Rn the vector with the

same components as x, but sorted in descending order. Given x, y ∈ Rn, we say that
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x majorizes y, written as x ≻ y, if

k∑

i=1

x
↓
i ≥

k∑

i=1

y
↓
i for k = 1, . . . , n− 1,

and the equality holds at k = n.

A real-valued function φ defined on a set A ⊂ Rn is said to be Schur-convex on

A if

x ≻ y on A =⇒ φ(x) ≥ φ(y).

φ is Schur-concave if −φ is Schur-convex.

Let I ⊂ R be an open interval and let φ : In → R be continuously differentiable.

The well known Schur’s condition ([4, p. 84]) says that φ is Schur-convex on In if

and only if φ is symmetric on In and

(x1 − x2)

(
∂φ

∂x1
− ∂φ

∂x2

)
≥ 0.

Lemma 2.2. The function f(x) =
∏n

i=1(1+xi)−
∏n

i=1 xi, where x = (x1, . . . , xn)

∈ Rn
+, is Schur concave.

Proof. Clearly, f(x) is symmetric. Moreover,

(x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)

= (x1 − x2)

((
1

1 + x1
− 1

1 + x2

) n∏

i=1

(1 + xi)−
(

1

x1
− 1

x2

) n∏

i=1

xi

)

= −(x1 − x2)
2

(
n∏

i=3

(1 + xi)−
n∏

i=3

xi

)
≤ 0.

We also need a classical result of Fan. For an n × n Hermitian matrix X , we

denote the vector of eigenvalues of X by λ(X) = (λ1(X), . . . , λn(X)) with λ1(X) ≥
· · · ≥ λn(X).

Lemma 2.3. [8, p. 356] Let X,Y be n× n Hermitian matrices. Then

λ(X) + λ(Y ) ≻ λ(X + Y ).

Now we are ready to present:
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Proof of Theorem 1.1. By a standard continuity argument, we may assume C to

be positive definite. We may further assume C = In (the n × n identity matrix) by

pre- and post-multiplying both sides of (1.3) with detC−1/2.

Thus, we need to show

det(A+B + In) + 1− (det(A+ In) + det(B + In))

≥ det(A+B)− (detA+ detB).

Compute

det(A+B + In)− det(A+B)

=

n∏

i=1

λi(A+B + In)−
n∏

i=1

λi(A+B)

=
n∏

i=1

(
1 + λi(A+B)

)
−

n∏

i=1

λi(A+B)

≥
n∏

i=1

(
1 + λi(A) + λi(B)

)
−

n∏

i=1

(
λi(A) + λi(B)

)

≥
n∏

i=1

(
1 + λi(A)

)
+

n∏

i=1

(
1 + λi(B)

)
−

n∏

i=1

λi(A)−
n∏

i=1

λi(B)− 1

= det(A+ In) + det(B + In)− (detA+ detB + 1),

in which the first inequality is by Lemma 2.2 and Lemma 2.3; and the second inequal-

ity is by Lemma 2.1. This completes the proof.

3. Concluding remarks.

(i) Let G be a subgroup of the symmetric group Sn, and let χ be an irreducible

character of G. The generalized matrix function (also known as immanant) afforded

by G and χ is defined by

dGχ (A) =
∑

σ∈G

χ(σ)
n∏

i=1

aiσ(i),

where A = (aij) is an n× n complex matrix.

If G = Sn and χ is the signum function with values ±1, then the generalized

matrix function becomes the usual matrix determinant; setting χ ≡ 1 defines the

permanent of the matrix.

The following remarkable extension of (1.1) is known (e.g., [5, p. 228]): Let A,B

be n× n positive semidefinite matrices. Then

dGχ (A+B) ≥ dGχ (A) + dGχ (B).
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Recently, Paksoy, Turkmen, and Zhang [7] showed that (1.2) also possessed such

an extension (assuming C is also an n× n positive semidefinite matrix)

dGχ (A+B + C) + dGχ (C) ≥ dGχ (A+ C) + dGχ (B + C).

It is natural to ask whether Theorem 1.1 is true for any generalized matrix func-

tion.

(ii) Let A ⊂ Cn×n, the set of all n × n complex matrices. A function f : A → R is

superadditive if

f(A+B) ≥ f(A) + f(B)

and strongly superadditive if

f(A+B + C) + f(C) ≥ f(A+ C) + f(B + C)

for all A,B,C ∈ A.

Thus, Paksoy, Turkmen, and Zhang’s result tells that the generalized matrix

function is strongly superadditive on the cone of positive semidefinite matrices. A

more general question would be: For what kind of strongly superadditive function f ,

one has

f(A+B + C) + f(C)− (f(A+ C) + f(B + C)) ≥ f(A+B)− (f(A) + f(B)),

where A,B,C are n×n positive semidefinite matrices. This of course deserves further

investigation.
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