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ON THE RANK-K NUMERICAL RANGE

OF MATRIX POLYNOMIALS∗
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Abstract. This article introduces the notion of the rank-k numerical range Λk(L) of a matrix

polynomial L(λ) = Amλm + · · ·+ A1λ + A0, whose coefficients are n× n complex matrices. Also,

geometric properties are obtained, including the relation to the ordinary numerical range W (L).
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1. Introduction. Let Mn1,n2
(C) be the algebra of all n1×n2 complex matrices,

where the case n1 = n2 = n is specified by Mn, and let

L(λ) = Amλm +Am−1λ
m−1 + · · ·+ A1λ+A0(1.1)

be a matrix polynomial with λ ∈ C, Ai ∈ Mn (i = 0, . . . ,m) and Am 6= 0, m ≥ 1.

The set of all eigenvalues of L(λ), i.e., the spectrum of L(λ), is defined by

σ(L) = {λ ∈ C : detL(λ) = 0},

and the nonzero solution x0 ∈ Cn of the equation L(λ0)x = 0 with λ0 ∈ σ(L) is

known as an eigenvector of L(λ) associated to λ0.

The study of matrix polynomials has attracted special interest, and especially,

it has been proved to be very fruitful in many applications on differential equations,

linear systems theory and factorization problems [1, 9, 11, 15]. Evenly, this theory

has been extended to operator polynomials and analytic operator functions [7].

For a positive integer k ∈ {1, 2, . . . , n}, we define the rank-k numerical range of

L(λ) as

Λk(L) = {λ ∈ C : PL(λ)P = 0n for some P ∈ Pk},(1.2)
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where Pk is the set of all orthogonal projections P of Cn onto any k-dimensional

subspace of Cn. Since P = QQ∗ with Q ∈ Mn,k and Q∗Q = Ik, we may consider the

equivalent definition

Λk(L) = {λ ∈ C : Q∗L(λ)Q = 0k for some Q ∈ Mn,k(C) , Q∗Q = Ik}.(1.3)

In the case k = 1, the set reduces to the well known numerical range W (L) of L(λ)

[9], that is,

Λ1(L) ≡ W (L) = {λ ∈ C : x∗L(λ)x = 0 for some x ∈ C
n, x∗x = 1}.

The set Λk(L) in (1.2) (or (1.3)) is an interesting generalization of the numerical range

W (L), which is utilized in several problems of scientific and engineering applications

such as overdamped vibration systems and stability theory [1, 9].

If we consider LA(λ) = Iλ−A, then clearly

Λk(LA) ≡ Λk(A) = {λ ∈ C : Q∗AQ = λIk , Q ∈ Mn,k(C), Q∗Q = Ik},(1.4)

namely, it coincides with the rank-k numerical range of A ∈ Mn. The concept of

higher rank numerical range of matrices has been studied extensively by Choi et al in

[4, 5, 8, 16] and later by the authors in [2, 3]. We should note that for k = 1, Λk(LA)

yields the classical numerical range

F (A) = {x∗Ax : x ∈ C
n, x∗x = 1}.

In Section 2, we investigate the non-emptyness of Λk(L), and in Section 3, we

concentrate on algebraic and geometric properties of the set. In particular, we give

a description of the set through intersections of numerical ranges of all compressions

of the matrix polynomial L(λ) to (n − k + 1)-dimensional subspaces. This is an

extension of an analogous expression for matrices presented in [2], which leads us to

investigate the topology of Λk(L) as well as its relationship with Λk(CL), where CL

is the companion pencil of L(λ). Further, in Section 4, a connection of the boundary

points of Λk(L) with respect to the boundary points of W (L) is considered and the

notion of sharp points is investigated.

2. Non-emptyness of Λk(L). In the study of rank-k numerical range of matrix

polynomials Λk(L), there is a significant difference between the case k = 1 and k > 1.

When k = 1, for any unit vector x ∈ Cn, x∗L(λ)x is a usual polynomial with complex

coefficients and always has roots. However, when k > 1, for an n × k isometry

Q =
[
q1 · · · qk

]
, the elements of the matrix polynomial Q∗L(λ)Q, i.e., the k2

scalar polynomials q∗i L(λ)qj , i, j = 1, . . . , k, should have common roots.

In order to obtain that Λk(L) 6= ∅ for any matrix polynomial L(λ) =
∑m

l=0 Alλ
l

with Am 6= 0, we are led to the common roots of the k2 > 1 scalar polynomials
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bij(λ,Q) = q∗i L(λ)qj , i, j = 1, . . . , k, for some isometries Q =
[
q1 · · · qk

]
∈

Mn,k. Adapting the notion of the Sylvester matrix Rs appeared in [12] and the

discussion therein to the polynomials

bij(λ,Q) = q∗iAmqjλ
m + · · ·+ q∗i Alqjλ

l + · · ·+ q∗iA0qj

= b
(m)
ij (Q)λm + · · ·+ b

(l)
ij (Q)λl + · · ·+ b

(0)
ij (Q)(2.1)

for all i, j = 1, . . . , k and for some n × k isometry Q =
[
q1 · · · qk

]
, we have a

condition for the polynomials bij(λ,Q) to share polynomial common factors. Denote

by σ ≤ m the largest degree of the k2 polynomials bij(λ,Q), and let, as in (2.1),

bi1,j1(λ,Q) = b
(σ)
i1,j1

(Q)λσ + · · ·+ b
(l)
i1,j1

(Q)λl + · · ·+ b
(0)
i1,j1

(Q),(2.2)

for some indices i1, j1 ∈ {1, . . . , k}. If τ ≤ σ is the largest degree of the remaining

polynomials, then the generalized Sylvester matrix is

Rs(Q) =




R1(Q)
...

Rk2(Q)


 ,(2.3)

where R1(Q) is the stripped τ × (σ + τ) matrix

R1(Q) =




b
(σ)
i1,j1

(Q) b
(σ−1)
i1,j1

(Q) · · · b
(0)
i1,j1

(Q) 0

b
(σ)
i1,j1

(Q) b
(σ−1)
i1,j1

(Q)
. . .

. . .
. . .

0 b
(σ)
i1,j1

(Q) · · · b
(σ−1)
i1,j1

(Q) · · · b
(0)
i1,j1

(Q)



,

and for p = 2, . . . , k2, Rp(Q) are the following σ × (σ + τ) matrices

Rp(Q) =




0 b
(τ)
ip,jp

(Q) · · b
(0)
ip,jp

(Q)

b
(τ)
ip,jp

(Q)

· · · ·

b
(τ)
ip,jp

(Q) · · b
(0)
ip,jp

(Q) 0


 ,

with ip, jp ∈ {1, . . . , k} and ip 6= i1, jp 6= j1. Hence, the degree δ(Q) 6= 0 of the

greatest common divisor of bij(λ,Q) (i, j = 1, . . . , k) for some n × k isometry Q

satisfies the relation

rankRs(Q) = τ + σ − δ(Q) ≤ 2m− δ(Q),(2.4)

and clearly, Λk(L) 6= ∅ if and only if there exists an n × k isometry Q such that

rankRs(Q) < 2m.
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In the remainder, we assume that such an isometry exists and Λk(L) is non-empty.

Investigating the non-emptyness of Λk(L), we notice that the necessary condition

n ≥ 3k − 2 for Λk(A) 6= ∅ [8] (for a matrix A ∈ Mn) fails in general for matrix

polynomials. Particularly, if we consider L(λ) = (λ − λ0)
mAm, where 0 /∈ Λk(Am),

then Λk(L) appears to be non-empty for any k ≤ n. Clearly, Q∗L(λ)Q = (λ −

λ0)
mQ∗AmQ for any n × k isometry Q, and due to 0 /∈ Λk(Am), we have that

Q∗AmQ 6= 0k for all Q, and then Λk(L) = {λ0} 6= ∅.

3. Geometric properties. At the beginning of this section, we refer to some

properties for Λk(L), which for k = 1, have been presented in [9].

Proposition 3.1. Let L(λ) be an n×n matrix polynomial as in (1.1). Then the

following hold:

I. Λk(L) is closed in C.

II. For any α ∈ C, Λk(L(λ+ α)) = Λk(L)− α.

III. The following are equivalent:

a. µ ∈ Λk(L),

b. there exists an isometry M ∈ Mn,k(C) such that M∗L(µ)M = 0k,

c. there exists a k-dimensional subspace K of Cn such that for any v ∈ K,

we have v∗L(µ)v = 0,

d. there exists a unitary matrix U ∈ Mn(C) such that

U∗L(µ)U =

[
0k L1(µ)

L2(µ) L3(µ)

]
,

where L1(λ), L2(λ) and L3(λ) are suitable matrix polynomials.

Proof. The arguments (IIIa)–(IIId) are equivalent, since µ ∈ Λk(L) if and only if

0 ∈ Λk(L(µ)), where L(µ) is a constant matrix. Thus, we refer to the definition (1.4)

and Proposition 1.1 in [4].

Proposition 3.2. Let L(λ) be an n×n matrix polynomial as in (1.1). Then the

following hold:

I. Λk(L) ⊆ Λk−1(L) ⊆ · · · ⊆ Λ1(L).

II. For any positive integer k ≤ n, Λk(⊕kL) = W (L), where ⊕kL denotes the direct

sum L⊕ · · · ⊕ L︸ ︷︷ ︸
k

.

Proof. I. For any j ∈ {2, . . . , k}, let µ0 ∈ Λj(L). Obviously, 0 ∈ Λj(L(µ0)) ⊆

Λj−1(L(µ0)), and consequently, we conclude that µ0 ∈ Λj−1(L).

II. Due to (I), µ0 ∈ Λk(⊕kL) ⊆ W (⊕kL). Hence, 0 ∈ F (⊕kL(µ0)) = F (L(µ0))

or µ0 ∈ W (L), and then we obtain Λk(⊕kL) ⊆ W (L). In addition, µ0 ∈ W (L) ⇒
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0 ∈ F (L(µ0)) ⊆ Λk(⊕kL(µ0)), according to the relation (v) in [5]. Thus, W (L) ⊆

Λk(⊕kL) and the proof is complete.

The following result sketches the rank-k numerical range of a matrix through

numerical ranges [2].

Proposition 3.3. Let LA(λ) = Iλ−A, with A ∈ Mn. Then

Λk(LA) =
⋂

M

F (M∗AM),

where M is any n× (n− k + 1) isometry.

This expression provides a numerical estimation of Λk(LA) through the numerical

ranges F (M∗AM) and it also verifies its “convexity” in another way of that in [16].

For k = n, clearly Λn(LA) =
⋂

x∈Cn,x∗x=1 F (x∗Ax) and hence, Λn(LA) 6= ∅ precisely

when A is scalar.

A characterization of Λk(L), extending the previous expression, is demonstrated

in the next proposition.

Proposition 3.4. Suppose L(λ) is an n×n matrix polynomial as in (1.1). Then

Λk(L) =
⋂

M

W (M∗LM) =
⋃

N

Λk(N
∗LN),

where M ∈ Mn,n−k+1(C), N ∈ Mn,k(C) are isometries.

Proof. Obviously, by Proposition 3.3,

µ0 ∈ Λk(L) ⇔ 0 ∈ Λk(L(µ0)),

or equivalently,

0 ∈
⋂

M

F (M∗L(µ0)M) ⇔ µ0 ∈
⋂

M

W (M∗LM).

Considering the equation Λk(A) =
⋃

N Λk(N
∗AN) [2], we have

µ0 ∈ Λk(L) ⇔ 0 ∈ Λk(L(µ0)),

or equivalently,

0 ∈
⋃

N

Λk(N
∗L(µ0)N) ⇔ µ0 ∈

⋃

N

Λk(N
∗LN).

The first equality of Proposition 3.4 will be used to provide a numerical algorithm

for a graphical estimation of the set Λk(L) through the numerical ranges W (M∗LM),
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giving an interesting illustration of what Λk(L) for k > 1 approximately looks like

(Fig. 3.1a). In addition, it will constitute a useful technical tool for proving many of

our results. Next we apply Proposition 3.4 to derive a relation between the rank-k

numerical range of L(λ) and its corresponding mn×mn companion pencil

CL(λ) =




In 0 0 · · · 0

0 In 0 · · · 0
...

. . .
. . .

...

0 0

0 · · · Am



λ−




0 In 0 · · · 0

0 0 In · · · 0
...

. . .
. . .

...

0 In
−A0 · · · −Am−1



,

well known as companion linearization of L(λ), since there exist suitable matrix poly-

nomials E(λ) and F (λ) with constant nonzero determinants such that

[
L(λ) 0

0 In(m−1)

]
= E(λ)CL(λ)F (λ).

Proposition 3.5. Let L(λ) be an n × n matrix polynomial as in (1.1). Then

Λk(L) ∪ {0} ⊆ Λk(CL).

Proof. By Proposition 3.4 and the relationship W (L) ∪ {0} ⊆ W (CL) in [13], we

have

Λk(L) ∪ {0} =

(
⋂

M

W (M∗LM)

)
∪ {0} ⊆

⋂

M

W (CM∗LM ),(3.1)

where M ∈ Mn,n−k+1(C) is an isometry and CM∗LM (λ) is the companion lineariza-

tion of the matrix polynomial M∗L(λ)M . Since,

CM∗LM (λ) = (Im ⊗M)∗




λIn −In 0 · · · 0

0 λIn −In · · · 0
...

. . .
. . .

...

0 −In
A0 · · · Amλ+Am−1



(Im ⊗M)

= (Im ⊗M)∗CL(λ)(Im ⊗M),

considering the expanded isometryQ =
[
Im ⊗M V

]
∈ Mmn,mn−k+1(C), we have

⋂

M

W (CM∗LM ) =
⋂

M

W ((Im ⊗M)∗CL(Im ⊗M))

⊆
⋂

Q

W (Q∗CLQ) = Λk(CL),(3.2)
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where the latter equality is confirmed by Theorem 2.2 in [2]. Thus, by (3.1) and (3.2),

the proof is completed.

Following, we present a statement concerning the boundedness of Λk(L).

Proposition 3.6. Let L(λ) be an n × n matrix polynomial as in (1.1). If

0 /∈ Λk(Am), then Λk(L) is bounded.

Conversely, let rankRs(Q) < 2m for all isometries Q ∈ Mn,k such that

Q∗AmQ = zIk (z ∈ C\{0}). If Λk(Am) 6= {0} and Λk(L) is bounded, then 0 /∈

Λk(Am).

Proof. For Λk(L) 6= ∅, let Λk−1(L) be unbounded. If 0 /∈ Λk(Am), then by

Proposition 3.3, there exists an n×(n−k+1) isometryM0 such that 0 /∈ F (M∗
0AmM0).

Hence, W (M∗
0LM0) is bounded [9], and by Proposition 3.4, as Λk(L) ⊆ W (M∗

0LM0),

we conclude that Λk(L) is bounded.

For the converse, suppose that Λk(Am) 6= {0} and Λk(L) is bounded. It is clear

that Λ1(L) may be either a bounded or an unbounded set. If Λ1(L) is bounded,

then 0 /∈ Λ1(Am) [9], which infers 0 /∈ Λk(Am) for any k > 1. On the other hand, if

Λ1(L) is unbounded, we consider k0 > 1 to be the minimum positive integer such that

Λk0
(L) is bounded. Hence, it is enough to prove our argument for k = k0, keeping

in mind that the k20m × 2m Sylvester matrix Rs(Q) has rank less than 2m for any

isometry Q ∈ Mn,k0
such that Q∗AmQ = zIk0

.

Assume that 0 ∈ Λk0
(Am). Since Λk0

(Am) is a convex set not degenerating

to the singleton {0}, we may find a nonzero sequence {zν} ⊆ Λk0
(Am) such that

limν→∞ zν = 0. Consequently, a sequence of n×k0 isometries {Qν} which correspond

to the points zν ∈ Λk0
(Am), i.e., Q∗

νAmQν = zνIk0
→ 0k0

. Due to the compactness

of the group of n × k0 isometries, there is a subsequence {Qρ} of {Qν} such that

limρ→∞ Qρ = Q0, with Q0 ∈ Mn,k0
being an isometry. That is, eventually all terms of

{Qρ} are contained in any neighborhood U(Q0) ofQ0 and should beQ∗
ρAmQρ = zρIk0

,

where {zρ} is a subsequence of {zν}. By continuity, limρ→∞ Q∗
ρAmQρ = Q∗

0AmQ0 =

0k0
.

Moreover, there exists an index j 6= m such that Q∗
0AjQ0 6= 0k0

(otherwise,

Λk0
(L) ≡ C), whereupon ‖Q∗

ρAjQρ‖ > ε for some ε > 0 and sufficiently large ρ. Also,

for the coefficients of Q∗
ρL(λ)Qρ = zρ(Ik0

λm+ · · ·+ 1
zρ
Q∗

ρAjQρλ
j + · · ·+ 1

zρ
Q∗

ρA0Qρ),

we have [6, Th.4.2]

(−1)j−m 1

zρ
Q∗

ρAjQρ =
∑

1≤i1<···<is≤m

λ̃i1 λ̃i2 · · · λ̃isIk0
,

where λ̃i1 , λ̃i2 , . . . , λ̃is are the roots of the equation Q∗
ρL(λ)Qρ = 0, i.e., the common

roots of the k20 scalar polynomials, elements of the matrixQ∗
ρL(λ)Qρ, which are always
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guaranteed by the condition of the Sylvester. Clearly, ± 1
zρ
Q∗

ρAjQρ is not bounded

as ρ → ∞, concluding that Λk0
(L) is not bounded. This contradicts the assumption,

and the proof is complete.

Obviously, if L(λ) is a monic matrix polynomial, then Λk(L) is always bounded.

Next, we present an illustrative example of Proposition 3.6.

Example 3.7. Let the matrix polynomial L(λ) = A2λ
2 +A1λ+A0, where

A2 =




1 0 0 0

0 i 0 0

2 i 0 2

−i 0 −2 8


 , A1 =




i 2 i 3

3 0 0 0

0 4 5 0

i 0 i 0


 and A0 =




1 2 3 4

2 3 4 5

3 4 5 6

5 6 7 8


.

The unshaded area in Fig.3.1a approximates the set Λ2(L), which is bounded,

although Λ1(L) = C. The set Λ2(A2) of the leading coefficient A2 is illustrated by

the unshaded area in Fig.3.1b, where we observe that 0 /∈ Λ2(A2).

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Real  Axis

Im
ag

in
ar

y 
 A

xi
s

0 0.5 1 1.5 2
0

0.5

1

1.5

Real  Axis

Im
ag

in
ar

y 
 A

xi
s

a b

Fig. 3.1. The graphical implementation of the sets Λ2(L) (part a) and Λ2(A2) (part b)
has been achieved due to Propositions 3.4 and 3.3, respectively.

Should we point out that in Fig.3.1b the set Λ2(A2) has been determined via the

numerical ranges F (M∗A2M) for 4 × 3 isometries M according to Proposition 3.3.

It is quite interesting to note that sketching Λ2(A2) likewise the classical numerical

range using the expression proved in [10]

Λ2(A2) =
⋂

θ∈[0,2π)

e−iθ{z ∈ C : Re z ≤ λ2(H(eiθA2))},

where λ2(H(·)) denotes the second largest eigenvalue of the Hermitian part H(·) of a

matrix, then Λ2(A2) appears to have additional “wings” at the corners and seen in the

next Fig. 3.2. This is due to the fact that the line lθ = {z ∈ C : Re z = λ2(H(eiθA2))}

is not tangential to Λ2(e
iθA2), for some θ ∈ [0, 2π) and x2(θ)

∗A2x2(θ) does not lie on
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the boundary of Λ2(A2), where x2(θ) is a unit eigenvector of H(eiθA2) corresponding

to λ2(H(eiθA2)).

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

Real  Axis

Im
ag

in
ar

y 
 A

xi
s

Fig. 3.2. The boundary of Λ2(A2) is plotted by the points x2(θ)
∗A2x2(θ), θ ∈ [0, 2π),

where x2(θ) is a unit eigenvector corresponding to the second largest eigenvalue of H(eiθA2).
In this way, two additional “wings” appear at the corners of the figure.

Example 3.8. Consider the 4×4 matrix polynomial L(λ) = I2⊗ (Bλ+I2), with

B =

[
1 1

0 0

]
. Then Λ2(I2⊗B) 6= {0} and additionally, 0 ∈ Λ2(I2⊗B). In this case,

for any 4× 2 isometry Q such that Q∗(I2 ⊗B)Q = zI2 6= 02, the Sylvester matrix in

(2.3) is Rs(Q) =




1 1/z

1 1/z

0 0

0 0


 with rankRs(Q) = 1 < 2. Since, 0 ∈ F (A2), the range

W (L) is unbounded as well as Λ2(L⊕ L) (Proposition 3.2, II). This was expected by

the converse part in Proposition 3.6.

4. Sharp points. In this section, we define the notion of sharp points in analogy

with [13]. Particularly, z0 ∈ ∂Λk(L) is called to be a sharp point if for a connected

component Λ
(s)
k (L) of Λk(L), there exist a disc S(z0, ε), with ε > 0, and two angles

θ1 < θ2, with θ1, θ2 ∈ [0, 2π), such that

Re(eiθz0) = max {Re z : e−iθz ∈ Λ
(s)
k (L) ∩ S(z0, ε)}, ∀ θ ∈ (θ1, θ2).

Following, we present a condition for an eigenvalue lying on the boundary ∂W (L) to

be a boundary point of Λk(L), as well.

Proposition 4.1. Let an n × n matrix polynomial L(λ) as in (1.1). If γ ∈

σ(L) ∩ ∂W (L) with algebraic multiplicity k, then for j = 2, . . . , k, it follows

γ ∈ ∂Λj(L).
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Proof. By hypothesis, γ is a seminormal eigenvalue of the matrix polynomial L(λ)

of multiplicity k [7, Theorem 6]. That is, there exists a unitary matrix U such that

U∗L(γ)U = 0k ⊕R(γ),

where R(λ) is an (n − k) × (n − k) matrix polynomial and γ /∈ intW (R). Hence,

by Propositions 3.1, IIId, and 3.2, I, it is implied that γ ∈ Λj(L) ⊆ Λj−1(L) for

j = 2, . . . , k, and due to γ /∈ intW (L) (≡ intΛ1(L)), we obtain γ ∈ ∂Λj(L), for

j = 2, . . . , k.

The converse of Proposition 4.1 is not true, as it is illustrated in the next example.

Example 4.2. Let A = diag(3+4i, 4−i,−3−2i,−3,−3+3i) and LA(λ) = Iλ−A.

The outer polygon of the figure below is W (LA), whereas the inner shaded polygon is

Λ2(LA), which is the intersection of all

[
5

4

]
convex combinations of the eigenvalues

λj1 , λj2 , λj3 , λj4 of A, with 1 ≤ j1 ≤ · · · ≤ j4 ≤ 5. Notice that the simple eigenvalue

of matrix A, λ0 = −3, lies on ∂W (LA) ∩ ∂Λ2(LA). In addition, Λ3(LA) = ∅.

−4 −3 −2 −1 0 1 2 3 4
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−2
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0

1
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ar
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In view of the definition of sharp points, for a pencil Aλ − B, we have the next

proposition.

Proposition 4.3. Consider a pencil L(λ) = Aλ − B ∈ Mn(C) and let z0 be a

sharp point of W (Aλ−B), which is an eigenvalue of Aλ−B of algebraic multiplicity

k. Then z0 is also a sharp point of Λj(Aλ−B), for j = 2, . . . , k.

Proof. Since, by hypothesis, the sharp point z0 of W (Aλ − B) is an eigenvalue

of the pencil Aλ − B, with algebraic multiplicity k, Proposition 4.1 implies that

z0 ∈ ∂Λj(Aλ−B) for j = 2, . . . , k. It only suffices to prove that for any disc S(z0, ε)
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with ε > 0, z0 satisfies the equality

Re(eiθz0) = max {Re z : e−iθz ∈ Λj(Aλ−B) ∩ S(z0, ε)},

or equivalently, due to Proposition 3.4,

Re(eiθz0) = max

{
Re z : z ∈

⋂

M

(
W (eiθM∗(Aλ−B)M) ∩ S(eiθz0, ε)

)
}

for every angle θ ∈ (θ1, θ2) with 0 ≤ θ1 < θ2 < 2π.

The inclusion W (M∗(Aλ−B)M) ⊆ W (Aλ−B) for any n× (n− j+1) isometry

M , j = 2, . . . , k, verifies the inequality

max⋂

M

(W (eiθM∗(Aλ−B)M)∩S(eiθz0,ε))
Re z ≤ max

W (eiθ(Aλ−B))∩S(eiθz0,ε)
Re z = Re(eiθz0)(4.1)

for any disc S(eiθz0, ε) and every θ ∈ (θ1, θ2). Moreover, ker (Az0 − B)∩Im(MM∗) 6=

∅, since dim ker (Az0 −B) + dim Im(MM∗) = k + n − j + 1 ≥ n + 1. Hence, for an

eigenvector x0 ∈ Cn of Aλ−B corresponding to z0, there exists a vector y0 ∈ Cn such

that x0 = MM∗y0. Obviously, M∗y0 ∈ Cn−j+1 is an eigenvector of M∗(Aλ − B)M

corresponding to z0, yielding z0 ∈ σ(M∗(Aλ − B)M) ⊆ W (M∗(Aλ − B)M) for any

n× (n− j + 1) isometry M .

Thus, z0 ∈
⋂
M

W (M∗(Aλ−B)M), i.e., Re z0 ∈ Re

(⋂
M

W (M∗(Aλ−B)M)

)
,

whereupon we confirm the inequality

Re(eiθz0) ≤ max⋂

M

(W (eiθM∗(Aλ−B)M)∩S(eiθz0,ε))
Re z(4.2)

for any disc S(eiθz0, ε) and every θ ∈ (θ1, θ2). Therefore, by (4.1) and (4.2),

Re(eiθz0) = max

{
Re z : z ∈

⋂

M

(
W (eiθM∗(Aλ−B)M) ∩ S(eiθz0, ε)

)
}

for any disc S(eiθz0, ε) and every θ ∈ (θ1, θ2), establishing the assertion.

By the previous results, we have the following corollary concerning the sharp

points of the rank-k numerical range of a matrix A ∈ Mn(C).

Corollary 4.4. Let A ∈ Mn(C) and z0 be a sharp point of F (A), which is an

eigenvalue of A of algebraic multiplicity k, then z0 is also a sharp point of Λj(A), for

j = 2, . . . , k.
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