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ON THE ESTRADA INDEX OF CACTI∗

HONGZHUAN WANG† , LIYING KANG‡ , AND ERFANG SHAN§

Abstract. Let G be a simple connected graph on n vertices and λ1, λ2, . . . , λn be the eigenvalues

of the adjacency matrix of G. The Estrada index of G is defined as EE(G) = Σn

i=1
eλi . A cactus

is a connected graph in which any two cycles have at most one common vertex. In this work, the

unique graph with maximal Estrada index in the class of all cacti with n vertices and k cycles was

determined. Also, the unique graph with maximal Estrada index in the class of all cacti with n

vertices and k cut edges was determined.
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1. Introduction. Let G be a simple graph of order n and let A(G) be its ad-

jacency matrix. The eigenvalues of G are referred as the eigenvalues of A(G) and

denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). The Estrada index EE(G) of the graph

G is defined as EE(G) = Σn
i=1e

λi(G). The Estrada index was introduced by Estrada

[8] in 2000. Since then, the Estrada index has found multiple applications in a large

variety of problems, for example, it has been successfully employed to quantify the

degree of folding of long-chain molecules, especially proteins [9, 10, 11] and to measure

the centrality of complex (reaction, metabolic, communication, social, etc.) networks

[12, 13]. Recently, the Estrada index has been received a lot of attention within mathe-

matics. Many bounds have been established for the Estrada index in [3, 15, 16, 17, 18].

The extremal values of the Estrada index in terms of some graph invariants were also

determined. Among these, Ilić and Stevanović [15] obtained the unique tree with

minimum Estrada index among the set of trees with given maximum degree. Zhang

et al. [17] determined the unique tree with maximum Estrada indices among the set

of trees with given matching number. In [4], Du and Zhou characterized the unique

unicyclic graph with maximum Estrada index, and Wang et al. [20] determine the
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unique graph with maximum Estrada index among bicyclic graphs with fixed order.

Zhu et al. [19] determine the unique graph with maximum Estrada index among tri-

cyclic graphs with fixed order. Inspired by these results, we characterize the unique

graph with maximum Estrada index among cacti of fixed order.

In order to sate our results, we introduce some notation and terminology. For

other notation we refer to Bollobás [1]. Let G be a simple connected graph with

vertex set V (G) and edge set E(G). A cactus is a graph in which any two cycles have

at most one common vertex. If all the cycles in a cactus have exactly one common

vertex, then they form a bundle. Let Pn, Cn and Sn be the path, the cycle and

the star on n vertices, respectively. A cut edge is an edge of a graph whose removal

increases the number of components of the graph. The neighborhood of a vertex v in

G is NG(v) = {u|uv ∈ E(G)}. Denote by dG(v) = |NG(v)| the degree of the vertex

v of G. If dG(v) = 1, then v is a pendent vertex. An edge incident with the pendent

vertex is a pendent edge. Let C(n, k) be the class of all cacti of order n with k cycles,

and C(n)k be the class of all cacti of order n with k cut edges.

The rest of the paper is organized as follows. In Section 2, we give some prelimi-

naries. In Section 3, we determine the unique graph with maximal Estrada index in

C(n, k). In Section 4, we determine the unique graph with maximal Estrada index in

C(n)k.

2. Preliminaries. Denote by Mk(G) the kth spectral moment of graph G, i.e,

Mk(G) =
∑n

i=1 λ
k
i . It is well known that Mk(G) is equal to the number of closed

walks of length k in G, see Cvetković [2]. Then

EE(G) =

∞∑

k=0

Mk(G)

k!
.(2.1)

Let G1 and G2 be two graphs, if Mk(G1) ≤ Mk(G2) for all positive integers k,

then by equation (2.1), we have EE(G1) ≤ EE(G2) with equality if and only if

Mk(G1) = Mk(G2) for all positive integers k. For any vertices u and v (not necessarily

distinct) in G, we denote by Mk(G;u, v) the number of walks in G with length k

from u to v. Denote by Wk(G;u, v) a walk of length k from u to v in G, and by

Wk(G;u, v) the set of all such walks. Denote by Wk(G;u, [v]) a walk of length k

from u to u which go through v in G, and by Wk(G;u, [v]) the set of all such walks.

Clearly, Mk(G;u, v) = |Wk(G;u, v)| and Mk(G;u, [v]) = |Wk(G;u, [v])|. Note that

Mk(G;u, v) = Mk(G; v, u) for any positive integer k, see Cvetković [2].

Let G and H be graphs with u1, v1 ∈ V (G) and u2, v2 ∈ V (H). If Mk(G;u1, v1)

≤ Mk(H ;u2, v2) for all positive integers, then we write (G;u1, v1) � (H ;u2, v2). If,

in addition, Mk(G;u1, v1) < Mk(H ;u2, v2) for at least one positive integer k, then

we write (G;u1, v1) ≺ (H ;u2, v2). If u = v, we write Wk(G;u), Mk(G;u) instead of
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Wk(G;u, u), Mk(G;u, u) respectively. Further, we write (G;u) instead of (G;u, u).

For a subset M of the edge set of the graph G, G−M denotes the graph obtained

from G by deleting the edges in M , and for a subset M∗ of the edge set of the

complement of G, G+M∗ denotes the graph obtained from G by inserting the edges

in M∗. For v ∈ V (G), let G − v be the graph obtained from G by deleting v and

its incident edges. For an edge e of the complement of G, G + e denotes the graph

obtained from G by inserting e.

Lemma 2.1 ([5]). Let G be a graph containing vertices u, v. Suppose that wi ∈

V (G) and uwi /∈ E(G), vwi /∈ E(G) for i = 1, 2, . . . , k. Let Eu = {uwi, i = 1, 2, . . . , k}

and Ev = {vwi, i = 1, 2, . . . , k}, let Gu = G+Eu and Gv = G+Ev. If (G;u) ≺ (G; v)

and (G;u,wi) � G; v, wi) for i = 1, 2, . . . , k, then EE(Gu) < EE(Gv).

The coalescence of two vertex-disjoint connected graphs G, H denote by G(u) ◦

H(w), where u ∈ V (G) and w ∈ V (H), is obtained by identifying the vertex u of G

with the vertex w of H . A graph is nontrivial if it contains at least two vertices.

Lemma 2.2 ([6]). Let G be a connected graph containing vertices u, v and H be a

nontrivial connected graph containing a vertex w. If (G;u) ≻ (G; v), then EE(G(u) ◦

H(w)) > EE(G(v) ◦H(w)).

3. Graph with maximal Estrada index in C(n, k). In this section, we in-

vestigate the Estrada index of cacti in C(n, k) with n vertices and k cycles, and

characterize the graphs with maximal Estrada index of C(n, k). First, we state some

lemmas which will be used in the subsequent proofs.

Lemma 3.1. Let Y be a nontrivial graph and H be a cycle with u, v ∈ V (H),

w ∈ V (Y ). Let H(u) ◦ Y (w) be the graph obtained from H and Y by identifying u

with w, (see Fig. 3.1), then (H(u) ◦ Y (w); v) ≺ (H(u) ◦ Y (w);u).

Proof. Let u1, u2 be the neighbors of u in H and v1, v2 be the neighbors of v

in H , and let H1 (H2, respectively) be the component of H(u) ◦ Y (w) − {uu1, uu2}

containing v (H(u) ◦ Y (w) − {vv1, vv2} containing u, respectively). Since Y is a

nontrivial graph, then H1 is a proper subgraph of H2, and thus, (H1; v) ≺ (H2;u),

(H1; v, u1) ≺ (H2;u, v1) and (H1; v, u2) ≺ (H2;u, v2).

Let k be a positive integer. Note that

Mk(H(u) ◦ Y (w); v) = Mk(H1; v) +Mk(H(u) ◦ Y (w); v, [u]),

Mk(H(u) ◦ Y (w);u) = Mk(H2;u) +Mk(H(u) ◦ Y (w);u, [v]).

Thus, we need only to show that Mk(H(u) ◦ Y (w); v, [u]) < Mk(H(u) ◦ Y (w);u, [v]).

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 798-808, November 2014



ELA

On the Estrada Index of Cacti 801

We construct a mapping from Wk(H(u)◦Y (w); v, [u]) to Wk(H(u)◦Y (w);u, [v]).

For W ∈ Wk(H(u) ◦ Y (w); v, [u]), we may uniquely decompose W into two sections,

say W1, W2, where W1 is the shortest (v, u)-section of W and W2 is the remaining

(u, v)-section of W . Note that W1 consists of (v, u1)-walk in H1 and a single edge u1u

or a (v, u2)-walk in H1 and a single edge u2u. Then

Mk(H(u) ◦ Y (w); v, [u])

=
∑

k1+k2=k

k1, k2≥1

(Mk1−1(H1; v, u1) +Mk1−1(H1; v, u2))Mk2
(H(u) ◦ Y (w);u, v),

Mk(H(u) ◦ Y (w);u, [v])

=
∑

k1+k2=k

k1, k2≥1

(Mk1−1(H2;u, v1) +Mk1−1(H2;u, v2))Mk2
(H(u) ◦ Y (w); v, u).

By comparing the right-hand sides of the above two equalities, we haveMk(H(u)◦

Y (w); v, [u]) < Mk(H(u) ◦ Y (w);u, [v]).

t t

t

t

t

t

H(u) ◦ Y (w)

HY

u vu1

u2

v1

v2

Fig. 3.1. The graph in Lemma 3.1.

Lemma 3.2. Let Y and Z be two connected graphs and X be a unicycle with

disjoint vertex sets. Let u, v be two vertices on the cycle of X, v0 ∈ V (Z), u0 ∈ V (Y ).

Let G be the graph obtained from X, Y and Z by identifying v with v0 and u with

u0, respectively, and G
′

be the graph obtained from X, Y and Z by identifying three

vertices u, v0 and u0. G
′′

is obtained from X, Y , and Z by identifying three vertices

v, v0 and u0, (see Fig. 3.2). Then EE(G
′

) > EE(G) or EE(G
′′

) > EE(G).

Proof. Let H1 = X(u) ◦ Y (u0) and H2 = X(v) ◦ Z(v0). If (X ;u) ≻ (X ; v), then

by the methods similar to the proof of Lemma 3.1, we have that (H1;u) ≻ (H1; v).

Since G ∼= H1(v) ◦ Z(v0) and G
′ ∼= H1(u) ◦ Z(v0), by Lemma 2.2, we have that

EE(G
′

) > EE(G). Otherwise, if (X ;u) � (X ; v), we have (H2;u) ≺ (H2; v), by the

same reason, we have EE(G
′′

) > EE(G).
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Fig. 3.2. The graph transformation I that increase the value of Estrada index.

Lemma 3.3 ([6]). Let G1 and G2 be connected graphs with u ∈ V (G1) and

v ∈ V (G2). Let G be the graph obtained by joining u ∈ V (G1) with v ∈ V (G2) by

an edge, and G
′

be the graph obtained by identifying u ∈ V (G1) with v ∈ V (G2)

and attaching a pendent vertex to the common vertex. If dG(u), dG(v) ≥ 2, then

EE(G) < EE(G
′

).

Lemma 3.4. Suppose that G is a graph of order n ≥ 6 obtained from a connected

graph J which is not isomorphic to P1 and a cycle Cq = u0u1 · · ·uq−1u0, (q ≥ 4) by

identifying u0 with a vertex u of the graph J , (see Fig. 3.3). Let G
′

= G−uq−1uq−2+

u0uq−2. Then EE(G
′

) > EE(G).

Proof. Let H be the graph obtained from G by deleting the edge uq−1uq−2.

First, we show that (H ;uq−1) ≺ (H ;u0). For x ∈ V (H), let Wk(H ;x) be the set

of closed walks of length k starting at x in H . Then Mk(H ;x) = |Wk(H ;x)|. We

construct a mapping f from Wk(H ;uq−1) to Wk(H ;u0). For W ∈ Wk(H ;uq−1),

we may decompose W into W = (uq−1u0)W
∗(u0uq−1), where W ∗ is a closed walk

of length k − 2 starting at u0 in H . Let f(w) = (u0uq−1)(uq−1u0)W
∗, obviously,

f(W ) ∈ Wk(H ;u0) and f is an injection, Since dH(u0) > dH(uq−1) = 1, we have

M2(H ;uq−1) < M2(H ;u0). Thus, f is an injection but not a surjection for k = 2. It

follows that (H ;uq−1) ≺ (H ;u0). Similarly, we have (H ;uq−2, uq−1) ≺ (H ;uq−2, u0).

It can be seen easily that G = H + uq−1uq−2 and G
′

= H + u0uq−2. By Lemma 2.1,

we have EE(G
′

) > EE(G). This completes the proof.

Let C0(n, k) ∈ C(n, k) be a bundle of k triangles with n− 2k− 1 pendent vertices

attached at the common vertex (see Fig. 3.4).

Now, we turn to the main result of this section. For C(n, k), when k = 0, C(n, 0) is

the sets of all trees, when k = 1, C(n, 1) is the sets of unicyclic graphs. The following
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Fig. 3.3. The graphs transformation II that increase the value of Estrada index.

lemmas gave a sharp upper bound on the Estrada index of trees and unicyclic graphs.

Lemma 3.5 ([7]). Let T be a tree of order n. Then EE(T ) ≤ EE(Sn), equality

holds if and only if T is a star Sn.

Lemma 3.6 ([4]). Let G be a unicyclic graph on n ≥ 4 vertices. Then EE(G) ≤

EE(C0(n, 1)), with equality if and only if G ∼= C0(n, 1).

By Lemma 3.6, for n = 3, 4, 5, C0(n, 1) are the graphs with maximal Estrada

index in unicyclic graphs. Again for n = 5, C0(n, 2) is the unique graph in C(5, 2).

Next, we assume that n ≥ 6 and k ≥ 2.

Theorem 3.7. If n ≥ 6, k ≥ 2, then C0(n, k) is the graph in C(n, k) with

maximal Estrada index.

Proof. Choose G ∈ C(n, k) such that its Estrada index is maximal. We first prove

that the graph G is a bundle. In order to do so we will prove the following claims.

Claim 1. Any two cycles of the graph G have one common vertex.

Proof of Claim 1. Note that any two cycles of G have no edge in common, hence,

assume, on the contrary, that there are two disjoint cycles C1 and C2 in G. Then, we

can choose cycles C1 and C2 such that the path P connects C1 and C2 is the shortest,

assume that the length of P is more than 2. Let P = u1u2 · · ·up, (p ≥ 2), where

u1 ∈ V (C1) and up ∈ V (C2) and ui /∈ V (C1) ∪ V (C2) for i 6= 1, p. We distinguish the

following two possible cases to complete the proof of Claim 1.

Case 1. The path P (connecting C1 and C2) has no common edge with any other

cycle(s) contained in G. By identifying the vertex u1 with u2 and adding a pendent

edge to the common vertex u1 (u2), we get a graph G∗

1. By Lemma 3.3, we have

EE(G∗

1) > EE(G), note that G∗

1 ∈ C(n, k), a contradiction to the choice of G.
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Case 2. The path P (connecting C1 and C2) has common edge with some other

cycle, say C3 contained in G. Note that, by the selection of C1 and C2, it suffices

to consider that u1 is just the common vertex of C3 and C1, whereas up is the only

common vertex of C3 and C2. By identifying the vertex u1 with up, we get a graphG∗

2.

It is not hard to see that G∗

2 ∈ C(n, k). By Lemma 3.2, we have EE(G∗

2) > EE(G),

a contradiction. This completes the proof of Claim 1.

Claim 2. Any three cycles contained in G have exactly one common vertex.

Proof of Claim 2. Assume that in G there exist three cycles, say C1, C2 and

C3 such that they have no vertex in common. By Claim 1, we have in G that

V (C1) ∩ V (C2) 6= ∅, V (C1) ∩ V (C3) 6= ∅ and V (C2) ∩ V (C3) 6= ∅, it is easy to check

that there exist two cycles in G that have common edge(s), a contradiction.

By Claims 1 and 2, we know that all of the cycles contained in G have exactly one

common vertex, say u0. By Claims 1 and 2, we also know that the graph in C(n, k)

having the largest Estrada index is a bundle with some pendent trees attached. Next,

we are to show that if G contains a pendent tree T , then T is attached to the vertex

u0 of G.

Claim 3. Any tree T of graph G is attached to the common vertex u0 of all

cycles of the bundle.

Proof of Claim 3. Assume, to the contrary, that there exist a tree T attached

to a vertex u on a cycle C of G with u 6= u0. Let G∗

3 be the graph obtained from G

by deleting all edges of pendent tree T . For any v ∈ V (G∗

3), by Lemma 3.1, we have

(G∗

3;u0) � (G∗

3; v). It is easy to see that G ∼= G∗

3(u) ◦ T (u). Let G
∗

4
∼= G∗

3(u0) ◦ T (u).

Then by Lemma 2.2, we have EE(G∗

4) > EE(G). Note that G∗

4 ∈ C(n, k), contrary

to the choice of G.

Claim 4. The length of any cycle contained in G is equal to 3.

Proof of Claim 4. Suppose to the contrary that there is a cycle C with length

more than 3. Let C = u1u2 · · ·upu1 and p ≥ 4. Let G∗

5 = G−upup−1+u1up−1. Then

G∗

5 ∈ C(n, k), by Lemma 3.4, we have EE(G∗

5) > EE(G), a contradiction.

Claim 5. Let T be the tree attached to the common vertex u0 of all the cycles

contained in G, then for any u ∈ V (T )\u0, we have d(u) = 1.

Proof of Claim 5. Suppose to the contrary that there exist a vertex u in V (T )\u0

such that d(u) ≥ 2. Let N ∗

T (u) denote the sets of all neighbors of u in T such that

dT (u0, v) = dT (u0, u) + 1 for each v ∈ N ∗

T (u). For convenience, let v0 be in N ∗

T (u).

Then there exist a path P = u0u1 · · ·uv0 of length more than 1 connects u0 and v0,

where u1 be the neighbor of u0 in P . It is obvious that dG(u1) ≥ 2 and dG(u0) ≥ 2.

By identifying the vertex u0 and u1 and appending a pendent edge to the common
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vertex u0 (u1), we get a graph G∗

6. By Lemma 3.3, we have EE(G∗

6) > EE(G). Note

that G∗

6 ∈ C(n, k), contrary to the choice of G. That is to say, all edges outside of

cycles are all pendent edges.

By Claims 1 to 5, we have G ∼= C0(n, k).

s s s s s s

s s s

t
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�
�
�
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✡
✡
✡
✡
✡✡

�
�
�
�
��

Fig. 3.4. The graph C0(n, k) with n vertices and k cycles of length 3.

4. Graph with maximal Estrada index in C(n)k. In this section, we will

characterize the cacti with maximal Estrada index in terms of cut edges. We denote

the set of connected cacti possessing n vertices and k cut edges by C(n)k.

Clearly, we have 0 ≤ k ≤ n − 1 and k 6= n − 2. If k = n − 1, then G is just a

tree. If 0 ≤ k ≤ n− 3, then a graph in C(n)k has cycles and at most ⌊n−k−1
2 ⌋ cycles.

Before proving our main result, we begin with some lemmas and preliminary results.

From (2.1) and noting that Mk(G) is equal to the number of closed walks of

length k in G, we have the following.

Lemma 4.1 ([14]). Let G be a connected graph and e be an edge of its complement.

Then EE(G) < EE(G+ e).

If a cactus has r (≥ 1) cycles, then we will denote these r cycles as Cs1+1, . . . ,

Csr+1 throughout the remainder of this section. We use Cat(Cs1+1, . . . , Csr+1) to

denote a cactus obtained by taking one vertex of each Csj+1, (1 ≤ j ≤ r), and

fusing these vertices together into a new common vertex. If we continue to attach to

this new common vertex k pendent vertices, we obtain a graph, which is denoted by

Cat((Cs1+1, . . . , Csr+1), kP2), (see Fig. 4.1.) for an example.

Lemma 4.2 ([21]). Let G be a connected graph and Cl be a cycle of G with l ≥ 5.

If there exist one vertex (denoted by ul) at Cl of degree two and ul−2 is not adjacent

to u1, then there exists another graph G
′

= G− u1ul + u1ul−2 with a cycle Cl−2 such
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Fig. 4.1. (a) Cat((C3, . . . , C3), kP2) (b) Cat((C3 , . . . , C3, C4), kP2).

that EE(G
′

) > EE(G).

Lemma 4.3. Let Gmax be the graph with the maximal Estrada index in C(n)k.

Then the following hold:

(i) Each cut edge of Gmax is pendent;

(ii) All cycles share exactly one common vertex u0;

(iii) All the pendent edges of Gmax are incident to the common vertex u0 of Gmax.

Proof. (i). Suppose to the contrary that there exists a cut edge e = uv which

is not a pendent edge. Namely, dGmax
(u), dGmax

(v) ≥ 2. By identifying the vertex

u with v and appending a pendent edge to the common vertex u(v), we get a graph

G
′

. By Lemma 3.3, we have EE(G
′

) > EE(Gmax). Note that G
′

∈ C(n)k, contrary

to the choice of Gmax. This establishes (i).

An argument similar to the proof of Theorem 3.7 gives (ii).

(iii). Assume to the contrary that there exist some pendent edges attached to

a vertex u on a cycle C of G with u 6= u0. Let G∗

0 be the graph obtained from

Gmax by deleting all the pendent edges attached to u. By Lemma 3.1, we have that

(G∗

0;u0) ≻ (G∗

0;u). Removing all the attached pendent edges from u to u0, we get a

new graph G∗ ∈ C(n)k, by Lemma 2.2, we have that EE(G∗) > EE(Gmax), contrary

to the choice of Gmax. This establishes (iii).

Lemma 4.4. Let Gmax have maximal Estrada index in C(n)k, where 0 ≤ k ≤ n−3

and k = n− 1. Then Gmax contains no cycles of length greater than or equal to 5.

Proof. We may assume without loss of generality that Gmax has the properties

mentioned in Lemma 4.3. Suppose to the contrary that there exist a cycle Cj =

u0u1 · · ·uj−1u0 in Gmax with length j ≥ 5. To obtain a contradiction, it suffices to

find a graphG ∈ C(n)k such that EE(G) > EE(Gmax). Let G
′

= Gmax−u2u3+u0u3.

By Lemma 4.2, we have EE(G
′

) > EE(Gmax). Let G1 = G
′

+ u0u2. By Lemma 4.1,
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we have EE(G1) > EE(G
′

), hence EE(G1) > EE(Gmax). Note that G1 ∈ C(n)k

and the length of cycle Cj decreased by 2, contrary to the choice of Gmax.

Lemma 4.5. Let Gmax have maximal Estrada index in C(n)k, where 0 ≤ k ≤ n−3

and k = n− 1. Then there is at most one cycle with length 4 in Gmax.

Proof. Suppose to the contrary that Gmax contains two cycles of length 4. Let

C1 = u0u1u2u3u0 and C2 = u0u4u5u6u0, where C1 and C2 share the common vertex

u0. Let G
′

= Gmax−u5u6+u0u5. By Lemma 3.4, we get EE(G
′

) > EE(Gmax). Let

G
′′

= G
′

−u1u2+u0u2. Similarly, we have EE(G
′′

) > EE(G
′

). Let G∗ = G
′′

+u1u6.

By Lemma 4.1, we have EE(G∗) > EE(G
′′

) > EE(Gmax), it is not hard to see that

G∗ ∈ C(n)k, contrary to the choice of Gmax.

The following theorem will determine the cacti with maximum Estrada index

among graphs in C(n)k for all possible values of k.

Theorem 4.6. For graphs in C(n)k (0 ≤ k ≤ n− 3 and k = n− 1), we have:

(i) If k = n− 1, then the cactus Sn has the maximum Estrada index ;

(ii) If 0 ≤ k ≤ n − 3 and n − k is odd, then Cat((C3, C3, . . . , C3), kP2) has the

maximum Estrada index;

(iii) If 0 ≤ k ≤ n− 3 and n− k is even, then Cat((C3, C3, . . . , C3, C4), kP2) has the

maximum Estrada index.

Proof. (i) is evident from Lemma 3.5. Suppose now that 0 ≤ k ≤ n − 3, we

will prove (ii) and (iii). Let Gmax be a graph chosen from C(n)k such that for

any G ∈ C(n)k\Gmax, EE(Gmax) ≥ EE(G). Since Gmax is connected and k ≤

n − 3, it must contain cycles. Assume that Gmax contains r, (1 ≤ r ≤ ⌊n−k−1
2 ⌋)

cycles, say Cs1+1, . . . , Csr+1. By Lemma 4.3 we know that Gmax is isomorphic to

the graph Cat((Cs1+1, . . . , Csr+1), kP2). By Lemmas 4.4 and 4.5, then there exist at

most one cycle with length 4. If r ≥ 2, all the remaining cycles are cycles with length

3 in Gmax. Thus, Gmax has exactly ⌊n−k−1
2 ⌋ cycles, which implies that Gmax

∼=
Cat((C3, . . . , C3), kP2) if n−k is odd and Gmax

∼= Cat((C3, . . . , C3, C4), kP2) if n−k

is even.
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