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EXACT RESULTS FOR PERTURBATION TO TOTAL POSITIVITY

AND TO TOTAL NONSINGULARITY∗

MIRIAM FARBER† , MITCHELL FAULK‡ , CHARLES R. JOHNSON§ , AND EVAN

MARZION¶

Abstract. A study of the maximum number of equal entries in totally positive and totally

nonsingular m-by-n, matrices for small values of m and n, is presented. Equal entries correspond

to entries of the totally nonnegative matrix J that are not changed in producing a TP or TNS

matrix. It is shown that the maximum number of equal entries in a 7-by-7 totally positive matrix is

strictly smaller than that for a 7-by-7 totally non-singular matrix, but, this is the first pair (m,n) for

which these maximum numbers differ. Using point-line geometry in the projective plane, a family

of values for (m, n) for which these maximum numbers differ is presented. Generalization to the

Hadamard core, as well as larger projective planes is also established. Finally, the relationship with

C4 free graphs, along with a method for producing symmetric TP matrices with maximal symmetric

arrangements of equal entries is discussed.

Key words. C4-free graphs, Hadamard core, Matrix perturbation, Projective plane, Total

positivity.
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1. Introduction. An m-by-n matrix is called totally positive (totally nonnega-

tive, totally nonsingular), TP (TN , TNS) if every minor of it is positive (nonnegative,

nonzero). It is known that any TN matrix may be perturbed to a TP matrix, i.e.,

that arbitrarily close to any TN matrix is a TP matrix. However, proofs typically

change all entries. We are interested in the general problem of what are the minimal

collections of entries in a given TN matrix that need be changed (not necessarily a

small change) in order that a TP matrix result. This knowledge would likely be useful

in the study of TP completion problem [4, 5, 13], but it is fundamental and may well

have other applications.

∗Received by the editors on April 18, 2014. Accepted for publication on October 3, 2014. Handling

Editor: Bryan L. Shader. This research was supported in part by NSF grant DMS-0751964.
†Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave,

Cambridge MA 02139, USA (mfarber@mit.edu).
‡Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA

(mfaulk1@nd.edu).
§Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187, USA

(crjohn@wm.edu).
¶Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

(marzion@wisc.edu).

779

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 779-797, November 2014



ELA

780 M. Farber, M. Faulk, C.R. Johnson, and E. Marzion

Here, we consider the special case of what entries of the TN matrix J of all

1’s need be changed to produce a TP matrix, and also the related question of what

entries need be changed to produce a TNS matrix. As we mentioned in the abstract,

this special case is equivalent to finding the maximum number of equal entries in

totally positive (and totally nonsingular) matrices. The asymptotic variant of this

and related questions was discussed in [6] and [8]. This question also has strong

relations to algebraic combinatorial object, such as equal minors in totally nonnegative

Grassmanians, and those relations were presented in [7]. In this paper, we focus upon

exact results about the number and positions of such collections of equal entries, and

together with the works mentioned above we get a more comprehensive understanding

of the collections of equal entries in totally positive matrices. In case of perturbing

TN to TP2, we generalize our work with J to the set of all TN matrices. This study

results in a number of unanticipated and striking combinatorial connections that we

discuss here.

In the next section, we lay the groundwork with necessary technical definitions

and background results. Then in Section 3, we find the number of entries that need be

changed in small cases. Interestingly, in terms of the number (and often the position)

of the entries that need be changed, the TP and TNS perturbation problems are

the same for min{m,n} < 7 (a table is given). However, a difference occurs when

m = n = 7 and this is documented in Section 4. The key is the second order projective

plane. The role of other projective planes is discussed in Section 5. Though the two

numbers of entries are again the same for m = n = 8, they eventually diverge. There

is a natural connection here with TP2 matrices (all 1-by-1 and 2-by-2 minors positive)

and this is discussed in connection with perturbation results in the “Hadamard core”.

The relation of our problem with a classical forbidden subgraph question is discussed

(in Section 7). This, for example, allows construction of symmetric TP matrices with

maximal arrangements of equal entries. The number of such equal entries is often

seen to be a maximum.

2. Notation and previous results. As stated in the introduction, an m-by-n

matrix is called totally positive (totally nonnegative, totally nonsingular), TPm×n

(TNm×n, TNSm×n) if every minor of it is positive (nonnegative, nonzero). Anm-by-n

matrix is called TPk if every submatrix of it of order k-by-k is TP . For an m-by-n real

matrix A, the multiplicity of an entry a in the matrix A is the number of occurrences

of a in A, and we denote by #A the maximal multiplicity of an entry in A.

We define three functions ν, π, and ρ to be

ν(m,n) = max{#A : A ∈ TNSm×n},

π(m,n) = max{#A : A ∈ TPm×n},

ρ(m,n) = max{#A : A ∈ TP2m×n}.
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In the case m = n, we simply write ν(n), π(n) and ρ(n) instead of ν(m,n), π(m,n)

and ρ(m,n), respectively.

A configuration is a (0,1)-matrix that has no 2-by-2 submatrix consisting only of

ones. We denote by Cm×n the set of all m-by-n configurations, and by |A| the number

or weight of ones in a configuration A. We call an m-by-n configuration A maximum

if |A| = ν(m,n).

We will now extend our discussion on perturbation. A (0,1)-matrix is TP2-

perturbable (TP -perturbable) if there is a perturbation of the entries of J , corre-

sponding to the 0’s, that is TP2 (TP ). Note that if A is not TP2-perturbable, then

A is not TP -perturbable. In addition, if A is TP2-perturbable (or TP -perturbable),

then A must be a configuration. Since multiplying by a positive scalar preserves total

positivity and total nonsingularity, π(m,n) (ν(m,n), ρ(m,n)) is the maximum num-

ber of entries of Jm×n that can stay unchanged when perturbing to TP (TNS, TP2).

Thus, by knowing the values of those three functions, we know exactly how many

entries should be perturbed in a matrix.

When dealing with relations between π and ρ, the notion of Hadamard product

of matrices is useful. Let A = [aij ] and B = [bij ] be m-by-n matrices. The Hadamard

product of A and B, denoted by A ◦ B, is the m-by-n matrix C where cij = aijbij .

For an entry-wise nonnegative matrix A, let A(t) denote the tth Hadamard power of

A, that is A(t) = [atij ]. A is called eventually TP if there exists an N > 0 such that

for each t > N , A(t) is TP . The following result is from [4]:

Theorem 2.1. A matrix A is TP2 if and only if A is eventually TP .

Finally, we present some additional results on TNS matrices. Let M be an

m-by-n TNS matrix. Then by definition, for each x ∈ R, the m-by-n (0,1)-matrix

M(x) = [mij(x)] defined by

mij(x) =

{

1 if Mij = x

0 if Mij 6= x

is a configuration. In [6], the following converse is shown.

Theorem 2.2. For each m-by-n configuration A, there is an m-by-n TNS matrix

M and a real number x such that M(x) = A.

3. Values of ν, π and ρ for small n and m. In this section, we introduce

several important relations between ν, π and ρ, and obtain their values for 1 ≤ m,n ≤

6.

The number of 1’s in a configuration has been widely studied [10, 12, 14, 15]. It

is known, asymptotically, that this is O(n3/2) in the n-by-n case [10]. As a corollary
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to Theorem 2.2, we relate ν to the number of 1’s in a configuration.

Corollary 3.1.

ν(m,n) = max{|A| : A ∈ Cm×n}.

The following two corollaries follow directly from the notion of perturbation and

Corollary 3.1.

Corollary 3.2.

π(m,n) = max{|A| : A ∈ Cm×n is TP -perturbable}.

Corollary 3.3.

π(m,n) ≤ ν(m,n) for all m,n.

Finally, using Theorem 2.1 and the fact that Hadamard powering preserves 1’s,

we get:

Corollary 3.4.

π(m,n) = ρ(m,n) for all m,n.

Using corollary 3.1 and [12], we obtain the following table for the values of ν(m,n),

2 ≤ m,n ≤ 8.

2 3 4 5 6 7 8

2 3 4 5 6 7 8 9

3 4 6 7 8 9 10 11

4 5 7 9 10 12 13 14

5 6 8 10 12 14 15 17

6 7 9 12 14 16 18 19

7 8 10 13 15 18 21 22

8 9 11 14 17 19 22 24

We are now ready to prove the following theorem:

Theorem 3.5. For 1 ≤ m,n ≤ 7 such that (m,n) 6= (7, 7), we have ν(m,n) =

π(m,n) = ρ(m,n).
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Proof. If m = 1 or n = 1, then the claim holds, and using Corollary 3.3, it is

enough to show that for 2 ≤ m,n ≤ 6, ν(m,n) = ρ(m,n). We start from the case

m = n = 5. The matrix

B =















x2 1 1 x−4 x−6

1 x−1 1 x−3 x−4

1 1 x2 1 1

x−4 x−3 1 x−1 1

x−6 x−4 1 1 x2















is a TP2 perturbation of J for every x > 1. In order to prove the statement for

2 ≤ m,n ≤ 5, consider the submatrices B[1, 2|1, 2], B[1, 2|1, 2, 3], B[2, 3|1, 2, 3, 4],

B[2, 3|1, 2, 3, 4, 5], B[1, 2, 3|1, 2, 3], B[1, 2, 3|1, 2, 3, 4], B[1, 2, 3|1, 2, 3, 4, 5], B[1, 3, 4, 5|

2, 3, 4, 5], B[1, 3, 4, 5|2, 3, 4, 5] and B[2, 3, 4, 5|1, 2, 3, 4, 5]. In each one of those subma-

trices the number of unchanged entries correspond to the numbers from the table,

and hence, the statement holds for 2 ≤ m,n ≤ 5. For n = m = 6, the matrix

C =



















1 1 1 x−15 x−27 x−32

1 x10 x12 1 x−10 x−12

1 x12 x17 x7 1 1

x−15 1 x7 1 x−6 1

x−27 x−10 1 x−6 x−8 1

x−32 x−12 1 1 1 x9



















is a TP2 perturbation of J for every x > 1. In order to prove the statement for m,n

that satisfy max{m,n} = 6,min{m,n} ≥ 3, consider the submatrices C[1, 3, 4|1, 2, 3,

4, 5, 6], C[1, 3, 4, 6|1, 2, 3, 4, 5, 6] and C[1, 2, 3, 4, 6|1, 2, 3, 4, 5, 6]. For the 2-by-6 case,

consider the matrix

K =

[

1 1 1 1 1 1

1 x x2 x3 x4 x5

]

.

The 2-by-7 can be handled similarly. For the 6-by-7 and 5-by-7 cases, consider the

matrix

M =



















1 1 1 x−23 x−52 x−28 x−61

1 x18 x20 1 x−27 1 x−31

1 x29 x42 x24 1 x28 1

x−32 1 x15 1 x−23 x8 1

x−52 x−18 1 x−14 x−34 1 1

x−61 x−22 1 1 1 x37 x42



















,

and take M and M [1, 2, 3, 4, 5|1, 2, 3, 4, 5, 6, 7]. For the rest of the cases, consider the
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matrix

V =









x58 x27 x22 1 1 1 x−67

x28 1 1 x−21 x−19 1 x−65

1 x−27 1 x−41 x−36 1 x−63

1 1 x31 1 x17 x57 1









.

and V [2, 3, 4|1, 2, 3, 4, 5, 6, 7].

As a consequence of Theorem 3.5, we get that for every pair (m,n) such that

1 ≤ m,n ≤ 6, there exists a maximum configuration that is TP2 and TP perturbable.

This surprising property is not true in the case m = n = 7 as we will see in the next

section. Before continuing to the next section, we will make a remark about “small

perturbation”. We say that a configuration A enables small TP2 (TP ) perturbation

if for any ǫ > 0, we can perturb J through A to a TP2 (TP ) matrix such that each

perturbed entry differs from 1 by at most ǫ. It is clear that for 1 ≤ m,n ≤ 6, all

the configurations that were used in the proof enabled small TP2 perturbation. In

case of small TP perturbation, the situation is completely different. In fact, through

exhaustive check, we get that the configuration that corresponds to matrix B in

the proof (and all its sub configurations) enable small TP perturbation. Thus, for

1 ≤ m,n ≤ 5, there is no difference between small perturbation to TP2 and small

perturbation to TP . However, C (a 6-by-6 matrix) does not posses this property.

This of course doesn’t mean that there is no configuration of order 6 that enables

small TP perturbation. We conclude this section with the following conjecture:

Conjecture 3.6. Let (m,n) be a pair for which there exists a configuration A

that enables small TP2 perturbation. Then there exists a configuration P for which

|P | = |A| that enables small TP perturbation.

4. The smallest case for which ν(m,n) 6= π(m,n). In this section, our aim

is to show that no maximum 7-by-7 configuration is TP2 perturbable. We begin this

section with several definitions. We say that a configuration A is completely full if the

inner product of any two rows and columns in A is 1. Recall the following theorem

from [14]

Theorem 4.1. Let N = n2 + n+ 1. Let S be a square grid of N2 points which

are arrayed in N rows and N columns. Let k = (n + 1)(n2 + n + 1). If there is a

set T of k nodes in the grid no four of which form the vertices of a square with sides

parallel to the sides of S then each row and each column of S contains exactly n+ 1

nodes of T .

Using this theorem and the table for ν, it is easy to show that any 7-by-7 maximum

configuration is completely full and has 3 ones in each row and column. In fact, this

is the projective plane of order 2, which is also called the Fano plane.
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Let A ∈ Cm×n be a TP2-perturbable configuration. Denote by M the TP2 matrix

that is obtained from J using A. If A contains a submatrix of the form

[

0 1

1 1

]

or

[

1 1

1 0

]

,(Type I)

then M has a corresponding submatrix of the form

[

a 1

1 1

]

or

[

1 1

1 a

]

,

where a > 1. On the other hand, if A contains a submatrix of the form

[

1 0

1 1

]

or

[

1 1

0 1

]

,(Type II)

then M has a corresponding submatrix of the form

[

1 a

1 1

]

or

[

1 1

a 1

]

,

where a < 1. The following definition is motivated by this observation. Let A ∈ Cm×n

be a TP2-perturbable configuration and let aij be a zero entry of A. We say that aij
is forced up (forced down) if aij is the zero entry in a submatrix of the form (Type I)

( (Type II)). Note that no entry of A can be forced both up and down.

Lemma 4.2. Let A ∈ C7×7 be maximum and TP2-perturbable, and let Ci (Ri)

denote the ith column (row) of A. Then the ones in C1, C7, R1 and R7 must be

consecutive.

Proof. Without loss of generality, suppose that the ones in C1 are not consecutive.

Since A is completely full, it contains one of the following submatrices





1 0 1

aj1 1 1

1 1 0



 or





1 1 0

aj1 1 1

1 0 1



 .

where aj1 = 0. In either case, a1j is forced both up and down, showing that A is not

TP2-perturbable.

We are now ready to prove our main result in this section

Theorem 4.3. Let A ∈ C7×7 be maximum. Then A is not TP2-perturbable.
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Proof. By Lemma 4.2, there are five options for the first column of A:

v1 =























1

1

1

0

0

0

0























, v2 =























0

1

1

1

0

0

0























, v3 =























0

0

1

1

1

0

0























, v4 =























0

0

0

1

1

1

0























, v5 =























0

0

0

0

1

1

1























.

By symmetry, we have three cases:

1. The first column is v1 or v5.

2. The first column is v2 or v4.

3. The first column is v3.

We start from Case 1. Without loss of generality, assume that the first column

of A is v1. Then by Lemma 4.2, we get that the first row and column of A are of the

form























1 1 1 0 0 0 0

1

1

0

0

0

0























.

In order to avoid having a 2-by-2 submatrix of ones, we must have























1 1 1 0 0 0 0

1 0 0

1 0 0

0

0

0

0























.
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Thus, by Lemma 4.2, the only way to fill in the last row and column is























1 1 1 0 0 0 0

1 0 0 0

1 0 0 1

0 1

0 1

0 0

0 0 1 1 1 0 0























.(4.1)

Note that the last column in this case is v3. Thus, from symmetry, we don’t need

to treat Case 3 separately. Now, we wish to fill in the (4,2) and (4,3) entries of the

matrix in 4.1. There are two cases:

Case 1a: The (4,2) entry is a one, and hence, the (4, 3) entry is a zero. Thus, A looks

like:























1 1 1 0 0 0 0

1 0 0 0

1 0 0 1

0 1 0 1

0 1

0 0

0 0 1 1 1 0 0























.

Now, the (5,2) entry cannot be a one, or else columns 2 and 7 would share two

ones. Furthermore, each column and row must contain three ones. In addition, A is

completely full, and hence, it must be of the form























1 1 1 0 0 0 0

1 0 0 0

1 0 0 1

0 1 0 1

0 0 1 1 1

0 1 0 1 0

0 0 1 1 1 0 0























.

The (5,2) entry is forced both up and down and we get a contradiction.

Case 1b: The (4,2) entry is zero. Similarly to Case 1a, we can deduce that A is of
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the form























1 1 1 0 0 0 0

1 0 0 0

1 0 0 1

0 0 1 1

0 1 0 1

0 1 0 0

0 0 1 1 1 0 0























,

which is again a contradiction (the (4,2) entry is forced both up and down).

Consider Case 2, and assume without loss of generality that the first column of

A is v2. Hence, A must be of the form























0 0

1 0

1 0

1 1

0 1

0 1

0 0























.

By Lemma 4.2, there are only two ways to fill in the first and the last row:























0 1 1 1 0 0 0

1 0

1 0

1 1

0 1

0 1

0 0 0 1 1 1 0























or























0 0 0 1 1 1 0

1 0

1 0

1 1

0 1

0 1

0 1 1 1 0 0 0























.

We start from the first case. Since A is completely full, it must look like























0 1 1 1 0 0 0

1 ∗ ∗ 0 0

1 0 0

1 0 0 1 0 0 1

0 0 1

0 0 1

0 0 0 1 1 1 0






















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and exactly one of the starred entries equals to 1. Thus, the (2, 4) entry is forced both

up and down, and we get a contradiction. Consider now the second case. Similarly

to the first case, A must look like























0 0 0 1 1 1 0

1 0 0

1 0 0

1 0 0 1 0 0 1

0 0 1

0 0 1

0 1 1 1 0 0 0























.

Since A is completely full, each one of the four “empty squares” must be either
[

1 0

0 1

]

or

[

0 1

1 0

]

. It is easy to see that the only option in which no entry is

forced both up and down is























0 0 0 1 1 1 0

1 1 0 0 0 1 0

1 0 1 0 1 0 0

1 0 0 1 0 0 1

0 0 1 0 1 0 1

0 1 0 0 0 1 1

0 1 1 1 0 0 0























.

Since it contains a 2-by-2 submatrix of 1’s, we get a contradiction.

Corollary 4.4. π(7, 7) < ν(7, 7). In particular, π(7, 7) = 20 whereas ν(7, 7) =

21.

Proof. The first statement follows from Theorem 4.3. The second part follows

from the table of ν, and the following matrix























1 1 1 x−23 x−52 x−28 x−61

1 x18 x20 1 x−27 1 x−31

1 x29 x42 x24 1 x28 1

x−32 1 x15 1 x−23 x8 1

x−52 x−18 1 x−14 x−34 1 1

x−37 1 x19 x17 1 x35 x37

x−61 x−22 1 1 1 x37 x42























.

Although π(7, 7) < ν(7, 7), surprisingly, we still have π(8, 8) = ν(8, 8). This can
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be demonstrated using the matrix

U =



























x58 x27 x49 x22 1 1 1 x−67

x28 1 x24 1 x−21 x−19 1 x−65

1 x−27 1 x−23 x−41 x−36 1 x−63

1 x−9 x20 1 x−16 1 x37 x−23

1 1 x31 x13 1 x17 x57 1

x−21 x−19 x15 1 x−12 x8 x55 1

x−42 x−37 1 x−14 x−23 1 x53 1

x−47 x−39 1 1 1 x24 x80 x29



























.

From [6] it is known that asymptotically π(n, n) behaves like O(n4/3), but we

don’t from which point π(n, n) < ν(n, n) for all n.

5. Certain projective planes are not TP -perturbable. A projective plane

of order n, denoted Pn(P,L, I) consists of two sets, points and lines, with an incidence

relation between them satisfying the following conditions:

1. Any two distinct points are incident with one line.

2. Any two distinct lines contain exactly one point in common.

3. There is a set of four distinct points, no three of which are on the same line.

4. There is a line which contains exactly n+ 1 points.

From these axioms of the projective plane, it is easy to deduce that the number

of points is n2+n+1. This is also the number of lines. Furthermore, one can deduce

that the total number of incidences in the plane is (n+ 1)(n2 + n+ 1).

Let Pn be a projective plane of order n. Set N = n2 + n+ 1 and let {pi}
N
i=1 and

{li}
N
i=1 denote the set of points and lines, respectively. The incidence matrix of the

projective plane Pn is the N ×N matrix A = [aij ] defined by

aij =

{

1, pi is incident with lj

0, otherwise
.

The following is from [14].

Theorem 5.1. Suppose a projective plane of order n exists and let N = n2 +

n + 1. Let A be an incidence matrix of a projective plane of order n. Then A is a

configuration. Moreover, the matrix A satisfies |A| = ν(N).

In [9], it is mentioned that if n is a power of 2, then there is a projective plane

of order n which contains as a subplane the Fano plane. Therefore, the following
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corollary is an immediate consequence of Theorem 5.1.

Corollary 5.2. For every n that is power of 2, there exists a maximum n-by-n

configuration that is not TP -perturbable.

6. A generalization to the Hadamard core. In our discussion on perturbing

TN matrices to TP matrices, we have concentrated on the matrix J . In this section,

we extend our work to a wider family of TN matrices- matrices in the Hadamard core

that have positive entries. The Hadamard core of the m-by-n TN matrices is the set

CTNm,n := {A ∈ TN : B ∈ TN =⇒ A ◦B ∈ TN}.(6.1)

The following lemma and theorem can be found in [4].

Lemma 6.1. An m-by-n TN matrix A is in the Hadamard core if and only if

every submatrix of A is in the corresponding Hadamard core.

Theorem 6.2. Let A ∈ CTNm,n, and let B be an n-by-n TN matrix. Then

det(A ◦B) ≥ detB

n
∏

i=1

aii.(6.2)

Using the lemma and theorem mentioned above, we prove the following corollary:

Corollary 6.3. Let A ∈ CTNm,n be a matrix with positive entries, and let P

be an m-by-n TP matrix. Then A ◦ P is TP .

Proof. Let A′ be a square submatrix of A and let P ′ be the corresponding square

submatrix of P . By Lemma 6.1, A′ is in the Hadamard core, and since A is entrywise

positive, the diagonal entries of A′ are positive as well. P is TP , and hence, det(P ′) >

0. Applying Theorem 6.2, we get det(A′ ◦ P ′) > 0, and hence, A ◦ P is TP .

As an immediate consequence, we get the following:

Corollary 6.4. Let A ∈ CTNm,n be a matrix with positive entries, and let P

be a TP perturbation for J . Then A ◦ P is a TP perturbation for A.

Thus, the number and positionings of entries in J that must be perturbed in order

to obtain a TP matrix stays the same when we choose any matrix in the Hadamard

core instead of J . With regards to TP2 perturbability, we now extend our work with J

to the whole class of TN matrices with positive entries. Let A and B be two matrices

with positive entries such that A is TN and B is TP2. It is easy to show that A ◦B

is TP2. Thus, we obtain the following corollary:

Corollary 6.5. Let A be an m-by-n TN matrix with positive entries and let P
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be a TP2 J-perturbed matrix. Then A ◦P is a TP2 perturbation of A that is obtained

using the same configuration.

7. Graphs without four cycles. Let G be a graph that does not contain C4

as a subgraph. We call such G a C4-free graph. For such G, the adjacency matrix

of G, A(G), is a configuration. Here, we deal with maximum C4-free graphs (i.e.,

C4-free graphs with a maximum number of edges). These have been widely studied

[11, 3, 2]. Since the adjacency matrix of a graph is symmetric, the set of adjacency

matrices of C4-free graphs of order n form a proper subset of Cn×n. Moreover, if G

is maximum C4-free, it does not imply that A(G) is maximum configuration (note

that |A(G)| = 2|E(G)|). However, during our work on this subject, we observed a

method that, in many cases, enabled us to obtain a maximum configuration from a

maximum C4-free graph. We describe here the method, and show how to obtain an

n-by-n maximum configuration from a maximum C4-free graph for all 1 ≤ n ≤ 20.

There has been related work in this area; it can be found in [1].

We start by introducing some notation:

t(n) = max{|E(G)| : |V (G)| = n and G is a C4-free graph},(7.1)

T (n) = {G : |V (G)| = n, |E(G)| = t(n), and G is a C4-free graph}.(7.2)

It is known ([2]) that asymptotically,

t(n) = Θ(ν(n)).(7.3)

However, Table 1 shows that in many cases the adjacency matrix of a maximum

C4-free graph is not a maximum configuration. Given a C4-free graph G, one of the

ways to increase the number of ones in A(G) = [aij ] is to place some ones on the

diagonal (where there were 0’s). Note that if the vertex vi belongs to a three-cycle in

G, then aii must stay zero (since if we change aii to 1 the resulting matrix will not

be a configuration). In addition, if {vi, vj} ∈ E(G) and we set ajj = 1, then aii must

stay zero. As long as both of these conditions are satisfied, we can continue to add

ones on the diagonal. Thus, for G ∈ T (n) we look for maximum collections of vertices

that can be changed to 1 under the constraints just mentioned. By applying this

argument to all of the graphs in T (n), we obtain configurations with various weights.

We then select the subcollection of those configurations with the maximum weight.

These are then candidates for maximum configurations.

By using the previous process for graphs on n vertices, 2 ≤ n ≤ 21, we managed

to obtain maximum configurations for all of them. As a corollary to our findings, we
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get that there are symmetric maximum configurations for each square size up to and

including 21-by-21. Before describing the configurations, we need further notation.

A pair of vertices u, v in a graph G is hot if there exists a vertex w such that

{u,w}, {v, w} ∈ E(G). The pair u, v is cold if it is not hot. A set S of vertices of

G is cold if all pairs of vertices in S are cold. Let G ∈ T (n). Let {Vi(G)}i∈I denote

a collection of sets, in which each Vi(G) is a set of vertices such that no vertex is a

member of a three-cycle and no vertex is adjacent to another vertex in the set. Define

H(G) = max{|Vi(G)| : i ∈ I}.(7.4)

That is, H(G) is the maximum number of diagonal entries that can be changed to 1

in the matrix A(G). Define

k(n) = max{H(G) : G ∈ T (n)},(7.5)

And let K(n) to be

K(n) = {G : G ∈ T (n) and H(G) = k(n)}.(7.6)

Note that using this notations we have ν(n, n) ≥ 2t(n) + k(n), and hence, for

a fixed n, 2 ≤ n ≤ 21, it is enough to show the process described above results in

ν(n, n) = 2t(n) + k(n).

We now describe the process of obtaining maximum configurations for 2 ≤ n ≤ 21.

We follow closely the ideas presented in [3] in order to construct maximum C4-free

graphs.

Before we prove our result, however, we require some notation that is useful in

the proof.

Theorem 7.1. For n satisfying 2 ≤ n ≤ 21, we have

ν(n, n) = 2t(n) + k(n).(7.7)

The values of ν(n, n), t(n), and k(n) that make this equality hold are given in

Table 7.1 (the values of t(n) and ν(n, n) can be found in [3]).

Proof. The graphs for n = 2, 3, 4 are easily constructed and given in Figure 7.1

below. The dark vertices are the ones whose corresponding diagonal entries can be

changed to one. Note also that the number of dark vertices is k(n).

Using the results from [3], the graphs in K(5), K(6), and K(7) are easily found

and are displayed in Figure 7.2.
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Table 7.1

n ν(n, n) t(n) k(n) n ν(n, n) t(n) k(n) n ν(n, n) t(n) k(n)

2 3 1 1 9 29 13 3 16 67 33 1

3 6 3 0 10 34 16 2 17 74 36 2

4 9 4 1 11 39 18 3 18 81 39 3

5 12 6 0 12 45 21 3 19 88 42 4

6 16 7 2 13 52 24 4 20 96 46 4

7 21 9 3 14 56 27 2 21 105 50 5

8 24 11 2 15 60 30 0

Fig. 7.1. The graph from each K(2), K(3), and K(4), respectively.

Fig. 7.2. The graph in each K(5), K(6), and K(7), respectively.

The set K(8) is slightly special, since it has three non-isomorphic graphs. These

graphs are displayed in Figure 7.3. Note that set of three graphs in K(8) gives rise to

a set of three maximum configurations of size 8× 8, no two of which are permutation

equivalent to each other.

For n larger than 8, we no longer picture all of the graphs in K(n). It suffices to

give only one example of a graph in each K(n), thereby verifying the theorem in case

n. Thus, we have given an example of a graph in K(n) for n satisfying 9 ≤ n ≤ 14 in

the figures below.

Consider now the case n = 15. From [3], we know that there exists a graph in

K(15) that has five disjoint sets of three cold vertices. This graph (L15) presented in

Figure 7.6. We have denoted the different sets by the capital letters A - E.

Consider now the case n = 16. In order to provide a construction, we take L15

and add a new vertex. Note that since t(16) = t(15) + 3, this new vertex must be
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Fig. 7.3. The three graphs in K(8).

Fig. 7.4. A graph from each K(9), K(10), and K(11), respectively.

Fig. 7.5. A graph from each K(12), K(13), and K(14), respectively.

Fig. 7.6. A graph L15 from K(15). The five sets of three cold vertices are grouped by letter.

of degree 3, so we attach it to some set of three cold vertices. We can color this

new vertex, since it is attached to a set of cold vertices, none of which are adjacent.

Therefore, we obtain a graph in K(16) (Figure 7.7).
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Fig. 7.7. A graph from K(16). Each lettered group represents a collection of three cold vertices

from L15.

The graphs in K(17) through K(21) are constructed in a similar manner to the

graph in Figure 7.7. We have included the rest of the graphs in the same notational

style.

Fig. 7.8. A graph from K(17), K(18), and K(19), respectively.

Fig. 7.9. A graph from K(20) and one from K(21).

The proof is complete.

This theorem suggests the following conjecture:

Conjecture 7.2. For all n ≥ 2, there is a symmetric matrix C ∈ Cn×n.

Finally, we pose a conjecture regarding symmetric perturbation:

Conjecture 7.3. For all n ≥ 2, there exists a symmetric configuration A for

which |A| = π(n, n).
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