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THE COMBINATORIAL INVERSE EIGENVALUE PROBLEM II:

ALL CASES FOR SMALL GRAPHS∗

WAYNE BARRETT† , CURTIS NELSON‡ , JOHN SINKOVIC§ , AND TIANYI YANG¶

Abstract. Let G be a simple undirected graph on n vertices and let S(G) be the class of real

symmetric n × n matrices whose nonzero off-diagonal entries correspond to the edges of G. Given

2n − 1 real numbers λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn, and a vertex v of G, the

question is addressed of whether or not there exists A ∈ S(G) with eigenvalues λ1, . . . , λn such that

A(v) has eigenvalues µ1, . . . , µn−1, where A(v) denotes the matrix with vth row and column deleted.

A complete solution can be given for the path on n vertices with v a pendant vertex and also for

the star on n vertices with v the dominating vertex. The main result is a complete solution to this

"λ, µ" problem for all connected graphs on 4 vertices.
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1. Introduction. Let G = (V,E) be a simple undirected graph with vertex set

V = {1, 2, . . . , n}. Let S(G) be the set of all real symmetric n× n matrices A = [aij ]

such that for i 6= j, aij 6= 0 if and only if ij ∈ E. There is no condition on the diagonal

entries of A. A fundamental and compelling open problem in combinatorial matrix

theory is the inverse eigenvalue problem for graphs. Two of the most actively studied

versions of this problem are:

I. Given a connected graph G on n vertices and a list of real numbers Λ =

λ1, λ2, . . . , λn, is there an A ∈ S(G) with eigenvalues Λ?

Some work on this problem can be found in [1], [2], [3], [6], and [9] (p. 316). We

will designate this problem as the Λ problem. If there is an A ∈ S(G) with eigenvalues

Λ, we say Λ is realizable for G.
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II. Given a connected graph G on n vertices, a vertex v of G, and two lists of real

numbers

Λ = λ1, λ2, . . . , λn, U = µ1, µ2, . . . , µn−1,

satisfying the interlacing inequalities

(1.1) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn,

is there an A ∈ S(G) such that A has eigenvalues Λ and A(v) has eigenvalues U?

Some work on this problem appears in [1], [3], [5], [6], [9] and much earlier in

the context of tridiagonal matrices in [7], [8]. We will designate this problem as the

(Λ, U)-problem. If there is an A ∈ S(G) such that A has eigenvalues Λ and A(v) has

eigenvalues U , we say (Λ, U) is realizable for (G, v).

In [3], we gave a constructive proof of the following result for small graphs.

Theorem 1.1. Let G be a connected graph on 2 ≤ n ≤ 4 vertices, let v be a

vertex of G, and let λ1 > µ1 > λ2 > µ2 > · · · > λn−1 > µn−1 > λn. Then there exists

A ∈ S(G) such that the eigenvalues of A are λ1, . . . , λn and the eigenvalues of A(v)

are µ1, . . . , µn−1.

Bryan Shader and his student Keivan Monfared in [12] have shown by means of

the Nilpotent-Jacobian method that the above theorem is true for all n.

We will make use of the concepts of the minimum rank and the positive semidef-

inite minimum rank of a graph defined by

mr(G) = min{rankA : A ∈ S(G)}

and

mr+(G) = min{rankA : A ∈ S(G) and A is positive semidefinite},

respectively.

2. (Pn, pendant) and (Sn, dominating). The path Pn is the connected graph

on n vertices with n−2 vertices of degree 2 and 2 pendant vertices (vertices of degree

1). The star Sn is the connected graph on n vertices with one vertex of degree n− 1

and n− 1 pendant vertices. We call the vertex of degree n− 1 the dominating vertex.

It is well-known that mr(Pn) = n − 1 and that mr(Sn) = 2. In this section, we

present complete solutions to the (Λ, U)-problem for the cases (Pn, v), v a pendant

vertex of Pn and (Sn, v), v the dominating vertex of Sn in terms of inequalities among

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 742-778, October 2014



ELA

744 W. Barrett, C. Nelson, J. Sinkovic, and R. Yang

the entries in the lists Λ, U . For Pn, we need the following fundamental result about

minimum rank matrices found in [13].

Lemma 2.1. Let G be a graph on n vertices and let A ∈ S(G) such that rankA =

mr(G). Then for any i ∈ {1, 2, . . . , n}, rankA(i) = rankA or rankA(i) = rankA− 2;

i.e., rankA(i) = rankA− 1 is impossible.

Theorem 2.2. ((Pn, v), v pendant). Let Λ = λ1, . . . , λn and U = µ1, . . . , µn−1

be lists of real numbers satisfying the interlacing inequalities, and let v be a pendant

vertex of the graph Pn. Then (Λ, U) is realizable for (Pn, v) if and only if

(2.1) λ1 > µ1 > λ2 > µ2 > · · · > λn−1 > µn−1 > λn.

Proof. The reverse implication is well-known and follows from results of Hald

[7] and Hochstadt [8] in the 1970’s. It is also a special case of Duarte’s theorem [5]

which states that for any tree T and any vertex v of T , (Λ, U) is realizable for (T, v)

whenever all λi and µi are distinct.

The forward implication also follows from prior results, for example Proposition

3.1 in [10]. We give a simpler proof via the concept of minimum rank.

Suppose A ∈ S(Pn) has eigenvalues λ1, . . . , λn and A(v), the matrix obtained

by deleting the vth row and column of A, has eigenvalues µ1, . . . , µn−1 satisfying the

interlacing inequalities (1.1).

Case 1. Two or more equality signs occur consecutively. Then either λi = λi+1 or

µi = µi+1 for some i. If λi = λi+1, then A− λiIn ∈ S(Pn) and

n− 2 ≥ rank(A− λiIn) ≥ mr(Pn) = n− 1,

a contradiction. Likewise, if µi = µi+1 for some i, then A(v)−µiIn−1 ∈ S(Pn−1) and

n− 3 ≥ rank(A(v) − µiIn−1) ≥ mr(Pn−1) = n− 2,

a contradiction. So this case cannot occur.

Case 2. Suppose that an equality sign occurs somewhere in the interlacing inequalities

(1.1). Then we have either µi−1 > λi = µi > λi+1 or λi−1 > µi−1 = λi > µi+1 for

some i. Then rank(A − λiIn) = n − 1 = mr(Pn) and rank(A(v) − λiIn−1) = n − 2.

This contradicts Lemma 2.1 which requires that rank(A(v)− λiIn−1) be either n− 1

or n− 3. So this case cannot occur and 2.1 must hold.

We now turn to the case (Sn, v), v dominating. A solution to this case is given

in Theorem 11 of [9], which also applies to generalized stars. But we wish to give

a solution in terms of inequalities among the entries in the lists Λ, U , so we include
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a proof tailored to that end. We expect that the tools we employ can be applied to

other cases of the inverse eigenvalue problem.

We will make use of fundamental results about positive semidefinite matrices and

positive semidefinite minimum rank, and a restriction on what (Λ, U) is realizable for

any (T, v) in which T is a tree.

The following is a well known result for positive semidefinite matrices.

Lemma 2.3. (Column inclusion). If A =

[

B y

yT c

]

is positive semidefinite, then

y is in the column space of B.

The following result of van der Holst [15] determines the positive semidefinite

minimum rank of a tree.

Lemma 2.4. Let G be a graph on n vertices. Then mr+(G) = n− 1 if and only

if G is a tree.

Lemma 2.5. Let Λ = λ1, λ2, . . . , λn and U = µ1, µ2, . . . , µn−1 be lists of real

numbers satisfying the interlacing inequalities (1.1), let T be a tree on n vertices and

let v be a vertex of T . If (Λ, U) is realizable for (T, v), then λ1 > µ1 and µn−1 > λn.

Proof. Let A ∈ S(T ) such that A has eigenvalues λ1, λ2, . . . , λn and A(v) has

eigenvalues µ1, µ2, . . . , µn−1. Since we may shift the eigenvalues of A by subtracting

λnI, we will assume that λn = 0. Thus, A is positive semidefinite. Since mr+(T ) =

n− 1, rankA = n− 1. Assume the last row and column is labeled by v and let A =
[

B x

xT a

]

. By column inclusion, x is in the column space of B. Thus, x = By for some

vector y. Since rankA = mr+(T ), A =

[

B By

yTB yTBy

]

and rankB = rankA = n− 1.

Thus, B is invertible and µn−1 > 0 = λn. Similarly λ1 > µ1.

We also need a result of Mirsky [11] which we cite in the form given by Boley-

Golub [4].

Lemma 2.6. Given 2n − 1 real numbers λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥
µn−1 ≥ λn such that µi 6= µj for all i 6= j, there exists an n × n bordered matrix

A =

[

a bT

b M

]

with eigenvalues λ1, . . . , λn where M = diag(µ1, µ2, . . . , µn−1) and
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b2i = −

n
∏

j=1

(µi − λj)

n−1
∏

j=1

j 6=i

(µi − µj)

, 1 ≤ i ≤ n− 1.

Theorem 2.7. ((Sn, v), v dominating). Let n ≥ 3, Λ = λ1, . . . , λn and U =

µ1, . . . , µn−1 be lists of real numbers satisfying the interlacing inequalities (1.1), and

let v be the dominating vertex of Sn. Then (Λ, U) is realizable for (Sn, v) if and only

if λ1 > µ1, µn−1 > λn, and for every k ∈ {1, 2, . . . , n − 2}, either µk > λk+1 > µk+1

or else µk = λk+1 = µk+1.

Proof. We prove the reverse implication by induction on n. Assume n = 3,

λ1 > µ1, and µ2 > λ3.

If µ1 > λ2 > µ2, then by Lemma 2.6 there exists a bordered matrix A =

[

a bT

b M

]

with eigenvalues λ1, λ2, and λ3 such that D = diag{µ1, µ2}. Since all λi’s and µi’s are

distinct, then bi 6= 0 for all i. Thus, A ∈ S(S3) and satisfies the spectral conditions

for the both the λi’s and the µi’s.

If µ1 = λ2 = µ2, then let A =





r s s

s λ2 0

s 0 λ2



 where r = λ1 + λ3 − λ2 and

s =
√

(1/2)(λ1 − λ2)(λ2 − λ3). Since λ1 > µ1 = λ2 and λ2 = µ2 > λ3, s 6= 0. Thus,

A ∈ S(S3) and the eigenvalues of A(1) are µ1 and µ2. Let C = A − λ2I3. Then C

is singular, trC = λ1 + λ3 − 2λ2 and the sum of the 2 × 2 principal minors of C is

(λ1 − λ2)(λ3 − λ2). Thus, the eigenvalues of C are λ1 − λ2, λ3 − λ2, and 0, so A has

eigenvalues λ1, λ2, and λ3.

Let λ1 ≥ µ2 ≥ λ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn be given such that λ1 > µ1,

µn−1 > λn and for every k ∈ {1, 2, . . . , n − 2}, either µk > λk+1 > µk+1 or µk =

λk+1 = µk+1. If µk > λk+1 > µk+1 for every k ∈ {1, 2, . . . , n − 2}, then we can

construct the desired matrix using Lemma 2.6. So assume that µk = λk+1 = µk+1 for

some k. Deleting λk+1 and µk+1 from our list of 2n− 1 numbers, we can apply the

induction hypothesis to the 2n − 3 remaining numbers. Thus, there exists a matrix

B ∈ S(Sn−1) with eigenvalues λ1, . . . , λk, λk+2, . . . , λn such that B(v) has eigenvalues

µ1, . . . , µk, µk+2, . . . , µn−1 where v is the dominating vertex of Sn−1.
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With an appropriate labeling of the Sn−1, let B =

[

D x

xt y

]

such that D =

diag{µk, . . . , µ1, µk+2, . . . , µn−1}. Let A′ = [µk+1] ⊕ B. Note that since µk =

λk+1 = µk+1, the eigenvalues of A′ are λ1, . . . , λn and the eigenvalues of A′(n) are

µ1, . . . , µn−1. Let Q2 be a 2× 2 orthogonal matrix with no zero entries and let Q =

Q2⊕In−2. Note that Q is an n×n orthogonal matrix. Let A = QTA′Q. Since Q is an

orthogonal matrix, the eigenvalues of A are λ1, . . . , λn. Since a′11 = µk = µk+1 = a′22,

a11 = a22 = µk. Further, a12 = a21 = 0. Since Q2 is an orthogonal matrix with no

zero entries, a1n = an1 6= 0. Thus, A ∈ S(Sn).

Now for the forward implication. Note that Sn is a tree. Thus, by Lemma 2.5,

λ1 > µ1 and µn−1 > λn. Now suppose by way of contradiction that there exists

A ∈ S(Sn), such that µk > λk+1 = µk+1 for some k ∈ {1, 2, . . . , n − 2}. Label

the vertices of Sn so that the dominating vertex corresponds to vertex 1. Let q be

the multiplicity of λk+1. Note that the multiplicity of µk+1 is at most q by the

interlacing condition. Consider B = A − λk+1In. Since the multiplicity of λk+1

is q, rankB = n − q. Since the multiplicity of µk+1 is at most q, there are at

most q zero entries on the diagonal of B(1). Thus, rankB(1) ≥ n − 1 − q. Let

B =

[

a11 − λk+1 wT

w B(1)

]

. Since B is also in S(Sn) and the first row and column

of B correspond to the dominating vertex of Sn, all the entries of w are nonzero.

Since there is at least one zero on the diagonal of B(1), w is not a linear combination

of the columns of B(1). Similarly, the first row of B is not a linear combination of

the other rows of B. Thus, rankB = rankB(1) + 2 ≥ n − q + 1 contradicting that

rankB = n − q. We arrive at a similar contradiction if µk = λk+1 > µk+1 for some

k ∈ {1, 2, . . . , n − 2}. Therefore, either µk = λk+1 = µk+1 or µk > λk+1 > µk+1 for

every k ∈ {1, 2, . . . , n− 2}.

We conclude this section with an extreme case of Theorem 2.7 for which it is

possible to give an explicit form for all matrices achieving the desired eigenvalues.

Theorem 2.8. Let Λ = λ1, λ2, . . . , λn and U = µ1, µ2, . . . µn−1 be lists of real

numbers with

λ1 > µ1 = λ2 = µ2 = · · · = λn−1 = µn−1 > λn.

Then A =

[

a bT

b λ2In−1

]

has eigenvalues Λ if and only if

a = λ1 + λn − λ2 and ‖b‖ =
√

(λ1 − λ2)(λ2 − λn).

Proof. The matrix A has eigenvalues Λ if and only if A − λ2In has eigenvalues

λ1 − λ2, λn − λ2, and 0 with multiplicity n − 2 or equivalently if the characteristic
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polynomial of A − λ2In is tn−2[t2 − (λ1 + λn − 2λ2)t + (λ1 − λ2)(λn − λ2)]. This is

equivalent to tr(A−λ2In) = λ1 +λn − 2λ2 and the sum of the 2× 2 principal minors

of A − λ2In is (λ1 − λ2)(λn − λ2). But since tr(A − λ2In) = a − λ2 and the sum of

the 2× 2 principal minors of A−λ2In is −‖b‖2, this is equivalent to a = λ1 +λn −λ2

and ‖b‖ =
√

(λ1 − λ2)(λ2 − λn).

Note that under the hypothesis of Theorem 2.8, in order for (Λ, U) to be realizable

for (G, v), G connected, G− v can have no edges and G must be Sn.

Observation 2.9. If Λ = λ1, . . . , λn, U = µ1, . . . , µn−1, and µ1 = µ2 = · · · =
µn−1, then (Λ, U) is realizable for (G, v) with G connected only if G = Sn and v is

the dominating vertex of Sn.

3. The (Λ, U)-problem for general graphs. We now resume our discussion in

the introduction for any connected graph G. We ask whether or not (Λ, U) satisfying

(1.1) is realizable for (G, v), v a vertex of G. The phrase "all cases" in the title of

the paper means that for each ≥ in (1.1) we consider the two possibilities = and

>. This means that there are 22n−2 cases to consider. We can reduce this number

considerably by means of the following results, the first of which is a slightly modified

statement of Lemma 1.2 in [14].

Lemma 3.1. Let A be an n × n real symmetric matrix with eigenvalues Λ =

λ1, λ2, . . . , λn and suppose that B = A(1) has eigenvalues U = µ1, µ2, . . . , µn−1. If U

is a sublist of Λ, then A = a11 ⊕B.

Corollary 3.2. Let G be a graph with vertex v. Assume the matrix A ∈ S(G)

has eigenvalues λ1, . . . , λn and A(v) has eigenvalues µ1, . . . , µn−1. If U is a sublist of

Λ, then v is an isolated vertex of G.

We now explain how Lemma 3.1 rules out a substantial number of these cases.

Let an, n ≥ 2, be the number of cases in (1.1) for which U is a sublist of Λ,

and let bn, n ≥ 2, be the number of cases in (1.1) for which U is a sublist of Λ and

λ1 > µ1. For n = 2, we have the four cases

λ1 = µ1 = λ2, λ1 > µ1 = λ2, λ1 = µ1 > λ2, λ1 > µ1 > λ2,

so a2 = 3 and b2 = 1.

Now assume n ≥ 3. If λ1 = µ1, then for either case, µ1 = λ2, µ1 > λ2, there are

an−1 ways that µ2, . . . , µn can be a sublist of λ2, . . . , λn giving 2an−1 cases in which

U is a sublist of Λ. And if λ1 > µ1, there are bn ways that U can be a sublist of Λ.

Therefore, an = 2an−1 + bn.

We can explicitly determine bn. Since λ1 > µ1 and U is a sublist of Λ, µi = λi+1

for i = 1, . . . , n−1. But for each λi ≥ µi, i = 2, . . . , n−1, the ≥ can be either = or >.
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So if λ1 > µ1, there are exactly 2n−2 cases in which U is a sublist of Λ; i.e., bn = 2n−2.

We now have an = 2an−1 + 2n−2 and a2 = 3. Solving this difference equation by the

standard method, we have an = (n + 1)2n−2. So the number of realizable cases in

(1.1) when G is connected is at most 22n−2 − (n+ 1)2n−2.

We can reduce the number of cases that must be considered yet further. We begin

with an example for n = 3. Suppose:

• G is a connected graph on 3 vertices,

• v is a vertex of G,

• λ1 > µ1 > λ2 = µ2 = λ3,

• and Λ = λ1, λ2, λ3 and U = µ1, µ2 are realizable for (G, v).

Then −Λ = −λ3,−λ2,−λ1 and −U = −µ2,−µ1 are realizable for (G, v).

To see this, if A is a matrix for which (Λ, U) is realizable for (G, v), then −A is a

matrix for which (−Λ,−U) is realizable for (G, v), and −λ3 = −µ2 = −λ2 > −µ2 >

−λ1.

Thus, when considering the (Λ, U)-problem for n = 3, it suffices to consider only

one of the strings >>== and ==>>.

In general, for an arbitrary positive integer n, we use the notation

f = f1 f2 . . . f2n−2,

where each fi is either = or >, and call this a (2n− 2)–EI string or EI string, where

EI is an abbreviation for equality/inequality. Given

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn

let f1 f2 . . . f2n−2 be the unique EI string such that

λ1 f1 µ1 f2 λ2 f3 µ2 f4 . . . f2n−3 µn−1 f2n−2 λn.

Then (−λn) f2n−2 (−µn−1) f2n−3 . . . (−µ2) f3 (−λ2) f2 (−µ1) f1 (−λ1). By the same

argument as above, it suffices to consider only one of the EI strings:

f1 f2 . . . f2n−1 f2n−2 f2n−2 f2n−1 . . . f2 f1

when considering the (Λ, U)-problem for a pair (G, v), where G is a connected graph

on n vertices. We call f2n−2 f2n−2 . . . f2 f1 the reversal of f1 f2 . . . f2n−1 f2n−2 and

the pair of EI strings a symmetric pair. If an EI string f and its reversal are the same

we call f a palindromic EI string.

We are now ready to carry out our main goal, to identify all realizable EI strings

for connected graphs on 4 vertices.
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4. The connected 4-vertex graphs. We now restrict to the inverse eigenvalue

problem:

Given a connected graph G on 4 vertices, a vertex v of G, and two lists of real numbers

Λ = λ1, λ2, λ3, λ4, U = µ1, µ2, µ3,

satisfying the interlacing inequalities

(4.1) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ µ3 ≥ λ4

is there a matrix A ∈ S(G) such that λ1, λ2, λ3, λ4 are the eigenvalues of A and

µ1, µ2, µ3 are the eigenvalues of A(v)?

As discussed in section 3, there are 22n−2 = 64 possible EI strings for (4.1) and

22n−2− (n+1)2n−2 = 44 strings for which U is not a sublist of Λ. It is clear that the

number of palindromic EI strings for n = 4 is 23 = 8. For two of these, ======,

=>==>=, U is a sublist of Λ. Thus, 6 of the 44 strings for which U is not a

sublist of Λ are palindromic leaving 38 which are not. These 38 EI strings constitute

19 symmetric pairs, and as explained at the end of the last section, we need consider

only one of each pair. Therefore, it suffices to consider 19 + 6 = 25 potentially

realizable EI strings. By Observation 2.9, the string >====> is only realizable

for G = S4 and v the vertex of degree 3. Since this case has been solved for all n

in Theorem 2.7, we can disregard it. Finally, we know from Theorem 1.1 that the

string >>>>>> is always realizable, so we also need not consider it. This leaves

23 potentially realizable EI strings to investigate, which are:

1. > > = = = = 13. > > > = > =

2. > = = > = = 14. > > = > > =

3. = = > > = = 15. > = > > > =

4. > > > = = = 16. = > > > > =

5. > > = > = = 17. > > > = = >

6. > > = = > = 18. > > = > = >

7. > > = = = > 19. > = > > = >

8. > = > > = = 20. > > = = > >

9. > = > = = > 21. > > > > > =

10. > = = > > = 22. > > > > = >

11. = > > > = = 23. > > > = > >

12. > > > > = =

It remains to consider the 23 strings above for each connected graph G on 4

vertices and each vertex v of G. Since we treated the case Kn for all n in [3], and

(Pn, v) and (Sn, v) for a pendant and dominating vertex, respectively in section 2, it

remains to deal with the following cases;
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• (P4, v), v degree 2

• (S4, v), v pendant

• (paw, v), v pendant

• (paw, v), v degree 2

• (paw, v), v dominating

• (diamond, v), v degree 2

• (diamond, v), v dominating

• (C4, v)

4.1. The case (P4, v), v degree 2.

We first consider which of the 23 EI strings are possible. If λi = λi+1 for some i,

then 2 ≥ rank(A − λi) ≥ mr(P4) = 3, a contradiction. Consequently, the EI strings

1–8, 11–12, 20 cannot occur. If a solitary = sign occurs in an EI string (one not

preceded nor followed by an = sign), we have λi = µj for j = i− 1 or i with the other

two µk distinct from µj . Then rank(A−λiI) = 3 = mr(P4) while rank(A(v)−λiI) = 2

contradicting Lemma 2.1. Therefore the EI strings 9–10, 13–16, 18–19, 21–23 also

cannot occur. This leaves only EI string 17 and we now show that any (Λ, U) satisfying

17 is realizable. By Theorem 2.7, there exists

A =









µ1 0 0 a

0 µ2 0 b

0 0 µ3 c

a b c d









∈ S(S4)

such that Λ is the list of eigenvalues of A. Let Q2 =
1√

a2 + b2

[

b a

−a b

]

, Q = Q2⊕I2,

and B = QTAQ. Since µ1 > µ2,

B =









r s 0 0

s t 0
√
a2 + b2

0 0 µ3 c

0
√
a2 + b2 c d









where s 6= 0. Then B ∈ S(P4), Λ is the list of eigenvalues of B, and U is the list

of eigenvalues of B(4) where 4 is a vertex of degree 2. Thus, (Λ, U) is realizable for

(P4, v), v degree 2.

Incorporating the case of distinct λi, µi and the reversal of EI string 17 we have

the following theorem.
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Theorem 4.1. ((P4, v), v degree 2). Given any Λ = λ1, λ2, λ3, λ4 and U =

µ1, µ2, µ3 satisfying the interlacing inequalities, and v a vertex of P4 of degree 2, then

(Λ, U) is realizable for (P4, v) if and only if either

• λ1 > µ1 > λ2 > µ2 = λ3 = µ3 > λ4,

• λ1 > µ1 = λ2 = µ2 > λ3 > µ3 > λ4,

or

• λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4.

This completes the two cases involving P4.

Before proceeding with the cases involving the other graphs, we consider (Λ, U)

corresponding to EI string 1; i.e.,

(4.2) λ1 > µ1 > λ2 = µ2 = λ3 = µ3 = λ4.

If A is any 4× 4 matrix with eigenvalues Λ, rank(A− λ2I) = 1. But it is well known

that each of S4, the paw, C4, and the diamond have minimum rank 2. Thus if G is

any of these graphs, (4.2) is not realizable for (G, v), so we need no longer consider

this string.

4.2. The case (S4, v), v pendant.

Theorem 4.2. ((S4, v), v pendant). Given any Λ = λ1, λ2, λ3, λ4 and U =

µ1, µ2, µ3 satisfying the interlacing inequalities, and v a pendant vertex of S4, then

(Λ, U) is realizable for (S4, v) if and only if either

• λ1 > µ1 > λ2 > µ2 = λ3 > µ3 > λ4 and

µ2 =
µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)
,

• λ1 > µ1 > λ2 = µ2 > λ3 > µ3 > λ4 and

µ2 =
µ1µ3(λ1 + λ3 + λ4 − µ1 − µ3)− λ1λ3λ4

(λ1 − µ1)(µ1 − λ3) + (λ1 − µ1)(µ3 − λ4) + (λ3 − µ3)(µ3 − λ4)
,

• λ1 > µ1 > λ2 = µ2 = λ3 > µ3 > λ4 and λ1 + λ4 = µ1 + µ3,

or

• λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4.

Remark: On examination of the list of 23 EI strings near the beginning of Section

4, (Λ, U) is realizable for (S4, v), v pendant if and only if either all (Λ, U) are distinct or

else (Λ, U) satisfies either the string 20, 23 or its reversal with additional restrictions.

Proof. (⇐) The sufficiency of the last case follows from Theorem 1.1.
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As for the first two cases, we need only consider the first one because they are a

symmetric pair. Let λ1 > µ1 > λ2 > µ2 = λ3 > µ3 > λ4. By Theorem 2.2, there

exists C =





a x 0

x b y

0 y c



, xy 6= 0, such that λ1, λ2, λ4 are the eigenvalues of C and µ1, µ3

are the eigenvalues of

[

a x

x b

]

. We show in the Appendix that in this circumstance,

a is determined by λ1, λ2, λ4, µ1, and µ3. By Theorem A.1 in the Appendix and the

condition in Theorem 4.2,

a =
µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)
= µ2.

Let

B =









µ2 0 0 0

0 a x 0

0 x b y

0 0 y c









.

Then B has eigenvalues Λ and B(4) has eigenvalues U . Let P =

[

p −q

q p

]

be an

orthogonal matrix with pq 6= 0. Then A = (PT ⊕ I2)B(P ⊕ I2) ∈ S(S4), A has

eigenvalues Λ and A(4) has eigenvalues U .

If λ1 > µ1 > λ2 = µ2 = λ3 > µ3 > λ4, we choose C =





a x 0

x b y

0 y c



, xy 6= 0

such that λ1, µ2, λ4 are the eigenvalues of C and µ1, µ3 are the eigenvalues of

[

a x

x b

]

.

Applying Theorem A.1 again to determine a, a calculation then shows that the simpler

condition λ1 + λ4 = µ1 + µ3 forces a = µ2. The rest of the proof is the same as the

previous case.

(⇒) Assume

A =









d1 0 a 0

0 d2 b 0

a b d3 c

0 0 c d4









∈ S(S4)

such that Λ is the list of eigenvalues of A and U is the list of eigenvalues of A(4).

Furthermore, assume there is at least one equality among Λ and U . We will show that

equality can only occur around µ2 and that the restriction on µ2 must be satisfied.
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Let Q2 and Q be as in the case (P4, v), v degree 2. Then

B = QTAQ =









r s 0 0

s t
√
a2 + b2 0

0
√
a2 + b2 d3 c

0 0 c d4









.

By Theorem 2.2, we must have s = 0. Then

QT
2

[

d1 0

0 d2

]

Q2 =

[

r 0

0 t

]

which implies d1 = d2, r = t, and

B =









r 0 0 0

0 r
√
a2 + b2 0

0
√
a2 + b2 d3 c

0 0 c d4









.

Moreover, Λ is the list of eigenvalues of B and U is the list of eigenvalues of B(4).

Note that the r in the first row and column implies r ∈ Λ and r ∈ U .

If r = µ3, then µ1, µ2 are the eigenvalues of

[

r
√
a2 + b2√

a2 + b2 d3

]

, which means

r > µ2. However, µ2 ≥ µ3 = r, a contradiction.

Similarly, a contradiction arises if r = µ1. Thus, r = µ2.

Case 1. r = µ2 = λ3. Since B(1) =





r
√
a2 + b2 0√

a2 + b2 d3 c

0 c d4



 ∈ S(P3), by

Theorems 2.2 and A.1, we have λ1 > µ1 > λ2 > µ3 > λ4 and

µ2 = r =
µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)

as desired.

Case 2. r = µ2 = λ2. Interchanging the roles of λ2 and λ3 we have λ1 > µ1 >

λ3 > µ3 > λ4 and

µ2 = r =
µ1µ3(λ1 + λ3 + λ4 − µ1 − µ3)− λ1λ3λ4

(λ1 − µ1)(µ1 − λ3) + (λ1 − µ1)(µ3 − λ4) + (λ3 − µ3)(µ3 − λ4)
.

Case 3. r = µ2 = λ2 = λ3. Then the condition in either Case 1 or Case 2 becomes

µ2[(λ1 − µ1)(µ1 − µ2) + (λ1 − µ1)(µ3 − λ4) + (µ2 − µ3)(µ3 − λ4)]
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= µ1µ3(λ1 + µ2 + λ4 − µ1 − µ3)− λ1µ2λ4

which can be rewritten

(λ1 + λ4 − µ1 − µ3)(µ1 − µ2)(µ2 − µ3) = 0,

so λ1 + λ4 = µ1 + µ3.

4.3. The case (paw, v), v pendant.

Theorem 4.3. ((paw, v), v pendant). Given any Λ = λ1, λ2, λ3, λ4 and U =

µ1, µ2, µ3 satisfying the interlacing inequalities, and v a pendant vertex of paw, then

(Λ, U) is realizable for (paw, v) if and only if either λ1 > µ1 > λ2 > µ2 > λ3 >

µ3 > λ4 or else Λ can be partitioned into α1, α2, α3, γ and U can be partitioned into

β1, β2, γ such that

• α1 > β1 > α2 > β2 > α3,

• if µ1 > λ2 = γ = µ2 > λ3, then

µ2 6= µ1µ3(λ1 + λ3 + λ4 − µ1 − µ3)− λ1λ3λ4

(λ1 − µ1)(µ1 − λ3) + (λ1 − µ1)(µ3 − λ4) + (λ3 − µ3)(µ3 − λ4)
,

• if λ2 > µ2 = γ = λ3 > µ3, then

µ2 6= µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)
,

• if λ2 = µ2 = λ3, then λ1 + λ4 6= µ1 + µ3.

Remark: On examination of the list of 23 EI strings near the beginning of Section

4, the partitioning is possible for exactly any (Λ, U) satisfying one of the strings 12,

17, 20–23 or its reversal, where 20, 23 require some additional restrictions on the

specific value of the λ’s and µ’s.

Proof. (⇐) The case λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4 follows from Theorem

1.1. As for the other cases, we use the following construction. Since

α1 > β1 > α2 > β2 > α3, by Theorem 2.2, there exists C =





a x 0

x b y

0 y c



,xy 6= 0, such

that α1, α2, α3 are the eigenvalues of C and β1, β2 are the eigenvalues of

[

a x

x b

]

. Let

B =









γ 0 0 0

0 a x 0

0 x b y

0 0 y c









.
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Then B has eigenvalues Λ and B(4) has eigenvalues U .

We claim γ 6= a:

If γ = µ3, then β1 = µ1 and β2 = µ2. Thus, γ = µ3 ≤ µ2 < a.

If γ = µ1, then β1 = µ2 and β2 = µ3. Thus, γ = µ1 ≥ µ2 > a.

If µ1 > λ2 = γ = µ2 > λ3, then by hypothesis and Theorem A.1,

γ = µ2 6= µ1µ3(λ1 + λ3 + λ4 − µ1 − µ3)− λ1λ3λ4

(λ1 − µ1)(µ1 − λ3) + (λ1 − µ1)(µ3 − λ4) + (λ3 − µ3)(µ3 − λ4)
= a.

Similarly if λ2 > µ2 = γ = λ3 > µ3, then

γ = µ2 6= µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)
= a.

If γ = λ2 = µ2 = λ3, then essentially the same calculation as Case 3 of the

previous theorem shows that λ1 + λ4 6= µ1 + µ3 implies

γ = µ2 6= µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)
= a.

Let P =

[

p −q

q p

]

be an orthogonal matrix with pq 6= 0. Then

A = (PT ⊕ I2)B(P ⊕ I2) =









r s qx 0

s t px 0

qx px b y

0 0 y c









∈ S(paw)

since s 6= 0. Moreover, A has eigenvalues Λ and A(4) has eigenvalues U .

(⇒) Assume

A =









d1 f a 0

f d2 b 0

a b d3 c

0 0 c d4









∈ S(paw)

such that Λ is the list of eigenvalues of A and U is the list of eigenvalues of A(4).

Furthermore, assume there is at least one equality among Λ and U . We will show

that it must be the case that Λ and U can be partitioned in the desired way.
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Let Q2 and Q be as in the case (P4, v), v degree 2. Then

B = QTAQ =









r s 0 0

s t
√
a2 + b2 0

0
√
a2 + b2 d3 c

0 0 c d4









.

By Theorem 2.2, we must have s = 0. Then

QT
2

[

d1 f

f d2

]

Q2 =

[

r 0

0 t

]

which implies r 6= t, and

B =









r 0 0 0

0 t
√
a2 + b2 0

0
√
a2 + b2 d3 c

0 0 c d4









.

Moreover, Λ is the list of eigenvalues of B and U is the list of eigenvalues of B(4).

Note that the r in the first row and column implies r ∈ Λ and r ∈ U . Thus we may

write Λ = r, α1, α2, α3, U = r, β1, β2, where Λ′ = α1, α2, α3 is the list of eigenvalues of

B(1) and U ′ = β1, β2 is the list of eigenvalues of

[

t
√
a2 + b2√

a2 + b2 d3

]

. By Theorem

2.2, α1 > β1 > α2 > β2 > α3.

In addition, if r = µ2 = λ3, since B(1) =





t
√
a2 + b2 0√

a2 + b2 d3 c

0 c d4



 ∈ S(P3),

by Theorem A.1, we have

µ2 = r 6= t =
µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)

as desired.

Similarly, if r = µ2 = λ2, we have

µ2 = r 6= t =
µ1µ3(λ1 + λ3 + λ4 − µ1 − µ3)− λ1λ3λ4

(λ1 − µ1)(µ1 − λ3) + (λ1 − µ1)(µ3 − λ4) + (λ3 − µ3)(µ3 − λ4)
.

If λ2 = µ2 = λ3, the previous condition simplifies to λ1 + λ4 6= µ1 + µ3.
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4.4. The case (paw, v), v degree 2.

We begin by ruling out one of the possible EI strings and its reversal.

Observation 4.4. Given Λ = λ1, λ2, λ3, λ4 and U = µ1, µ2, µ3 satisfying either

(4.3) λ1 > µ1 > λ2 > µ2 = λ3 = µ3 > λ4 or λ1 > µ1 = λ2 = µ2 > λ3 > µ3 > λ4,

then (Λ, U) is not realizable for (paw, v), v degree 2.

Proof. The eigenvalues of paw−v ∼= P3 are µ1, µ2, µ3, so it follows from Theorem

2.2 that they must be distinct.

Lemma 4.5. Suppose Λ = λ1, λ2, λ3, λ4 and U = µ1, µ2, µ3 satisfy the interlacing

inequalities but do not satisfy either condition in (4.3). Let v be a degree 2 vertex of

paw and w the pendant vertex of paw. Then (Λ, U) is realizable for (paw, v) if and

only if (Λ, U) is realizable for (paw,w)

Proof. If λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4, the conclusion is true by Theorem

1.1, so assume there is at least one equality among Λ and U .

(⇐) Assume (Λ, U) is realizable for (paw,w), where w is the pendant vertex.

Then there exists

A =









d1 f a 0

f d2 b c

a b d3 0

0 c 0 d4









∈ S(paw)

such that Λ is the list of eigenvalues of A and U is the list of eigenvalues of A(4).

Let Q2 and Q be as in the case (P4, v), v degree 2. Then

B = QTAQ =

























r s 0
−ac√
a2 + b2

s t
√
a2 + b2

bc√
a2 + b2

0
√
a2 + b2 d3 0

−ac√
a2 + b2

bc√
a2 + b2

0 d4

























.

Assume s = 0. Then B ∈ S(P4) and (Λ, U) is realizable for (P4, v), v degree

2. Since there is at least one equality among Λ and U , by Theorem 4.1, either

λ1 > µ1 > λ2 > µ2 = λ3 = µ3 > λ4 or λ1 > µ1 = λ2 = µ2 > λ3 > µ3 > λ4, which is

condition (4.3), a contradiction.
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Thus, s 6= 0. So B ∈ S(paw) and (Λ, U) is realizable for (paw, v), v degree 2.

(⇒) Assume (Λ, U) is realizable for (paw, v), where v is a degree 2 vertex. Then

there exists

A =









d1 f 0 a

f d2 c b

0 c d3 0

a b 0 d4









∈ S(paw)

such that Λ is the list of eigenvalues of A and U is the list of eigenvalues of A(4). Let

Q2 and Q be as in the case (P4, v), v degree 2. Then

B = QTAQ =

























r s
−ac√
a2 + b2

0

s t
bc√

a2 + b2

√
a2 + b2

−ac√
a2 + b2

bc√
a2 + b2

d3 0

0
√
a2 + b2 0 d4

























.

Assume s = 0. Then B ∈ S(P4) and (Λ, U) is realizable for (P4, v), v pendant.

Since there is at least one equality among Λ and U this is impossible by Theorem 2.2.

Thus, s 6= 0. So B ∈ S(paw) and (Λ, U) is realizable for (paw, v), v pendant.

Combining Lemma 4.5 and Theorem 4.3 we have the following theorem:

Theorem 4.6. ((paw, v), v degree 2). Given any Λ = λ1, λ2, λ3, λ4 and U =

µ1, µ2, µ3 satisfying the interlacing inequalities, and v a degree 2 vertex of paw, then

(Λ, U) is realizable for (paw, v) if and only if either λ1 > µ1 > λ2 > µ2 > λ3 >

µ3 > λ4 or else Λ can be partitioned into α1, α2, α3, γ and U can be partitioned into

β1, β2, γ such that

• α1 > β1 > α2 > β2 > α3,

• if λ2 = γ = µ2 > λ3, then µ1 > λ2 and

µ2 6= µ1µ3(λ1 + λ3 + λ4 − µ1 − µ3)− λ1λ3λ4

(λ1 − µ1)(µ1 − λ3) + (λ1 − µ1)(µ3 − λ4) + (λ3 − µ3)(µ3 − λ4)
,

• if λ2 > µ2 = γ = λ3, then λ3 > µ3 and

µ2 6= µ1µ3(λ1 + λ2 + λ4 − µ1 − µ3)− λ1λ2λ4

(λ1 − µ1)(µ1 − λ2) + (λ1 − µ1)(µ3 − λ4) + (λ2 − µ3)(µ3 − λ4)
,

• if λ2 = µ2 = λ3, then λ1 + λ4 6= µ1 + µ3.
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Remark: On examination of the list of 23 EI strings near the beginning of Section

4, the partitioning is possible for exactly any (Λ, U) satisfying one of the strings 12,

20–23 or its reversal, where 20, 23 would require some additional restrictions on the

specific value of the λ’s and µ’s.

4.5. The case (paw, v), v dominating.

Theorem 4.7. ((paw, v), v dominating). Given any Λ = λ1, λ2, λ3, λ4 and

U = µ1, µ2, µ3 satisfying the interlacing inequalities, and v the dominating vertex of

paw, then (Λ, U) is realizable for (paw, v) if and only if either λ1 > µ1 > λ2 > µ2 >

λ3 > µ3 > λ4 or else Λ can be partitioned into α1, α2, α3, γ and U can be partitioned

into β1, β2, γ such that either

• α1 > β1 > α2 > β2 > α3, (with no restriction on γ)

• α1 > β1 = α2 = β2 > α3, γ 6= α2.

Remark: On examination of the list of 23 EI strings near the beginning of Section

4, the partitioning is possible for exactly any (Λ, U) satisfying one of the strings 2, 9,

10, 12, 17, 20–23 or its reversal.

Proof. The case λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4 follows from Theorem 1.1 so

assume there is at least one equality among the Λ and U .

(⇐) Case 1: α1 > β1 > α2 > β2 > α3.

By Theorem 2.7, there exists C1 =





β1 0 r

0 β2 t

r t α1 + α2 + α3 − β1 − β2



, rt 6= 0,

such that α1, α2, α3 are the eigenvalues of C1. Then

C2 =





β2 0 t

0 β1 r

t r α1 + α2 + α3 − β1 − β2





has the same eigenvalues.

Choose C to be either C1 or C2 so that c11 6= γ, and let B =

[

γ 0T

0 C

]

.

Then B has eigenvalues α1, α2, α3, γ and B(4) has eigenvalues β1, β2, γ.

Let

[

c −s

s c

]

be an orthogonal matrix with cs 6= 0, let Q =

[

c −s

s c

]

⊕ I2, and

let A = QTBQ. Then A ∈ S(paw) with 4 the dominating vertex, A has eigenvalues

α1, α2, α3, γ and A(4) has eigenvalues β1, β2, γ.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 742-778, October 2014



ELA

The Combinatorial Inverse Eigenvalue Problem II: All Cases For Small Graphs 761

Case 2: α1 > β1 = α2 = β2 > α3, γ 6= α2.

By Theorem 2.7, there exists C =





β1 0 r

0 β2 t

r t α1 + α2 + α3 − β1 − β2



, rt 6= 0,

such that α1, α2, α3 are the eigenvalues of C.

Let B =

[

γ 0T

0 C

]

, then B has eigenvalues α1, α2, α3, γ and B(4) has eigenvalues

β1, β2, γ.

Let

[

c −s

s c

]

be an orthogonal matrix with cs 6= 0. Let Q =

[

c −s

s c

]

⊕ I2, and

let A = QTBQ.

Since γ 6= α2 = β1, A ∈ S(paw) with 4 the dominating vertex, A has eigenvalues

α1, α2, α3, γ and A(4) has eigenvalues β1, β2, γ.

(⇒) Assume

A =









d1 f 0 a

f d2 0 b

0 0 d3 c

a b c d4









∈ S(paw)

such that Λ is the list of eigenvalues of A and U is the list of eigenvalues of A(4). We

will show that (Λ, U) can be partitioned as indicated in the theorem.

Let Q2 and Q be as in the case (P4, v), v degree 2. Then

B = QTAQ =









r s 0 0

s t 0
√
a2 + b2

0 0 d3 c

0
√
a2 + b2 c d4









and Λ is the list of eigenvalues of B and U is the list of eigenvalues of B(4).

By Theorem 4.1, if s 6= 0, since there is at least one equality among Λ and U , it

must be the case that either

λ1 > µ1 > λ2 > µ2 = λ3 = µ3 > λ4 or λ1 > µ1 = λ2 = µ2 > λ3 > µ3 > λ4.

In the former case letting γ = µ2 = λ3, α1 = λ1, α2 = λ2, α3 = λ4, β1 = µ1, β2 = µ3,

we have the desired partition. The latter case is similar.

If s = 0, then Λ = α1, α2, α3, r and U = β1, β2, r, where α1, α2, α3 are the

eigenvalues of B(1) and β1, β2 are the eigenvalues of

[

t 0

0 d3

]

. Then by applying
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Theorem 2.7 to B(1), we must have either α1 > β1 = α2 = β2 > α3 or α1 > β1 >

α2 > β2 > α3.

If α1 > β1 > α2 > β2 > α3, by letting γ = r, we have the desired partition.

If α1 > β1 = α2 = β2 > α3, by the contrapositive of Observation 2.9, we have

r 6= β1 = α2. by letting γ = r, we have the desired partition.

4.6. The case (diamond, v), v degree 2.

Lemma 4.8. Let α1, α2, β1, β2, γ be real numbers with α1 > α2 and β1 > γ > β2,

and let v be a degree 2 vertex of the diamond. Then there exists A ∈ S(diamond)

such that Λ = α1, α2, β1, β2 are the eigenvalues of A and U = {α1, α2, γ} are the

eigenvalues of A(v).

Proof. Choose τ ∈ (α2, α1), τ 6= γ and a, b, with b 6= 0, such that

[

a b

b τ

]

has

eigenvalues α1, α2. Also choose d, h, with h 6= 0, such that

[

γ h

h d

]

has eigenvalues

β1, β2. Let

B =









a b 0 0

b τ 0 0

0 0 γ h

0 0 h d









.

Then B has eigenvalues α1, α2, β1, β2 and B(4) has eigenvalues α1, α2, γ. Let

[

c −s

s c

]

be an orthogonal matrix with cs 6= 0, and let

A =









1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1









B









1 0 0 0

0 c s 0

0 −s c 0

0 0 0 1









=









a cb sb 0

cb c2τ + s2γ cs(τ − γ) −sh

sb cs(τ − γ) c2γ + s2τ ch

0 −sh ch d









.

Since τ 6= γ and c, s, b, h 6= 0, we have A ∈ S(diamond) with 4 a degree 2 vertex.

Then A has eigenvalues α1, α2, β1, β2 and

A(4) =





1 0 0

0 c −s

0 s c



B(4)





1 0 0

0 c s

0 −s c





has eigenvalues α1, α2, γ.

Lemma 4.9. Let α1, α2, α3, β1, β2, γ be real numbers with α1 > β1 > α2 >

β2 > α3, and let v be a degree 2 vertex of the diamond. Then there exists A ∈
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S(diamond) such that Λ = α1, α2, α3, γ are the eigenvalues of A and U = β1, β2, γ

are the eigenvalues of A(v).

Proof. Case 1: γ /∈ (β2, β1).

By Theorem 2.2, choose a, b, d, r, t where rt 6= 0, such that





a r t

r b 0

t 0 d



 has eigen-

values α1, α2, α3 and

[

a r

r b

]

has eigenvalues β1, β2; necessarily β1 > a > β2. Let

B =









γ 0 0 0

0 a r t

0 r b 0

0 t 0 d









.

Then B has eigenvalues α1, α2, α3, γ and B(4) has eigenvalues β1, β2, γ. Since a ∈

(β2, β1) and γ /∈ (β2, β1), a 6= γ. Let

[

c −s

s c

]

be an orthogonal matrix with cs 6= 0,

and let

A =









c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1









B









c s 0 0

−s c 0 0

0 0 1 0

0 0 0 1









=









c2γ + s2a cs(γ − a) −sr −st

cs(γ − a) s2γ + c2a cr ct

−sr cr b 0

−st ct 0 d









.

Since γ 6= a and c, s, r, t 6= 0, we have A ∈ S(diamond) with 4 a degree 2 vertex.

Then A has eigenvalues α1, α2, α3, γ and

A(4) =





c −s 0

s c 0

0 0 1



B(4)





c s 0

−s c 0

0 0 1





has eigenvalues β1, β2, γ.

Case 2: γ ∈ (β2, β1).

Then we have α1 > β1 > α2, γ > β2 > α3.

Subcase 1: γ 6= β1β2(α1 + α2 + α3 − β1 − β2)− α1α2α3

(α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3)
.

We apply Theorem 4.3 by identifying β1, γ, β2 with µ1, µ2, µ3, respectively, α1

with λ1, α3 with λ4, and α2 with either λ2 or λ3 depending on γ. It follows that
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there exists

B =









d1 a b 0

a d2 f g

b f d3 0

0 g 0 d4









∈ S(paw)

such that the eigenvalues of B are Λ = α1, α2, α3, γ and the eigenvalues of B(4) are

U = β1, β2, γ.

Then there exists an orthogonal matrix

[

c −s

s c

]

such that

A =









c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1









B









c s 0 0

−s c 0 0

0 0 1 0

0 0 0 1









∈ S(diamond),

where the eigenvalues of A are Λ and the eigenvalues of A(4) are U .

Subcase 2: γ =
β1β2(α1 + α2 + α3 − β1 − β2)− α1α2α3

(α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3)
.

Making the same identification as in Subcase 1, and applying Theorem 4.2, there

exists

B =









d1 a 0 0

a d2 b f

0 b d3 0

0 f 0 d4









∈ S(S4)

such that the eigenvalues of B are Λ = α1, α2, α3, γ and the eigenvalues of B(4) are

U = β1, β2, γ.

Then there exists orthogonal matrix

[

c −s

s c

]

such that

A =









c −s 0 0

s c 0 0

0 0 1 0

0 0 0 1









B









c s 0 0

−s c 0 0

0 0 1 0

0 0 0 1









∈ S(diamond),

where the eigenvalues of A are Λ and the eigenvalues of A(4) are U .

Theorem 4.10. ((diamond, v), v degree 2). Given any Λ = λ1, λ2, λ3, λ4 and

U = µ1, µ2, µ3 satisfying the interlacing inequalities, and v a degree 2 vertex of the

diamond, then (Λ, U) is realizable for (diamond, v) if and only if either
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• λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4,

• Λ can be partitioned into α1, α2, β1, β2 and U can be partitioned into

α1, α2, γ such that α1 > α2 and β1 > γ > β2,

• Λ can be partitioned into α1, α2, α3, γ and U can be partitioned into

β1, β2, γ such that α1 > β1 > α2 > β2 > α3.

Proof. The backward implication follows directly from the previous two Lemmas.

As for the forward implication, if (Λ, U) satisfies any of the EI strings 2, 3, 5, 6,

8–11, 13–16, 18, 19, they may be partitioned as in the second bulleted item, while

if they satisfy any of 12, 17, 20–23, they may be partitioned as in the third bulleted

item. Consequently we simply need to show the EI strings 1, 4, 7 cannot occur for

(diamond, v), v degree 2. By the argument before Theorem 4.2, EI string 1 cannot

occur. So suppose string 4 or 7 occurs. Then there exists A ∈ S(diamond) such that

rank(A− λ3I) = 2 = mr(diamond) and rank(A(v) − λ3I) = 1, where v is a degree 2

vertex. This contradicts Lemma 2.1.

4.7. The case (diamond, v), v dominating.

Theorem 4.11. ((diamond, v), v dominating). Given any Λ = λ1, λ2, λ3, λ4 and

U = µ1, µ2, µ3 satisfying the interlacing inequalities, and v a dominating vertex of the

diamond, then (Λ, U) is realizable for (diamond, v) if and only if µ1 > µ2 > µ3.

Remark: On examination of the list of 23 EI strings near the beginning of Section

4, we see that µ1 > µ2 > µ3 if and only if (Λ, U) satisfies one of the strings 3, 5, 6, 8,

11–16, 18–23 or its reversal. It suffices to show (Λ, U) is realizable for exactly these

strings.

Proof. (⇒) Suppose (Λ, U) is realizable for (diamond, v) with v dominating. Then

there exists A ∈ S(diamond) such that µ1, µ2, µ3 are the eigenvalues of A(v) ∈ S(P3).

By Theorem 2.2, µ1 > µ2 > µ3.

(⇐) Now suppose (Λ, U) is given satisfying the interlacing inequalities and µ1 >

µ2 > µ3. We will construct an A ∈ S(diamond) such that (Λ, U) is realizable for

(diamond, v) with the dominating vertex v equal to 4.

Case 1. (Λ, U) satisfies one of the EI strings 3, 5, 6, 8, 11, 13–16, 18, or 19.

By Theorem 4.10, there exists

A =









d1 f a 0

f d2 b g

a b d3 h

0 g h d4









∈ S(diamond)

such that A has eigenvalues Λ and A(4) has eigenvalues U .
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Let Q2 and Q be as in the case (P4, v), v degree 2. Then

B = QTAQ =









r s 0 p

s t
√
a2 + b2 q

0
√
a2 + b2 d3 h

p q h d4









where p, q are not 0. By Theorem 4.7 and our assumption on the EI string, (Λ, U)

is not realizable for (paw, u) with u dominating. This requires s 6= 0, so that B ∈
S(diamond), with eigenvalues Λ and B(4) has eigenvalues U . In other words (Λ, U)

is realizable for (diamond, v) with v dominating.

Case 2. (Λ, U) satisfies one of the EI strings 12, 20–23.

It follows from Theorems 4.6 and 4.2 that (Λ, U) is realizable for either (paw, v),

v degree 2 or else (S4, v), v pendant.

Subcase 1. (Λ, U) is realizable for (paw, v), v degree 2.

Then there exists

A =









d1 a 0 0

a d2 b f

0 b d3 g

0 f g d4









∈ S(paw)

such that A has eigenvalues Λ and A(4) has eigenvalues U , where v is degree 2. Let

Q2 be an orthogonal 2 by 2 matrix diagonalizing

[

d1 a

a d2

]

and let Q = Q2 ⊕ I2.

Then every entry of Q2 is nonzero, so

B = QTAQ =









r 0 w x

0 t y z

w y d3 g

x z g d4









with w, x, y, z 6= 0. It follows that B ∈ S(diamond), B has eigenvalues Λ and B(4)

has eigenvalues U ; i.e., (Λ, U) is realizable for (diamond, v), v dominating.

Subcase 2. (Λ, U) is realizable for (S4, v), v pendant.

Then there exists

A =









d1 a 0 0

a d2 b f

0 b d3 0

0 f 0 d4









∈ S(S4)
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such that A has eigenvalues Λ and A(v) has eigenvalues U , where v is pendant. Let

Q2 be an orthogonal 2 by 2 matrix diagonalizing

[

d1 a

a d2

]

and let Q = Q2 ⊕ I2.

Then

B = QTAQ =









r 0 w x

0 t y z

w y d3 0

x z 0 d4









with w, x, y, z 6= 0 and B has eigenvalues Λ and B(4) has eigenvalues U .

Let P2 =

[

c s

−s c

]

be an orthogonal 2 by 2 matrix diagonalizing

[

t y

y d3

]

. Then

C =









1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1









B









1 0 0 0

0 c s 0

0 −s c 0

0 0 0 1









=









r w′ w′′ x

w′ t′ 0 z′

w′′ 0 t′′ z′′

x z′ z′′ d4









with w′, w′′, z′, z′′ 6= 0 and C has eigenvalues Λ and B(4) has eignvalues U .

It follows that C ∈ S(diamond) and (Λ, U) is realizable for (diamond, v), v

dominating.

4.8. The case (C4, v).

We come now to the final case of the connected 4-vertex graphs. Since C4 is

vertex transitive, there is only one case to consider.

Lemma 4.12. Let α1, α2, β1, β2, γ be real numbers with α1 > γ > α2, β1 > γ > β2,

and let v be a vertex of C4. Then there exists A ∈ S(C4) such that Λ = α1, α2, β1, β2

are the eigenvalues of A and U = β1, β2, γ are the eigenvalues of A(v).

Proof. Choose a, b such that

[

a b

b γ

]

has eigenvalues β1, β2, and choose x, y such

that

[

γ x

x y

]

has eigenvalues α1, α2.

Then

B =









a b 0 0

b γ 0 0

0 0 γ x

0 0 x y









has eigenvalues Λ = α1, α2, β1, β2 and B(4) has eigenvalues U = β1, β2, γ.
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Let R =

[

c −s

s c

]

be any orthogonal 2 by 2 matrix with cs 6= 0. And let

A =









1 0 0 0

0 c s 0

0 −s c 0

0 0 0 1









B









1 0 0 0

0 c −s 0

0 s c 0

0 0 0 1









=









a cb −sb 0

cb γ 0 sx

−sb 0 γ cx

0 sx cx y









Then A ∈ S(C4), A has eigenvalues Λ = α1, α2, β1, β2 and A(4) has eigenvalues

U = β1, β2, γ.

Theorem 4.13. (C4, v). Given any Λ = λ1, λ2, λ3, λ4 and U = µ1, µ2, µ3 sat-

isfying the interlacing inequalities, then (Λ, U) is realizable for (C4, v) if and only if

either

• λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4, or

• (Λ, U) satisfies any of the EI strings 3, 8, 11, 12, 15, 16, 19–23 or its reversal.

Proof. The case λ1 > µ1 > λ2 > µ2 > λ3 > µ3 > λ4 follows from Theorem 1.1.

So assume there is at least one equality among the Λ and U .

(⇒) Suppose (Λ, U) is realizable for (C4, v), and let A ∈ S(C4) such that the

eigenvalues of A are Λ and the eigenvalues of A(v) are U = µ1, µ2, µ3. Since C4− v =

P3, A(v) ∈ S(P3) so that µ1 > µ2 > µ3 by Theorem 2.2. Therefore EI strings 1, 2, 4,

7, 9, 10, 17 are not realizable. It remains to show that strings 5, 6, 13, 14, 18 are not

realizable. We write

A =









a 0 w x

0 b y z

w y c 0

x z 0 d









with w, x, y, z 6= 0 and without loss of generality, take v to be vertex 4.

Case 1. b = a

Then

A =









a 0 w x

0 a y z

w y c 0

x z 0 d









.

Subcase 1. a is an eigenvalue of A.
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Then A− aI is singular, so det(A− aI) =

∣

∣

∣

∣

w x

y z

∣

∣

∣

∣

2

= 0 and

[

x

z

]

is a multiple of

[

w

y

]

.

Let Q2 =
1

√

w2 + y2

[

y w

−w y

]

and let Q = Q2 ⊕ I2, then

B = QTAQ =



















a 0 0 0

0 a
√

w2 + y2
wx + yz
√

w2 + y2

0
√

w2 + y2 c 0

0
wx + yz
√

w2 + y2
0 d



















has eigenvalues Λ and B(4) has eigenvalues U .

Since B(1) ∈ S(P3), it follows that Λ and U can be partitioned as in Theorem 4.7

with the (Λ, U) satisfying the inequalities in the first bullet. By the remark following

this theorem, EI strings 5, 6, 13, 14, 18 are not realizable in this case.

Subcase 2. a is not an eigenvalue of A.

Then wz − xy 6= 0. Letting Q and B be as in Subcase 1, we have

B =











a 0 0 p

0 a
√

w2 + y2 q

0
√

w2 + y2 c 0

p q 0 d











,

where p =
xy − wz
√

w2 + y2
6= 0 and q =

wx+ yz
√

w2 + y2
.

(i) q = 0

Then

B =











a 0 0 p

0 a
√

w2 + y2 0

0
√

w2 + y2 c 0

p 0 0 d











is a direct sum and (Λ, U) can be partitioned Λ = α1, α2, β1, β2 and U = a, α1, α2

with α1 > a > α2 and β1 > a > β2. Then (Λ, U) must satisfy an EI string of the

form f1f2 >> f5f6 which excludes the strings 5, 6, 13, 14, and 18.
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(ii) q 6= 0

Then

B =











a 0 0 p

0 a
√

w2 + y2 q

0
√

w2 + y2 c 0

p q 0 d











∈ S(P4)

with 4 a degree 2 vertex. By the remark following Theorem 4.1, (Λ, U) must satisfy

EI string 17. So 5, 6, 13, 14, and 18 are again not possible.

Case 2. b 6= a

Again, letting Q2, Q and B be as in Subcase 1, we have

B = QTAQ =











r s 0 p

s t
√

w2 + y2 q

0
√

w2 + y2 c 0

p q 0 d











.

Since a 6= b and no entry of Q2 is 0, s 6= 0. Moreover, since Q2 is orthogonal,
[

p

q

]

= QT
2

[

x

z

]

6= 0, so p, q are not both 0. Also, the Λ are the eigenvalues of B and

the U are the eigenvalues of B(4).

Subcase 1. p = 0, q 6= 0.

Then B ∈ S(S4) with 4 a pendant vertex. By the remark following Theorem 4.2,

this can only occur if (Λ, U) satisfies either the string 20, 23 or its reversal along with

additional restrictions. In particular, 5, 6, 13, 14, and 18 are excluded.

Subcase 2. p 6= 0, q = 0

Then B ∈ S(P4) with 4 a pendant vertex. By Theorem 2.2, all (Λ, U) are distinct,

contradicting our assumption at the outset of the proof.

Subcase 3. p 6= 0, q 6= 0.

Then B ∈ S(paw) with 4 a degree 2 vertex. By the remark following Theorem

4.6, (Λ, U) satisfies 12, 20–23 or its reversal. So the strings 5, 6, 13, 14, and 18 cannot

occur for C4. This concludes the proof of the forward implication.

(⇐)

Case 1: (Λ, U) satisfies one of EI strings 3, 8, 11, 15, 16, 19

Immediately from Lemma 4.12, (Λ, U) is realizable for (C4, v).
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Case 2. (Λ, U) satisfies one of the EI strings 12, 20–23.

It follows from Theorems 4.6 and 4.2 that (Λ, U) is realizable for either (paw, v),

v degree 2 or else (S4, v), v pendant.

Subcase 1: (Λ, U) is realizable for (S4, v), v pendant.

Then there exists

A =









d1 a 0 0

a d2 b f

0 b d3 0

0 f 0 d4









∈ S(S4)

such that A has eigenvalues Λ and A(4) has eigenvalues U . Let Q2 be an orthogonal

2 by 2 matrix diagonalizing

[

d1 a

a d2

]

and let Q = Q2 ⊕ I2. Then

B = QTAQ =









r 0 w x

0 t y z

w y d3 0

x z 0 d4









with w, x, y, z 6= 0, B ∈ S(C4) and B has eigenvalues Λ and B(4) has eigenvalues U .

Thus, (Λ, U) is realizable for (C4, v).

Subcase 2: (Λ, U) is realizable for (paw, v), v degree 2.

Then there exists

A =









d1 a 0 g

a d2 b f

0 b d3 0

g f 0 d4









∈ S(paw)

such that A has eigenvalues Λ and A(4) has eigenvalues U . Let Q2 be an orthogonal

2 by 2 matrix diagonalizing

[

d1 a

a d2

]

and let Q = Q2 ⊕ I2. Then

B = QTAQ =









r 0 w x

0 t y z

w y d3 0

x z 0 d4









with w, y 6= 0, at least one of x, z is nonzero and B has eigenvalues Λ and B(4) has

eigenvalues U .
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(i). xz 6= 0.

Then B ∈ S(C4) and (Λ, U) is realizable for (C4, v).

(ii). x = 0, z 6= 0 or x 6= 0, z = 0.

Then B ∈ S(P4) and (Λ, U) is realizable for (P4, v). By Theorem 2.2, (Λ, U) are all

distinct. And by Theorem 1.1, (Λ, U) is realizable for (C4, v).

4.9. Summary.

The following chart and tables summarize Section 4. The red vertex represents

the vertex which is deleted. A line connecting two graphs indicates that any (Λ, U)

which is realizable for the lower graph is realizable for the higher graph. So the graphs

with fewer restrictions on (Λ, U) appear higher in the table. As might be expected,

when an edge is deleted from a graph, typically the set of realizable (Λ, U)-strings is

a subset of the previously realizable strings, but there are notable exceptions. For

example string 17 is not realizable for (diamond, v), v dominating, but is realizable

for (paw, v), v dominating. And string 25 is only realizable for (S4, v), v dominating,

a special case of Observation 2.9.
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1. > > = = = = 13. > > > = > =

2. > = = > = = 14. > > = > > =

3. = = > > = = 15. > = > > > =

4. > > > = = = 16. = > > > > =

5. > > = > = = 17. > > > = = >

6. > > = = > = 18. > > = > = >

7. > > = = = > 19. > = > > = >

8. > = > > = = 20. > > = = > >

9. > = > = = > 21. > > > > > =

10. > = = > > = 22. > > > > = >

11. = > > > = = 23. > > > = > >

12. > > > > = = 24. > > > > > >

25. > = = = = >

To the former list we have added the EI string with all strict inequalities and the

palindromic EI string which is only realizable for (S4, v), v a dominating vertex in

order to list all the EI strings that are realized by some connected graph on 4 vertices.

Table 4.1

Summary of Results

Graph and specified vertex Realizable EI strings

(K4, v) 1–24

(diamond, v), v degree 2 2, 3, 5, 6, 8-24

(diamond, v), v dominating 3, 5, 6, 8, 11–16, 18–24

(C4, v) 3, 8, 11, 12, 15, 16, 19–24

(paw, v), v dominating 2, 9, 10, 12, 17, 20–24

(paw, v), v pendant 12, 17, 20**, 21, 22, 23**, 24

(paw, v), v degree 2 12, 20**, 21, 22, 23**, 24

(S4, v), v pendant 20*, 23*, 24

(S4, v), v dominating 17, 24, 25

(P4, v), v degree 2 17, 24

(P4, v), v pendant 24

The (*),(**) indicates that there are additional conditions on (Λ, U). We note

that the conditions in (*) and (**) are complementary restrictions.

5. The Λ problem for the connected 4-vertex graphs. We now turn to the

Λ problem, which was mentioned at the beginning of the introduction, for connected

4-vertex graphs. Now that we have solved the (Λ, U)-problem for all such graphs, it is

easy to adapt the solution to the Λ problem. There are now just 8 strings to consider.
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1. λ1 > λ2 > λ3 > λ4

2. λ1 > λ2 = λ3 > λ4

3. λ1 > λ2 > λ3 = λ4

4. λ1 = λ2 > λ3 > λ4

5. λ1 = λ2 > λ3 = λ4

6. λ1 > λ2 = λ3 = λ4

7. λ1 = λ2 = λ3 > λ4

8. λ1 = λ2 = λ3 = λ4

The string 8 is not realizable for any connected graph, while, according to The-

orem 3.1 [3], any of the strings 1 to 7 is realizable for K4. The remaining connected

graphs on 4 vertices all have minimum rank 2. But for any matrix with eigenvalues

given by 6, 7, or 8, rank(A−λ2I) = 1, so no string Λ satisfying 6, 7, or 8 is realizable

for any of the remaining graphs. Moreover, Theorem 1.1 implies that any Λ with

string 1 is realizable for any connected 4-vertex graph. So we need consider only

strings 2, 3, 4, 5, and since string 4 is a reversal of 3, there are only 3 cases. We first

state the result and then explain the conclusions.

Theorem 5.1. Let Λ = λ1, λ2, λ3, λ4 be a list of real numbers with

(5.1) λ1 ≥ λ2 ≥ λ3 ≥ λ4.

Then

• Λ is realizable for P4 if and only if λ1 > λ2 > λ3 > λ4;

• Λ is realizable for S4 if and only if λ1 > λ2 ≥ λ3 > λ4;

• Λ is realizable for the paw if and only if there is at most one equality in (5.1);

• Λ is realizable for C4 or the diamond if and only if there are not two consec-

utive equalities in (5.1);

• Λ is realizable for K4 if and only if λ1 > λ4.

Proof. P4: Theorem 2.2 requires the λi to be distinct.

S4: Lemma 2.5 requires, λ1 > λ2 and λ3 > λ4. It follows from Theorem 2.7 that

any Λ with λ1 > λ2 = λ3 > λ4 is realizable.

paw: That any string Λ with λ1 > λ2 = λ3 > λ4 is realizable follows from

the last bulleted item in Theorem 4.3. And any Λ with λ1 > λ2 > λ3 = λ4 or its

reversal is realizable because string 2 on page 31 is realizable for (paw, v) v dominating.

Finally, the only string in the (Λ, U)-problem corresponding to the string Λ with

λ1 = λ2 > λ3 = λ4 is string 3 which is not realizable for the paw.

C4, diamond: The strings Λ with λ1 > λ2 = λ3 > λ4, λ1 > λ2 > λ3 = λ4, and

λ1 = λ2 > λ3 = λ4 are realizable for either C4 or diamond because the strings 20, 12,

and 3, respectively, on page 31 are realizable for C4 and the diamond.
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K4: As already mentioned, any Λ with λ1 > λ4 is realizable by Theorem 3.1 in

[3].

We summarize Theorem 5.1 with the diagram

Any Λ which is realizable for one of these graphs is realizable for any graph to

the right. We observe that any Λ realizable for a connected graph G on 4 vertices

is realizable for a connected graph obtained from G by deleting an edge. We do not

know if this property holds for connected graphs on n > 4 vertices.

6. Conclusion.

The inverse eigenvalue problem for graphs has previously been solved only for

special classes of graphs, for example trees, and even for these a complete solution is

not yet available. For general graphs it has appeared intractible.

We have demonstrated that two of the well-known versions of the problem, which

we have designated as the Λ problem and the (Λ, U)-problem are completely solvable

for graphs on 4 or fewer vertices. Our solution clarifies for what graphs a solution

might be obtainable in general. For example, Theorem 4.2 is sufficiently complex that

we see little hope of solving the (Λ, U)-problem for (Sn, v), v pendant, even though a

complete solution for (Sn, v), v dominating, is given in Theorem 2.7. Generalizations

of Theorems 4.3 and 4.6 seem likewise remote. However, generalizations of Theorems

4.7 and 4.11 do seem worth pursuing.

One of the major obstacles in obtaining generalizations to graphs on n vertices

by the methods we have employed is the interdependence of many of our arguments.

For example our proof of Theorem 4.13 dealing with (C4, v) uses previous results for

(P4, v), v degree 2, (paw, v), v dominating, (S4, v), v pendant, (Pn, v), v pendant, and

(paw, v), v degree 2. It appears that new methods must be found for specific graphs

or graph classes on n vertices.

An avenue that should be pursued is establishing results of the form: If (Λ, U) is

realizable for (G, v), then (Λ, U) is realizable for (H,w), where G and H are graphs

on n vertices bearing a simple relationship. Likewise, the corresponding Λ version of

this question ought to be investigated.
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Two specific open questions of this type are:

1. Let G be a graph on n vertices, let v be a vertex of G, let x, y be nonadjacent

vertices of G, and let e = xy. Under what circumstances does it follow that

if (Λ, U) is realizable for (G, v), then (Λ, U) is also realizable for (G+ e, v)?

2. Let G be a graph on n vertices, Λ any set of n real numbers, and x, y be

nonadjacent vertices of G. If Λ is realizable for G, is Λ realizable for G+ e?

Finally, we note that Nylen’s lemma (Lemma 2.1 above) was at times quite useful

in demonstrating that a certain (Λ, U) is not realizable for a given graph. Are there

additional results from the literature on minimum rank or the inverse inertia problem

that can give additional restrictions to establish that a certain (Λ, U) or certain Λ is

not realizable?

Appendix A. The graph P3. Given α1 > β1 > α2 > β2 > α3, we determine

a, b, c, x, y, so that α1, α2, α3 are the eigenvalues of A =





a x 0

x b y

0 y c



 and β1, β2 are

the eigenvalues of A(3) =

[

a x

x b

]

.

Necessarily,

(A.1) a+ b = trA(3) = β1 + β2,

(A.2) a+ b+ c = trA = α1 + α2 + α3,

(A.3) ab− x2 = detA(3) = β1β2,

(A.4) ab− x2 + ac+ bc− y2 = E2(A) = α1α2 + α1α3 + α2α3,

(A.5) abc− ay2 − cx2 = detA = α1α2α3.

From (A.1) and (A.2),

(A.6) c = α1 + α2 + α3 − β1 − β2.

Substituting (A.1), (A.3), and (A.6) into (A.4) gives

β1β2 + (β1 + β2)(α1 + α2 + α3 − β1 − β2)− y2 = α1α2 + α1α3 + α2α3.

So

y2 = β1β2 + (β1 + β2)(α1 + α2 + α3)− (β1 + β2)
2 − α1α2 − α1α3 − α2α3
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which can be written as

(A.7) y2 = (α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3) > 0.

Thus, there is y 6= 0 satisfying (A.7).

From (A.5), (ab − x2)c − ay2 = α1α2α3. Substituting from (A.3), (A.6), and

(A.7),

(A.8) a =
β1β2(α1 + α2 + α3 − β1 − β2)− α1α2α3

(α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3)
.

Substituting (A.8) in b = β1 + β2 − a, expanding and algebraic manipulation

yields

b =
d+ β1β2(α1 + α2 + α3 − β1 − β2)− α1α2α3

(α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3)
,

where d = (α1 − β1)(β1 − α2)(β1 − α3) + (α1 − β2)(β2 − α2)(β2 − α3).

From (A.3), x2 = ab− β1β2.

Substituting from the last two equations and more algebraic manipulation gives

(A.9) x2 =
(α1 − β1)(β1 − α2)(β1 − α3)(α1 − β2)(α2 − β2)(β2 − α3)

[(α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3)]2

Since the numerator and denominator are positive, there is a nonzero x satisfying

(A.9).

We summarize with the following result.

Theorem A.1. Let α1 > β1 > α2 > β2 > α3. Set

• s = (α1 − β1)(β1 − α2) + (α1 − β1)(β2 − α3) + (α2 − β2)(β2 − α3),

• d = (α1 − β1)(β1 − α2)(β1 − α3) + (α1 − β2)(β2 − α2)(β2 − α3),

• p = (α1 − β1)(β1 − α2)(β1 − α3)(α1 − β2)(α2 − β2)(β2 − α3).

Then A =





a x 0

x b y

0 y c



 has eigenvalues α1, α2, α3 and

[

a x

x b

]

has eigenvalues β1, β2

if and only if the entries of A satisfy the following equations:

• a =
β1β2c− α1α2α3

s
,

• b =
d+ β1β2c− α1α2α3

s
,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 742-778, October 2014



ELA

778 W. Barrett, C. Nelson, J. Sinkovic, and R. Yang

• c = α1 + α2 + α3 − β1 − β2,

• x2 =
p

s2
,

• y2 = s.

The argument preceding the statement of the theorem verifies the necessity. Suf-

ficiency can be checked using a computer algebraic system.
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