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COMMUTING MAPS ON RANK-K MATRICES∗

XIAOWEI XU† AND XIAOFEI YI‡

Abstract. In this short note, a new proof and a slight improvement of the Franca Theorem

are given. More precisely, it is proved: Let n ≥ 3 be a natural number, and let Mn(K) be the ring

of all n × n matrices over an arbitrary field K with center Z. Fix a natural number 2 ≤ s ≤ n.

If G : Mn(K) → Mn(K) is an additive map such that G(x)x = xG(x) for every rank-s matrix

x ∈ Mn(K), then there exist an element λ ∈ Z and an additive map µ : Mn(K) → Z such that

G(x) = λx + µ(x) for each x ∈ Mn(K).

Key words. Commuting maps, Rank-k matrices.

AMS subject classifications. 16N60, 15A03.

1. Introduction. Let R be an associative ring with a nonempty subset S. A

map G : R → R is a commuting map on S if G(x)x = xG(x) for all x ∈ S. The

well known Brešar Theorem implies that a commuting additive map f on a prime

ring R must be of the form f(x) = λx + µ(x) for some λ ∈ C and some additive

map µ : R → C, where C is the extended centroid of R (see [1, Theorem A]).

Recently, Franca considered the commuting additive map on some subsets (which are

not necessarily closed under addition) of the ring Mn(K) of all n × n matrices over

a field K, for example the subset of all singular matrices (see [5, Theorem 1]), the

subset of all invertible matrices (see [5, Theorem 3]), and the subset of all rank-k

matrices (see [6, Theorem 3 and 4]) in Mn(K). Franca’s results imply that the theory

of functional identities [3] can be explored on some subsets (which are not necessarily

closed under addition), on which many important results had been proved in the

active area of (linear) preserver problems (see the survey paper [4] for details). We

state the Franca Theorem as follows:

The Franca Theorem ([6, Theorem 3]) Let n ≥ 3 be a natural number, K

be a field with charK 6= 2, 3. Fix s ∈ {2, . . . , n − 1}. For an additive map G from

Mn(K) into Mn(K) if G(x)x = xG(x) holds for every rank-s matrix x ∈ Mn(K),

then there exist an element λ ∈ Z and an additive map µ : Mn(K) → Z such that

G(x) = λx + µ(x) for each x ∈ Mn(K).
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In particular, for s = n ≥ 2, Franca had obtained the same conclusion under the

milder assumption of |K| 6= 2 (see [5, Theorem 3]). In this short note, we will propose

another proof of the Franca Theorem stated above also getting rid of the assumption

of charK 6= 2, 3.

In the following, we will always write K for a field, eij for the n×n matrix of the

appropriate size with 1 in the position (i, j) and 0 in every other position, and Z the

center of Mn(K). For convenience, we take the sum over an empty set of matrices to

be the zero matrix of the appropriate size, for example the symbol
∑s

i=4 eii will be

used to denote the zero matrix when s = 3.

2. Main result. The proof of Theorem 2.6 is based on the following several

lemmas. For s = 2 we have Lemma 2.1

Lemma 2.1. For each n ≥ 3, each rank-1 matrix in Mn(K) can be expressed as

a sum of three rank-2 matrices among which the sum of any two is rank-2.

Proof. It is enough to prove that there exists a rank-1 matrix which is the sum of

three rank-2 matrices among which the sum of any two is rank-2, since two matrices

are equivalent if and only if they have the same rank.

The following is a rank-1 with the desired properties

e11 + e12 + e13 = [e11 + e22] +
[

e12 + e23

]

+
[

e13 − e22 − e23

]

.

For s ≥ 3 and |K| > 2 we have Lemma 2.2.

Lemma 2.2. For each s and n with n ≥ s ≥ 3, each rank-i (i = 1, 2) matrix in

Mn(K) with |K| > 2 can be expressed as a sum of three rank-s matrices among which

the sum of any two is rank-s.

Proof. Since |K| > 2 we can choose a nonzero element λ 6= 1 in K.

The following is a rank-1 matrix which is the sum of three rank-s matrices among

which the sum of any two is rank-s

e11 =

[

e12 + e21 − λe22 +

s
∑

i=3

eii

]

+

[

(1 − λ)e11 − e12 − e21 − λ

s
∑

i=3

eii

]

+

[

λ

2
∑

i=1

eii + (λ − 1)
s

∑

i=3

eii

]

.

The following is a rank-2 matrix which is the sum of three rank-s matrices among
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which the sum of any two is rank-s

e11 + e22 =

[

e11 + λe12 + e23 + e31 + e32 +

s
∑

i=4

eii

]

+

[

e13 + e21 + e22 + (λ − 1)e31 − e32 + e33 − λ

s
∑

i=4

eii

]

+

[

−λe12 − e13 − e21 − e23 − λe31 − e33 + (λ − 1)

s
∑

i=4

eii

]

.

For s ≥ 3 and |K| = 2 (K = Z2), we have Lemmas 2.3 and 2.4.

Lemma 2.3. For integers m and n with n
3 ≥ m ≥ 1, each rank-2 matrix in

Mn(Z2) can be expressed as a sum of three rank-3m matrices among which the sum

of any two is rank-3m.

Proof. Set A = 0 for m = 1 and

A =

m−1
∑

i=1

(e3i+1,3i+2 + e3i+1,3i+3 + e3i+2,3i+1 + e3i+3,3i+2)

for m > 1. Then the following is a rank-2 matrix as a sum of three rank-3m matrices
among which the sum of any two is rank-3m

[

3m
∑

i=1

eii

]

+ [e12 + e13 + e21 + e32 + A] +

[

e11 + e13 + e23 + e31 + e32 + A +
3m
∑

i=4

eii

]

.

Lemma 2.4. For n ≥ s ≥ 3 with 3 ∤ s, each rank-i (i = 1, 2) matrix in Mn(Z2)

can be expressed as a sum of three rank-s matrices among which the sum of any two

is rank-s.

Proof. Case 1: Assume that s = 3m + 1 with 1 ≤ m ≤ n−1
3 . Set A = 0 for m = 1

and

A =
m−1
∑

i=1

(e3i+2,3i+3 + e3i+2,3i+4 + e3i+3,3i+2 + e3i+4,3i+3)

for m > 1. Then the following is a rank-1 matrix as a sum of three rank-s matrices

among which the sum of any two is rank-s

e13 =

[

s
∑

i=1

eii

]

+ [e12 + e21 + e22 + e34 + e43 + e44 + A]

+

[

e11 + e12 + e13 + e21 + e33 + e34 + e43 + A +
s

∑

i=5

eii

]

.
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The following is a rank-2 matrix as a sum of three rank-s matrices among which the

sum of any two is rank-s

[

s
∑

i=1

eii

]

+ [e12 + e21 + e22 + e34 + e43 + e44 + A]

+

[

e11 + e12 + e13 + e21 + e24 + e33 + e34 + e43 + A +

s
∑

i=5

eii

]

.

Case 2: Assume that s = 3m + 2 with 1 ≤ m ≤ n−2
3 . Set A = 0 for m = 1 and

A =

m−1
∑

i=1

(e3i+3,3i+4 + e3i+3,3i+5 + e3i+4,3i+3 + e3i+5,3i+4)

for m > 1. For the case m = 1 (s = 5), the symbol
∑s

i=6 eii will be used to denote

the n×n zero matrix. Then the following is a rank-1 matrix as a sum of three rank-s

matrices among which the sum of any two is rank-s

e13 =

[

s
∑

i=1

eii

]

+ [e11 + e12 + e21 + e34 + e35 + e43 + e54 + A]

+

[

e12 + e13 + e21 + e22 + e33 + e34 + e35 + e43 + e44 + e54 + e55 + A +
s

∑

i=6

eii

]

.

The following is a rank-2 matrix as a sum of three rank-s matrices among which the
sum of any two is rank-s

[

s
∑

i=1

eii

]

+ [e11 + e12 + e21 + e34 + e35 + e43 + e54 + A]

+

[

e12 + e13 + e21 + e22 + e24 + e33 + e34 + e35 + e43 + e44 + e54 + e55 + A +

s
∑

i=6

eii

]

.

The following lemma is a key step of the proof for Theorem 2.6.

Lemma 2.5. Let n, s be fixed integers with n ≥ s ≥ 2. Suppose that G : Mn(K) →

Mn(K) is an additive map such that G(x)x = xG(x) for each rank-s matrix x. Then

for a matrix D in Mn(K) if D is a sum of three rank-s matrices among which the

sum of any two is rank-s, then G(D)D = DG(D).

Proof. For two rank-s matrices A and B such that A + B is also rank-s, we have

[G(A), B] + [G(B), A] = 0
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since

[G(A), A] = [G(B), B] = [G(A + B), A + B] = 0.

There exist rank-s matrices A1, A2, A3 such that any one of A1+A2, A1+A3, A2+A3

is rank-s and D =
∑3

i=1 Ai. Then,

[G(D),D] =

3
∑

i=1

[G(Ai), Ai] +
∑

1≤i<j≤3

(

[G(Ai), Aj ] + [G(Aj), Ai]
)

= 0.

Now let us prove Theorem 2.6.

Theorem 2.6. Let n ≥ s ≥ 2 be fixed integers. For an additive map G :

Mn(K) → Mn(K) such that G(x)x = xG(x) for every rank-s matrix x ∈ Mn(K),

there exist an element λ ∈ Z and an additive map µ : Mn(K) → Z such that G(x) =

λx + µ(x) for each x ∈ Mn(K).

Proof. For the case s = 2, by Lemma 2.1 and 2.5, we have that [G(D),D] = 0 for

each rank-1 matrix D in Mn(K). Hence, we can summarize that [G(D),D] = 0 for

each rank-i (i = 1, 2) matrix D in Mn(K).

For the case s ≥ 3 and |K| > 2, by Lemma 2.2 and 2.5, we have that [G(D),D] = 0

for each rank-i (i = 1, 2) matrix D in Mn(K).

For the case s ≥ 3, 3 ∤ s and |K| = 2, by Lemma 2.4 and 2.5, we have that

[G(D),D] = 0 for each rank-i (i = 1, 2) matrix D in Mn(K).

For the case s = 3m (1 ≤ m ≤ n
3 ) and |K| = 2, by Lemma 2.3 and 2.5, we have

that [G(D),D] = 0 for each rank-2 matrix D in Mn(K). And then, by Lemma 2.1

and 2.5, we have that [G(D),D] = 0 for each rank-1 matrix D in Mn(K). Hence, in

summary, we have that [G(D),D] = 0 for each rank-i (i = 1, 2) matrix D in Mn(K).

Obviously, the rank of aeij + bekl is at most 2, where a, b ∈ K\{0}. Thus,

[G(aeij), bekl] + [G(bekl), aeij ] = 0

since

[G(aeij), aeij ] = [G(bekl), bekl] = [G(aeij + bekl), aeij + bekl] = 0.

From now on we will follow Franca’s idea and retell his corresponding proof of [6,

Theorem 3]. Concretely, for any

D =
∑

1≤i,j≤n

aijeij ∈ Mn(K),
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where aij ∈ K and 1 ≤ i, j ≤ n, we get

[G(D),D] =
∑

1≤i,j≤n

[G(aijeij), aijeij ]

+
∑

(i,j) 6=(k,l)

([G(aijeij), aklekl] + [G(aklekl), aijeij ])

= 0.

The desired result follows now from the well-known theorem on commuting maps due

to Brešar (see the original paper [1], or the survey paper [2, Corollary 3.3], or the

book [3, Corollary 5.28]).

For case s = n = 2, we have Lemma 2.7.

Lemma 2.7. If |K| > 2, then every nonzero singular matrix in M2(K) can be

expressed as a sum of three invertible matrices among which the sum of any two is

invertible.

Proof. The following is a nonzero singular matrix expressed as a sum of three

invertible matrices among which the sum of any two is invertible

e11 = [e12 + e21 − λe22] + [(1 − λ)e11 − e12 − e21] +

[

λ

2
∑

i=1

eii

]

,

where λ 6= 1 is a nonzero element in K.

The following example shows that the condition |K| > 2 in Lemma 2.7 is necessary.

Example 2.8. In M2(Z2) if there exist invertible matrices A1, A2, A3 ∈ M2(Z2)

such that Ai + Aj is invertible for all 1 ≤ i < j ≤ 3, then A1 + A2 + A3 = 0.

Proof. Suppose that A1, A2 and A3 are invertible, Ai +Aj is invertible for all 1 ≤

i 6= j ≤ 3, and A1 +A2 +A3 6= 0. We claim that A1, A2, A3, A1 +A2, A1 +A3, A2 +A3

are six different invertible matrices. Firstly, for 1 ≤ i < j ≤ 3, we have Ai 6= Aj ,

since Ai +Aj 6= 0. Secondly, for for i, j, k ∈ {1, 2, 3} such that i 6= j, i 6= k and j 6= k,

we obtain Ai + Aj 6= Ai + Ak, since Aj 6= Ak. Finally, for i, j, k ∈ {1, 2, 3} such that

i 6= j, i 6= k and j 6= k, we obtain Ai + Aj 6= Ak, since Ai + Aj + Ak 6= 0. For

1 ≤ i 6= j ≤ 3, it is obvious that Ai + Aj 6= Ai, since Aj 6= 0. However, the number

of invertible matrices in M2(Z2) is six and their sum is the zero matrix. So, we will

obtain a contradiction

A1+A2+A3 = 3(A1+A2+A3) = A1+A2+A3+(A1+A2)+(A1+A3)+(A2+A3) = 0,

which completes the proof.
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Keeping Lemma 2.5 and 2.7 in mind and using the same discussion as those in

the proof of Theorem 2.6, we also obtain Theorem 2.9 as a special case of [5, Theorem

3].

Theorem 2.9. For |K| > 2, if G : M2(K) → M2(K) is an additive map such that

G(x)x = xG(x) for every invertible matrix x ∈ M2(K), then there exist an element

λ ∈ Z and an additive map µ : M2(K) → Z such that G(x) = λx + µ(x) for each

x ∈ M2(K).

For the condition |K| > 2, Franca has indicated that it is necessary in Theorem

2.9 by [5, Example 1].
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