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ON ORIENTED GRAPHS WITH MINIMAL SKEW ENERGY∗
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Abstract. Let S(Gσ) be the skew-adjacency matrix of an oriented graph Gσ . The skew

energy of Gσ is the sum of all singular values of its skew-adjacency matrix S(Gσ). This paper first

establishes an integral formula for the skew energy of an oriented graph. Then, it determines all

oriented graphs with minimal skew energy among all connected oriented graphs on n vertices with

m (n ≤ m < 2(n− 2)) arcs, which is analogous to the conjecture for the energy of undirected graphs

proposed by Caporossi et al. [G. Caporossi, D. Cvetković, I. Gutman, and P. Hansen. Variable

neighborhood search for extremal graphs. 2. Finding graphs with external energy. J. Chem. Inf.

Comput. Sci., 39:984–996, 1999.].
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1. Introduction. Let Gσ be a digraph that arises from a simple undirected

graph G with an orientation σ, which assigns to each edge of G a direction so that

Gσ becomes an oriented graph, or a directed graph. The undirected graph G is called

the underlying graph of Gσ. Let Gσ be an undirected graph with vertex set V (Gσ) =

{v1, v2, . . . , vn}. Denote by (u, v) an arc, of Gσ, with tail u and head v. The skew-

adjacency matrix related to Gσ is the n × n matrix S(Gσ) = [sij ], where the (i, j)

entry satisfies:

sij =







1, if (vi, vj) ∈ Gσ ;

−1, if (vj, vi) ∈ Gσ ;

0, otherwise.

The skew energy of an oriented graph Gσ, introduced by Adiga, Balakrishnan and So

in [1] and denoted by ES(G
σ), is the sum of all singular values of S(Gσ). Because the

skew-adjacency matrix S(Gσ) is skew-symmetric, the eigenvalues {λ1, λ2, . . . , λn} of
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S(Gσ) are all purely imaginary numbers. Consequently, the skew energy ES(G
σ) is

the sum of the modulus of its eigenvalues, i.e.,

ES(G
σ) =

n
∑

i=1

|λi|,

which has the same expression as that of the energy of an undirected graph with

respect to its adjacency matrix; see e.g. [14].

The work on the energy of a graph can be traced back to 1970’s [10] when Gutman

investigated the energy with respect to the adjacency matrix of an undirected graph,

which has a still older chemical origin; see e.g. [6]. Much attention has been devoted

to the energy of the adjacency matrix of a graph; see e.g. [2, 3, 4, 7, 12, 13, 11, 18, 21,

22, 25], and the references cited therein. For undirected graphs, Caporossi, Cvetković,

Gutman and Hansen [5] propose the following conjecture.

Conjecture 1. Let G be the graph with minimum energy among all connected

graphs with n ≥ 6 vertices and m (n − 1 ≤ m ≤ 2(n − 2)) edges. Then G is On,m

if m ≤ n + ⌊n−7
2 ⌋, and Bn,m otherwise, where On,m and Bn,m are respectively the

underlying graphs of the oriented graphs O+
n,m and B+

n,m given in Fig. 1.1.

This conjecture was proved to be true for m = n − 1 and m = 2(n − 2) by

Caporossi et al. [5, Theorem 1], and m = n by Hou [17]. In [22], Li, Zhang and Wang

confirmed this conjecture for bipartite graphs. Conjecture 1 has not yet been solved

completely.

Recently, other versions of graph energy were introduced in the mathematical

literature, such as Laplacian energy [16], signless Laplacian energy [15] and skew

energy [1].

In [1], Adiga et al. obtained the skew energies of directed cycles under different

orientations and showed that the skew energy of a directed tree is independent of

its orientation, which is equal to the energy of its underlying tree. Naturally, the

following question is interesting:

Question: Denote by M a class of oriented graphs. Which oriented graphs have

the extremely skew energy among all oriented graphs of M ?

Hou et al. [20] determined the oriented unicyclic graphs with the maximal and

minimal skew energies. Zhu [26] determined the oriented unicyclic graphs with the

first ⌊n−9
2 ⌋ largest skew energies. Shen et al. [23] determined the bicyclic graphs

with the maximal and minimal energies. Gong and Xu [9] determined the 3-regular

graphs with the optimum skew energy, and Tian [24] determined the hypercubes with

the optimum skew energy. In the following, we will study the minimal skew energy

graphs of order n and size m.
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First we need some notation. Denote by Kn, Sn and Cn the complete undirected

graph, the undirected star and the undirected cycle on n vertices, respectively. Let

O+
n,m be the oriented graph on n vertices that is obtained from the oriented star Sσ

n

by inserting m−n+1 arcs between an arbitrary pendent vertex and other m−n+1

pendent vertices; see Fig. 1.1, where n − 1 ≤ m ≤ 2n− 4, v1 is the tail of each arc

incident to it and v2 is the head of each arc incident to it, and B+
n,m, the oriented

graph obtained from O+
n,m+1 by deleting the arc (v1, v2). Denote by On,m and Bn,m

the underlying graphs of O+
n,m and B+

n,m, respectively. Notice that both O+
n,m and

B+
n,m contain n vertices and m arcs.
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Fig. 1.1. Oriented graphs O+
n,m and B+

n,m.

In this paper, we first establish an integral formula for the skew energy of an

oriented graph. Then, we study the question above and determine all oriented graphs

with minimal skew energy among all connected oriented digraphs on n vertices with

m (n ≤ m < 2(n− 2)) arcs. Interestingly, our result is an analogy of Conjecture 1.

Theorem 1.1. Let Gσ be an oriented graph with minimal skew energy among

all oriented graphs with n vertices and m (n ≤ m < 2(n − 2)) arcs. Then, up to

isomorphism, Gσ is

(1) O+
n,m if m < 3n−5

2 ;

(2) either B+
n,m or O+

n,m if m = 3n−5
2 ;

(3) B+
n,m otherwise.

2. Integral formula for the skew energy. In this section, based on the for-

mula established by Adiga et al. [1], we derive an integral formula for the skew energy

of an oriented graph, the formula is an analogy of the Coulson integral formula for

the energy of an undirected graph. First we introduce some notation and preliminary

results.

An even cycle C in an oriented graph Gσ is oddly oriented if for either choice of
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direction of traversal around C, the number of edges of C directed in the direction of

the traversal is odd. Since C is even, this is clearly independent of the initial choice

of direction of traversal. Otherwise, such an even cycle C is called as evenly oriented.

(Here we do not involve the parity of the cycle with length odd. The reason is that

it depends on the initial choice of direction of traversal.)

A “basic oriented graph” is an oriented graph whose components are even cycles

and/or complete oriented graphs with exactly two vertices.

Denote by φ(Gσ , x) the skew characteristic polynomial of an oriented graph Gσ,

which is defined as

φ(Gσ , x) = det(xIn − S(Gσ)) =
n
∑

i=0

(−1)iai(G
σ)xn−i,

where In denotes the identity matrix of order n. The following result is a cornerstone

of our discussion below, which determines all coefficients of the skew characteristic

polynomial of an oriented graph in terms of its basic oriented subgraphs; see [19,

Theorem 2.4] for an independent version.

Lemma 2.1. [8, Corollary 2.3] Let Gσ be an oriented graph on n vertices, and

let the skew characteristic polynomial of Gσ be

φ(Gσ , λ) =

n
∑

i=0

(−1)iaiλ
n−i = λn−a1λ

n−1+a2λ
n−2+ · · ·+(−1)n−1an−1λ+(−1)nan.

Then ai = 0 if i is odd, and

ai =
∑

H

(−1)c
+

2c if i is even,

where the summation is over all basic oriented subgraphs H of Gσ having i vertices

and c+ and c are respectively the number of evenly oriented even cycles and even

cycles contained in H .

Let G = (V (G), E(G)) be a graph, directed or not, on n vertices. Then denote by

∆(G) the maximum degree of G and set ∆(Gσ) = ∆(G). An r-matching in a graph

G is a subset of r edges such that every vertex of V (G) is incident to at most one edge

in it. Denote by M(G, r) the number of all r-matchings in G and set M(G, 0) = 1.

Denote by q(G) the number of quadrangles in a undirected graph G. As a conse-

quence of Lemma 2.1, we have

Theorem 2.2. Let Gσ be an oriented graph containing n vertices and m arcs.

Suppose

φ(Gσ , λ) =

n
∑

i=0

(−1)iai(G
σ)λn−i.
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Then a0(G
σ) = 1, a2(G

σ) = m and a4(G
σ) ≥ M(G, 2)− 2q(G), with equality if and

only if all oriented quadrangles of Gσ are evenly oriented.

Proof. The result follows from Lemma 2.1 and the fact that each arc corresponds

a basic oriented graph having 2 vertices, and each basic oriented graph having 4

vertices is either a 2-matching or a quadrangle.

Furthermore, as well-known, the eigenvalues of an arbitrary real skew symmetric

matrix are all purely imaginary numbers and occur in conjugate pairs. Henceforth,

Lemma 2.1 can be strengthened as follows, which will provide much convenience for

our discussion below.

Lemma 2.3. Let Gσ be an oriented graph of order n. Then each coefficient of

the skew characteristic polynomial

φ(Gσ , λ) =

⌊n

2
⌋

∑

i=0

a2i(G
σ)λn−2i

satisfies a2i(G
σ) ≥ 0 for each i(0 ≤ i ≤ ⌊n

2 ⌋).

Proof. By pairing eigenvalues of Gσ in conjugate pairs we see that the character-

istic polynomial of Gσ has the form xk(x2 + a21) · · · (x
2 + a2r) for some k, r and ai’s.

It now follows that a2i+1 = 0 for each i, and a2i ≥ 0 for each i.

For an oriented graph Gσ on n vertices, an integral formula for the skew energy

in terms of the skew characteristic polynomial φ(Gσ , λ) and its derivative is given by

[1],

Es(G
σ) =

1

π

∫ +∞

−∞

[

n+ λ
φ′(Gσ,−λ)

φ(Gσ ,−λ)

]

dλ. (2.1)

However, using the above integral, it is by no means easy to calculate the skew

energy of an oriented graph. Hence, it is rather important to establish some other

more simpler formula.

Applying to (2.1) the fact that the coefficient ai = 0 for each odd i from Lemma

2.1 and replacing λ by −λ, we have

Es(G
σ) =

1

π

∫ +∞

−∞

[

n− λ
φ′(Gσ , λ)

φ(Gσ , λ)

]

dλ.

Meanwhile, note that

φ′(Gσ , λ)

φ(Gσ, λ)
dλ = d lnφ(Gσ, λ).
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Then

Es(G
σ) = 1

π

∫ +∞

−∞

[

n− λ
φ′(Gσ,λ)
φ(Gσ,λ)

]

dλ

= 1
π

∫ +∞

−∞

[

n− λ( d
dλ

) lnφ(Gσ , λ)
]

dλ.

Therefore, we have the following result.

Theorem 2.4. Let Gσ be an oriented graph with order n. Then

Es(G
σ) =

1

π

∫ +∞

−∞

λ−2 lnψ(Gσ, λ)dλ, (2.2)

where

ψ(Gσ, λ) =

⌊n

2
⌋

∑

i=0

a2i(G
σ)λ2i

and a2i(G
σ) denotes the coefficient of λn−2i in the skew characteristic polynomial

φ(Gσ , λ).

Proof. Let both Gσ1

1 and Gσ2

2 be oriented graphs with order n. (G1 perhaps

equals G2.) Applying (2.2), we have

Es(G
σ1

1 )− Es(G
σ2

2 ) = −
1

π

∫ +∞

−∞

λ(
d

dλ
) ln

[

φ(Gσ1

1 , λ)

φ(Gσ2

2 , λ)

]

dλ.

Using partial integration, we have

Es(G
σ1

1 )− Es(G
σ2

2 ) = −
λ

π
ln[
φ(Gσ1

1 , λ)

φ(Gσ2

2 , λ)
]|+∞
−∞

+
1

π

∫ +∞

−∞

ln

[

φ(Gσ1

1 , λ)

φ(Gσ2

2 , λ)

]

dλ.

Notice that

λ

π
ln

[

φ(Gσ1

1 , λ)

φ(Gσ2

2 , λ)

]

|+∞
−∞= 0.

Hence,

Es(G
σ1

1 )− Es(G
σ2

2 ) =
1

π

∫ +∞

−∞

ln

[

φ(Gσ1

1 , λ)

φ(Gσ2

2 , λ)

]

dλ.

Suppose now that Gσ2

2 is the null oriented graph; that is, Gσ2

2 is an oriented graph

containing n isolated vertices. Then φ(Gσ2

2 , λ) = λn, and thus, Es(G
σ2

2 ) = 0. After

an appropriate change of variables we can derive

Es(G
σ1

1 ) =
1

π

∫ +∞

−∞

λ−2 lnψ(Gσ1

1 , λ)dλ.

The result now follows.
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3. The proof of Theorem 1.1. From Theorem 2.4, for an oriented graph Gσ

on n vertices, the skew energy Es(G
σ) is a strictly monotonically increasing function

of the coefficients a2k(G
σ)(k = 0, 1, . . . , ⌊n

2 ⌋), since for each i the coefficient of λn−i

in the characteristic polynomial φ(Gσ, λ), as well as ψ(Gσ, λ), satisfies ai(G
σ) ≥ 0

by Lemma 2.3. Thus, similar to comparing two undirected graphs with respect to

their energies, we define the quasi-ordering relation “ � ” of two oriented graphs with

respect to their skew energies as follows.

Let Gσ1

1 and Gσ2

2 be oriented graphs of order n. (G1 is not necessarily different

from G2.) If a2i(G
σ1

1 ) ≤ a2i(G
σ2

2 ) for all i with 0 ≤ i ≤ ⌊n
2 ⌋, then we write that

Gσ1

1 � Gσ2

2 .

Furthermore, if Gσ1

1 � Gσ2

2 and there exists at least one index i such that

a2i(G
σ1

1 ) < a2i(G
σ2

2 ), then we write that Gσ1

1 ≺ Gσ2

2 . If a2i(G
σ1

1 ) = a2i(G
σ2

2 ) for

all i, we write Gσ1

1 ∼ Gσ2

2 . Note that there are non-isomorphic oriented graphs Gσ1

1

and Gσ2

2 such that Gσ1

1 ∼ Gσ2

2 , which implies that “ � ” is not a partial ordering.

According to the integral formula (2.2), we have, for two oriented graphs Gσ1

1 and

Gσ2

2 of order n, that

Gσ1

1 � Gσ2

2 =⇒ Es(G
σ1

1 ) ≤ Es(G
σ2

2 )

and

Gσ1

1 ≺ Gσ2

2 =⇒ Es(G
σ1

1 ) < Es(G
σ2

2 ). (3.1)

In the following, by discussing the relation “�”, we compare the skew energies

for two oriented graphs and then complete the proof of Theorem 1.1.

First, by a direct calculation we have

φ(O+
n,m) = λn +mλn−2 + (m− n+ 1)(2n−m− 3)λn−4, (3.2)

and

φ(B+
n,m) = λn +mλn−2 + (m− n+ 2)(2n−m− 4)λn−4. (3.3)

Denote by Gσ(n,m) and G(n,m) the sets of all connected oriented graphs and

undirected graphs with n vertices and m edges, respectively. The following results on

undirected graphs are needed.

Lemma 3.1. Let n ≥ 5 and G ∈ G(n,m) be an arbitrary connected undirected

graph containing n vertices and m edges with n ≤ m < 2(n − 2). Then q(G) ≤
(

m− n+ 2

2

)

, where q(G) denotes the number of quadrangles contained in G.
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Proof. We prove this result by induction on m.

The result is obvious for m = n. So we suppose that n < m < 2(n− 2) and the

result is true for smaller m.

Let e be an edge of G and qG(e) denote the number of quadrangles containing

the edge e. Suppose e = (u, v). Let U be the set of neighbors of u except v, and V

the set of neighbors of v except u. Then there are just qG(e) edges between U and V .

Let X be the subset of U such that each vertex in X is incident to some of the above

qG(e) edges and Y be the subset of V defined similarly to X . Assume |X | = x and

|Y | = y. Let G0 be the subgraph of G induced by V (G0) = u∪v∪X ∪Y . Then there

are at least qG(e) + x+ y+ 1 edges and exactly x+ y+ 2 vertices in G0. In order for

the remaining vertices to connect to G0, the number of remaining edges must be not

less than that of the remaining vertices. Thus,

m− (qG(e) + x+ y + 1) ≥ n− (x+ y + 2),

or equivalently,

qG(e) ≤ m− n+ 1.

By the induction hypothesis,

q(G− e) ≤

(

(m− 1)− n+ 2

2

)

=

(

m− n+ 1

2

)

.

Thus, we have

q(G) = qG(e) + q(G− e) ≤ m− n+ 1 +

(

m− n+ 1

2

)

=

(

m− n+ 2

2

)

.

Hence, the result follows.

By a similar method, we can show the following.

Lemma 3.2. Let n ≥ 5 and G ∈ G(n,m) be an arbitrary undirected graph

containing n vertices and m edges with n ≤ m < 2(n− 2). If ∆(G) = n− 1, then

q(G) ≤

(

m− n+ 1

2

)

.

Lemma 3.3. [8, A part of Theorem 2.6] Let Gσ be an oriented graph with an arc

e = (u, v). If e is not contained in any even cycle, then

φ(Gσ , λ) = φ(Gσ − e, λ) + φ(Gσ − u− v, λ).
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As a consequence of Lemma 3.3, we have the following result.

Lemma 3.4. Let Gσ be an oriented graph on n vertices and (u, v) a pendant arc

of Gσ with pendant vertex v. Suppose φ(Gσ , λ) =
∑n

i=0(−1)iai(G
σ)λn−i. Then

ai(G
σ) = ai(G

σ − v) + ai−2(G
σ − v − u).

Based on the preliminary results above, we have the following two results.

Lemma 3.5. Let n ≥ 5 and Gσ ∈ Gσ(n,m) be an oriented graph with maximum

degree n− 1. Suppose that n ≤ m < 2(n− 2) and Gσ
≁ O+

n,m. Then Gσ ≻ O+
n,m.

Proof. By Theorem 2.2, it suffices to prove that a4(G
σ) > a4(O

+
n,m). Suppose

that v is the vertex with degree n − 1. For convenience, all arcs incident to v are

colored as white and all other arcs are colored as black. Then there are n − 1 white

arcs and m− n+ 1 black arcs. We estimate the cardinality of 2-matchings in Gσ as

follows. Noticing that all white arcs are incident to v, each pair of white arc can not

form a 2-matching of Gσ. Since d(v) = n− 1 and each black arc is incident to exactly

two white arcs, each black arc together with a white arcs except its neighbors forms

a 2-matching of Gσ, that is, there are (m − n + 1)(n − 3) black-white 2-matchings.

Moreover, note that Gσ 6= O+
n,m, Gσ − v does not contain the directed star Sm−n+2

as its subgraph, and thus, there is at least one 2-matching formed by a pair of disjoint

black arcs, or Gσ is an oriented graph of the following underlying graph F .

u

u

u

...
u

v1

@
@@

HHH

�
��

u

v2

u

�
��

Z
ZZ

u

@
@@�

��

Fig. 3.1. The graph F .

In the former case, the number of 2-matchings in Gσ satisfies

M(Gσ, 2) ≥ (m− n+ 1)(n− 3) + 1.

From Lemma 3.2, q(Gσ) ≤

(

m− n+ 1

2

)

, and then by applying Theorem 2.2 again,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 692-704, September 2014



ELA

S.C. Gong, X.L. Li, and G.H. Xu 701

we have

a4(G
σ) ≥M(Gσ, 2)− 2q(Gσ)

≥ (m− n+ 1)(n− 3) + 1− 2

(

m− n+ 1

2

)

= a4(O
+
n,m) + 1

by (3.2). In the latter case, clearly m = n+ 2, q(F ) = 3, but the three quadrangles

can not be all evenly oriented. Then

a4(F ) ≥M(F, 2)− 2q(F ) ≥ (m− n+ 1)(n− 3)− 4 > a4(O
+
n,n+2).

The result thus follows.

Lemma 3.6. Let n ≥ 5 and Gσ ∈ Gσ(n,m) be an oriented graph with n ≤ m <

2(n− 2). Suppose that ∆(Gσ) ≤ n− 2 and Gσ
≁ B+

n,m. Then Gσ ≻ B+
n,m.

Proof. By Theorem 2.2 again, it suffices to prove that a4(G
σ) > a4(B

+
n,m). We

prove this inequality by induction on n. By a direct calculation, the result follows

if n = 5, since then 5 = m < 2(5 − 2) = 6 and there exists exactly four graphs in

Gσ(5, 5), namely, the oriented cycle C3 together with two pendant arcs attached to

two different vertices of the C3, the oddly oriented cycle C4 together with a pendant

arc, B+
5,5 and the oriented cycle C5. Suppose now that n ≥ 6 and the result is true

for smaller n.

Case 1. There is a pendant arc (u, v) in Gσ with pendant vertex v.

By Lemma 3.4 we have

a4(G
σ) = a4(G

σ − v) + a2(G
σ − v − u) = a4(G

σ − v) + e(Gσ − v − u).

Noticing that ∆(Gσ) ≤ n− 2, we have e(Gσ − v − u) ≥ m−∆(Gσ) ≥ m− n+ 2.

By the induction hypothesis, a4(G
σ − v) ≥ a4(B

+
n−1,m−1) with equality if and

only if Gσ − v = B+
n−1,m−1. Then

a4(G
σ) = a4(G

σ − v) + a2(G
σ − v − u)

≥ a4(B
+
n−1,m−1) +m− n+ 2

= a4(B
+
n−1,m−1) + e(Sm−n+1)

= a4(Bn,m)

with equality if and only if Gσ = B+
n,m. The result thus follows.

Case 2. There are no pendant vertices in Gσ.

Let

(d)Gσ = (d1, d2, . . . , di, di+1, . . . , dn)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 692-704, September 2014



ELA

702 On Oriented Graphs With Minimal Skew Energy

be the non-increasing degree sequence of Gσ. We label the vertices of Gσ correspond-

ing to the degree sequence (d)Gσ as v1, v2, . . . , vn such that dGσ(vi) = di for each i.

Assume d1 < n − 2. Then there exists a vertex vk that is not adjacent to v1, but is

adjacent to one neighbor, say vi, of v1. Thus,

(d1 + 1, d2, . . . , di − 1, di+1, . . . , dn)

is the degree sequence of the oriented graph D′ obtained from Gσ by deleting the

arc (vk, vi) and adding the arc (vk, v1), regardless the orientation of the arc (vk, v1).

Rewriting the sequence above such that

(d)D′ = (d′1, d
′
2, . . . , d

′
i, d

′
i+1, . . . , d

′
n)

is also a non-increasing sequence. Then d1 ≥ di ≥ 2, and thus, we have

n
∑

i=1

(

d′i
2

)

>

n
∑

i=1

(

di

2

)

, (3.4)

since
n
∑

i=1

(

d′i
2

)

−
n
∑

i=1

(

di

2

)

=

(

d1 + 1

2

)

+

(

di − 1

2

)

−

(

d1

2

)

−

(

di

2

)

= d1 − di + 1

> 0.

Repeating this procedure, we can eventually obtain a non-increasing graph sequence

(d)D′′ = (d′′1 , d
′′
2 , . . . , d

′′
i , d

′′
i+1, . . . , d

′′
n)

such that ∆(D′′) = d′′1 = n− 2 and

∑

v∈D′′

(

d′′(v)

2

)

>
∑

v∈D′

(

d′(v)

2

)

> · · · >
∑

v∈Gσ

(

d(v)

2

)

. (3.5)

Similarly, we can assume that there exists a vertex vk that is not adjacent to vi,

but is adjacent to one neighbor, say vj , of vi. Thus,

(d1, d2, . . . di + 1, di+1, . . . , dj − 1, dj+1, . . . , dn)

is the degree sequence of the oriented graph D′′′ obtained from D′′ by deleting the

arc (vk, vj) and inserting the arc (vk, vi), regardless the orientation of the arc (vk, vj).

By a similar proof, we can get

∑

v∈D′′′

(

d′′′(v)

2

)

>
∑

v∈D′′

(

d′′(v)

2

)

.
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By repeatedly applying the above procedure, we eventually obtain the degree sequence

(d)B+
n,m

,

(d)B+
n,m

= (n− 2,m− n+ 2, 2, 2, . . . , 2, 1, 1, . . . , 1),

where the number of vertices of degree 2 is m− n+ 2, and the number of vertices of

degree 1 is 2n−m− 4. Finally, we get

∑

v∈B
+
n,m

(

dB
+

(v)

2

)

>
∑

v∈D′′′

(

d′′′(v)

2

)

>
∑

v∈D′′

(

d′′(v)

2

)

> · · · >
∑

v∈Gσ

(

d(v)

2

)

.

Then the lemma follows by combining (3.3) and Lemma 3.1 with the fact that

M(G, 2) =

(

m

2

)

−
∑

v∈Gσ

(

d(v)

2

)

.

Combining Lemma 3.5 with Lemma 3.6, we get the proof of Theorem 1.1 imme-

diately.

Proof of Theorem 1.1. Combining with Lemmas 3.5 and 3.6, the oriented graph

with minimal skew energy among all oriented graphs of Gσ(n,m) with n ≤ m ≤

2(n− 2) is either O+
n,m or B+

n,m. Furthermore, from (3.2) and (3.3), we have

a4(O
+
n,m) = (m− n+ 1)(2n−m− 3)

and

a4(B
+
n,m) = (m− n+ 2)(2n−m− 4).

Then, by a direct calculation we have a4(O
+
n,m) < a4(B

+
n,m) if m < 3n−5

2 , a4(B
+
n,m) =

a4(O
+
n,m) if m = 3n−5

2 , and a4(O
+
n,m) > a4(B

+
n,m) otherwise. The proof is thus

complete by (3.1).
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