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Abstract. The semidefinite matrix rank minimization, which has a broad range of applications

in system control, statistics, network localization, econometrics and so on, is computationally NP-

hard in general due to the noncontinuous and non-convex rank function. A natural way to handle this

type of problems is to substitute the rank function into some tractable surrogates, most popular ones

of which include the convex trace norm and the non-convex Schatten p-norm relaxations with p ∈

(0, 1). The corresponding exactness of these relaxations have absorbed great attention and interest

from researchers both in mathematics and engineering fields. In this paper, a special semidefinite

matrix rank minimization problem with the extended Lyapunov equation constraint arising from

low-order optimal control is considered and shown to possess the desired exact relaxation properties

by exploiting the special structures of the involved linear transformation and by developing some

essential properties and features on rank function and the semidefinite matrix cone.

Key words. Semidefinite matrix rank minimization, Exact relaxation, Schatten p-norm, Ex-

tended Lyapunov equation, Multidimensional scaling.
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1. Introduction. Semidefinite matrix rank minimization is to minimize the

rank of a matrix variable under some affine constraints over the semidefinite matrix

cone. The mathematical model is of the form:

(P ) min{rank(X) : A(X) = b, X ∈ Sn
+},

where X ∈ Sn is the matrix variable, A : Sn → R
m is a linear transformation and

b ∈ R
m. Here and in the sequel, Sn denotes the space of all n × n real symmet-

ric matrices, Sn
+ is the semidefinite matrix cone consisting of all positive semidefinite

matrices in Sn and rank(X) is the rank of X which is the number of all nonzero eigen-

values of X . Problem (P ) has gained plenty of recent attention in both mathematical
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and engineering fields, owing to its wide applications in system control [3, 15, 16, 18],

statistics [4, 13, 20], network localization [10], econometrics, signal processing, quan-

tum information, and many others [2].

Mathematically, problem (P ) is difficult to solve due to the discontinuity and non-

convexity of the objective function. From the viewpoint of computation complexity,

it is generally NP-hard since it includes the cardinality minimization as a special case

when the matrix variable is restricted to be diagonal [1, 11]. A natural way to make

it tractable is to employ some appropriate surrogates for the rank function. Most

popular ones among them include the convex nuclear norm (indeed the trace norm

for positive semidefinite matrices) heuristic [16], and the non-convex Schatten p-norm

relaxation with p ∈ (0, 1) [10]. Since for any X ∈ Sn
+, its Schatten p-norm, termed as

‖X‖p, can be reduced to ‖X‖p =

[

n
∑

i=1

λ
p
i (X)

]1/p

with λi(X) the i-th eigenvalue of

X , and its trace norm, denoted by tr(X), is exactly tr(X) =
n
∑

i=1

λi(X), we can merge

these two relaxation counterparts into the following unified form:

(P̄ ) min{‖X‖pp : A(X) = b,X ∈ Sn
+}

with p ∈ (0, 1].

As the extensive and fruitful study on various algorithms solving low rank so-

lutions based on the tractable problem (P̄ ), a fundamental question arises: under

what conditions the solutions of problem (P̄ ) coincide with the desired minimal rank

solutions of problem (P ). Stimulated by the exact recovery theory on the compressed

sensing (which is indeed the diagonal case in our problem), several strong assump-

tions are imposed on the involved linear transformation A, such as the semi-RIP

condition [19], the s-semigoodness [12], and even some null space property to ensure

the uniqueness of feasible solutions [21]. However, most these conditions are not

easy to verify for deterministic linear transformations. This to some extent might

hinder the extensive applicability of the relaxation approach, especially for those

practical problems in the areas of system control, and positioning and localization.

Fortunately, based on some specific structures of the involved linear transformation,

together with some inherent properties of the constant in the affine constraints, Mes-

bahi and Papavassilopoulos [16], and Parrilo [17] showed that the trace norm re-

laxation succeeded to produce a minimal rank solution if the feasible set takes the

form

{

X ∈ Sn : X −
k
∑

i=1

MiXM⊤

i −Q ∈ Sn
+, X ∈ Sn

+

}

with Q ∈ Sn
+. Even though

the equivalence of this semidefinite matrix rank minimization and its trace norm re-

laxation does not hold resulting from the non-uniqueness of minimal rank solutions,

it still inspires us to consider some other special minimization problems which can

possess the desired exact relaxation with any p ∈ (0, 1].
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In this paper, we concentrate on a special semidefinite matrix rank minimization

problem, which is to pursue the minimal rank solutions of the extended Lyapunov

equation. Related applications can be found in the literature of linear-quadratic

optimal control problems [7, 8, 9, 14]. The corresponding mathematical model can

be formulated as

(P0)

min rank(X)

s.t. AX +XA⊤ +WXW⊤ +BB⊤ = 0,

X ∈ Sn
+,

where A, W ∈ R
n×n and B ∈ R

n×m are given matrices. The relaxation counterpart

is of the following form:

(Pp)

min ‖X‖pp
s.t. AX +XA⊤ +WXW⊤ +BB⊤ = 0,

X ∈ Sn
+,

with p ∈ (0, 1].

Our aim is to establish the exact relaxation theory for this special semidefinite

matrix rank minimization problem. By employing the matrix analysis, together with

properties of the rank function and features of the semidefinite matrix cone, we show

that problems (P0) and (Pp) are equivalent and have a common unique solution.

These results can be regarded as an important part of the refinement to the exact

relaxation theory for general matrix rank minimization, which makes it significant

both in theory and in practice.

The organization of this paper is as follows. Some fundamental properties and

features of the rank function and semidefinite matrix cone are recalled and developed

in Section 2. The main results on exact relaxation are stated in Section 3. Conclusions

are drawn in Section 4.

2. Preliminaries. This section is devoted to recalling and developing some fun-

damental properties and features of the matrix rank function and the semidefinite

matrix cone.

Lemma 2.1 (Spectral Decomposition, [6]). For any X ∈ Sn, there exist some or-

thogonal matrix P = (v1 · · · vn) ∈ R
n×n and real vector λ(X) = (λ1(X), . . . , λn(X))⊤

∈ R
n such that

X = P Diag(λ(X))P⊤ =

n
∑

i=1

λi(X)viv
⊤

i .
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This is called the spectral decomposition of X and λ1(X), . . . , λn(X) are its eigenval-

ues with the corresponding eigenvectors vi ∈ R
n, i = 1, . . . , n.

Lemma 2.2 ([5]). Let X = [xij ] ∈ Sn
+ with its spectral decomposition X =

n
∑

i=1

λi(X)viv
⊤

i , where (v1 · · · vn) is some orthogonal matrix in R
n×n. We have

(i) λi(X) ≥ 0, for any i = 1, . . . , n;

(ii) xii ≥ 0, and xiixjj ≥ x2
ij , for any i, j = 1, . . . , n;

(iii) tr(X) =
n
∑

i=1

λi(X) =
n
∑

i=1

xii.

Lemma 2.3. For any given X ∈ R
n×m and A ∈ Sn

++, if X⊤AX = 0, then

X = 0.

Proof. Note that

0 = X⊤AX = X⊤A1/2A1/2X = (A1/2X)⊤(A1/2X).

Thus, every eigenvalue of (A1/2X)⊤(A1/2X) is zero, which means that all singular

value of A1/2X is zero as well. This implies that A1/2X = 0. Using the invertibility

of A1/2, the desired result follows.

Corollary 2.4. For any X, Y ∈ Sn
+ with X � Y , we have rank(X) ≥ rank(Y )

and ‖X‖pp ≥ ‖Y ‖pp for any 0 < p ≤ 1. Moreover, if X 6= Y , then ‖X‖pp > ‖Y ‖pp for

any 0 < p ≤ 1.

Proof. The first part follows directly from Lemma 2.2 (i) and the nondecreasing of

the function f(t) := tp for any t ≥ 0 and p ∈ (0, 1]. For the moreover part, assume on

the contrary that ‖X‖pp = ‖Y ‖pp, that is
n
∑

i=1

(λi(X)p − λi(Y )p) = 0. It is known from

Corollary 7.7.4 in [5] that λi(X) ≥ λi(Y ) for any i = 1, . . . , n when λ
′

is are arranged

in the nondecreasing order. Together with the nondecreasing of f(t), we immediately

get that λi(X) = λi(Y ) for any i = 1, . . . , n. Thus, tr(X) = tr(Y ). On the other

hand, since X − Y � 0 and X 6= Y , it follows that tr(X) − tr(Y ) = tr(X − Y ) =

〈X − Y, I〉 > 0. This comes to a contradiction. Thus, the desired strict inequality

holds.

Lemma 2.5. For any given A ∈ Sn
+ and any of its principal submatrix Ar ∈ Sr

+

with r ≤ n, we have ‖A‖pp ≥ ‖Ar‖pp for any 0 < p ≤ 1.

Proof. Let λ1(A), λ2(A), . . . , λn(A) be the eigenvalues of A, and λ1(Ar), λ2(Ar),

. . . , λr(Ar) be the ones of Ar, both in a non-increasing order. By definition of the

matrix Schatten-p norm, together with the positive semidefiniteness of A and Ar, we

know that ‖A‖pp =
∑n

i=1
λi(A)

p, ‖Ar‖pp =
∑r

i=1
λi(Ar)

p. It is known from Corollary

3.1.3 in [6] that for any i = 1, . . . , r, λi(Ar) ≤ λi(A). Combining with the nonde-
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creasing of the function f(t) = tp for any t ≥ 0 and 0 < p ≤ 1, the desired result

follows.

It is worth mentioning that all assertions in Corollary 2.4 and Lemma 2.5 can be

extended to the case that p > 1 via a similar proof.

Proposition 2.6. For any given A, W ∈ R
n×n and B ∈ R

n×m and any β > 0

satisfying that A− βI is invertible, set M1 := (A − βI)−1(A + βI), M2 :=
√
2β(A−

βI)−1W and H := 2β(A− βI)−1BB⊤(A− βI)−⊤. Then the following three systems

are equivalent:

(a) AX +XA⊤ +WXW⊤ +BB⊤ = 0, X ∈ Sn
+;

(b) X −∑2

i=1
MiXM⊤

i = H, X ∈ Sn
+.

(c) X −∑2

i=1
MiXM⊤

i −H ∈ Sn
+, X ∈ Sn

+, 〈X −∑2

i=1
MiXM⊤

i −H,X〉 = 0.

Proof. The equivalence between (a) and (b) can be obtained by direct calculation,

and it is trivial to have (c) if (b) holds. Thus, it remains to showing that if the

semidefinite linear complementarity system is consistent at X in (c), then the equality

X−∑2

i=1
MiXM⊤

i = H is valid. For simplicity, denote F (X) := X−∑2

i=1
MiXM⊤

i .

Note that

〈F (X), F (X)−H〉 = ‖F (X)−H‖2F + 〈H,F (X)−H〉 ≥ 0,(2.1)

where the last inequality follows from the semidefiniteness of H and F (X)−H from

(c), and the self-duality of Sn
+. On the other hand,

〈F (X), F (X)−H〉 = 〈F (X), F (X)−H〉 − 〈X,F (X)−H〉

= −〈
2

∑

i=1

MiXM⊤

i , F (X)−H〉(2.2)

≤ 0,

where the first equality follows from the complementarity in (c) and the last inequal-

ity from the semidefiniteness of
∑2

i=1 MiXM⊤

i . Together with (2.1), it yields that

〈F (X), F (X) − H〉 = 0, which further implies that ‖F (X) − H‖2F = 0, and hence,

X −∑2

i=1
MiXM⊤

i −H = 0. This completes the proof.

3. Main result. This section is dedicated to the exact relaxation theory for the

semidefinite matrix rank minimization problem with extended Lyapunov equation

constraint. Before we give the main exact relaxation theorem, an important proposi-

tion is stated which will serve as an essential preparation for the sequel analysis.

Proposition 3.1. For any given A, W ∈ R
n×n and B ∈ R

n×m satisfying

F := {X ∈ Sn
+ : AX+XA⊤+WXW⊤+BB⊤ = 0} 6= ∅, there exists a unique matrix

X∗ ∈ F such that X � X∗ for any X ∈ F .
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Proof. For simplicity, we use F (X) to denote X −
2
∑

i=1

MiXM⊤

i , and F̄ to denote

the set {X ∈ Sn
+ : F (X) −H ∈ Sn

+}, where Mi and H are defined as in Proposition

2.6. It follows from the equivalence in Proposition 2.6 that

F = {X ∈ Sn
+ : F (X)−H ∈ Sn

+, 〈F (X)−H,X〉 = 0} ⊂ F̄ .(3.1)

By employing Lemma II.1 in [16], we know that there exists a unique X̄ such that

X̄ ∈ F̄ such that

X � X̄, ∀X ∈ F̄ .(3.2)

Together with (3.1), we obtain that

X � X̄, ∀X ∈ F .(3.3)

Now we claim that X̄ ∈ F , which is sufficient to show that 〈F (X̄)−H, X̄〉 = 0. As-

sume on the contrary that 〈F (X̄)−H, X̄〉 6= 0. By the semidefiniteness of both F (X̄)−
H and X̄ , we have 〈F (X̄)−H, X̄〉 > 0. Let X̄ = [Q1 Q2]

[

Diag(λ(X̄)) 0

0 0

]

[Q1 Q2]
⊤

be its spectral decomposition with λ(X̄) =
(

λ1(X̄), . . . , λr(X̄)
)⊤

and r = rank(X̄) >

0. From (i) in Lemma 2.2, we have λi(X̄) > 0 for any i = 1, . . . , r. Set V :=
2
∑

i=1

MiX̄M⊤

i + H . It follows from the semidefiniteness of X̄ and H that V ∈ S
n
+.

Applying the semidefiniteness of F (X̄)−H and V , we have

0 � [Q1 Q2]
⊤(F (X̄)−H)[Q1 Q2] =

[

Diag(λ(X̄))−Q⊤
1 V Q1 −Q⊤

1 V Q2

−Q⊤
2 V Q1 −Q⊤

2 V Q2

]

,

and Q⊤
2 V Q2 � 0. Thus, Diag(λ(X̄)) − Q⊤

1 V Q1 ∈ S
r
+\{0}, Q⊤

2 V Q2 ∈ Sn−r
+ ∩

(−Sn−r
+ ) = {0}. Relying on (ii) in Lemma 2.2, we further get Q⊤

1 V Q2 = 0. Hence-

forth,

F (X̄)−H = Q1

(

Diag(λ(X̄))−Q⊤

1 V Q1

)

Q⊤

1 .

For any ǫ > 0 and any Z = Q1Z1Q
⊤
1 ∈ Sn

+ with Z1 ∈ Sr
+, it follows that

F (X̄ − ǫZ)−H = (X̄ − ǫZ)−
2

∑

i=1

Mi(X̄ − ǫZ)M⊤

i −H

= F (X̄)−H − ǫZ + ǫ

2
∑

i=1

MiZM⊤

i

� F (X̄)−H − ǫZ

= Q1

(

Diag(λ(X̄))−Q⊤

1 V Q1 − ǫZ1

)

Q⊤

1 .
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By choosing Z1 := Diag(λ(X̄))−Q⊤
1 V Q1 ∈ S

r
+\{0}, and ǫ ∈ (0, 1), we can very that

F (X̄ − ǫZ)−H � F (X̄)−H − ǫZ = (1 − ǫ)
(

F (X̄)−H
)

∈ S
n
+,

X̄ − ǫZ = Q1

(

(1− ǫ)Diag(λ(X̄) + ǫQ⊤

1 V Q1)
)

Q⊤

1 ∈ S
n
+\{0}.

Thus, X̄ − ǫZ ∈ F̄ , and X̄ − ǫZ 6= X̄. Combining with the fact X̄ � X̄ − ǫZ, this

comes to a contradiction to (3.2). Therefore, we have proven our claim that X̄ ∈ F .

By setting X∗ := X̄, the desired result follows from (3.3).

Theorem 3.2. Let A, M ∈ R
n×n and B ∈ R

n×m. If F (defined as in Proposition

3.1) is nonempty, then problems (P0) and (Pp) are equivalent and share a common

unique solution X∗ with rank(X∗) ≥ rank(B).

Proof. It is known from Proposition 3.1 that there exists some unique X∗ ∈ F
such that X � X∗ for any X ∈ F . Therefore, for any X ∈ F with X 6= X∗,

it follows from Lemma 2.4 that ‖X‖pp > ‖X∗‖pp for any p ∈ (0, 1] and rank(X) ≥
rank(X∗). This indicates that X∗ is the unique solution to problem (Pp) and also

a solution to problem (P0). Now we proceed to show the solution uniqueness of

problem (P0). Assume on the contrary that there exists some Y ∈ F with Y 6= X∗

and rank(Y ) = rank(X∗). Let X∗ = [Q1 Q2]

[

Diag(λ(X∗)) 0

0 0

]

[Q1 Q2]
⊤ be its

spectral decomposition with λ(X∗) = (λ1(X
∗), . . . , λr(X

∗))
⊤

and r = rank(X∗).

Note that Diag(λ(X∗)) ∈ Sr
++ and

[Q1 Q2]
⊤(Y −X∗)[Q1 Q2] =

[ −Diag(λ(X∗)) +Q⊤
1 Y Q1 Q⊤

1 Y Q2

Q⊤
2 Y Q1 Q⊤

2 Y Q2

]

.

This comes to Q⊤
1 Y Q1 ∈ Sr

++. Utilizing the Schur complement theorem [6, p. 100,

Exercise 8], we know that

r = rank(Y ) = rank(Q⊤

1 Y Q1) + rank(M∗)

= r + rank(M∗),

where M∗ := Q⊤
2 Y Q2 −Q⊤

2 Y Q1(Q
⊤
1 Y Q1)

−1Q⊤
1 Y Q2. It further derives that

Q⊤

2 Y Q2 −Q⊤

2 Y Q1(Q
⊤

1 Y Q1)
−1Q⊤

1 Y Q2 = 0.(3.4)

Choose some sufficiently small ǫ > 0 such that X∗ − ǫQ1Q
⊤
1 ∈ Sn

+. By the semidefi-

niteness of [Q1 Q2]
⊤(Y −X∗+ ǫQ1Q

⊤
1 )[Q1 Q2], it follows from the Schur complement

theorem that Q⊤
2 Y Q2−Q⊤

2 Y Q1(Q
⊤
1 Y Q1−(Diag(λ(X∗)−ǫIr))

−1Q⊤
1 Y Q2 � 0. Com-

bining with (3.4), we have

Q⊤

2 Y Q1[(Q
⊤

1 Y Q1)
−1 − L]Q⊤

1 Y Q2 � 0.(3.5)
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where L := (Q⊤
1 Y Q1 − (Diag(λ(X∗) − ǫIr))

−1. Noting that Q⊤
1 Y Q1 ≻ L−1 ≻ 0, it

yields that

(Q⊤

1 Y Q1)
−1 − L ∈ (−Sr

++).(3.6)

Thus,

−Q⊤

2 Y Q1[(Q
⊤

1 Y Q1)
−1 − L]Q⊤

1 Y Q2 � 0.

Combining with (3.5), we have Q⊤
2 Y Q1[(Q

⊤
1 Y Q1)

−1−L]Q⊤
1 Y Q2 = 0. Invoking (3.6),

it follows from Lemma 2.3 that Q⊤
1 Y Q2 = 0. Henceforth, Y = Q1Q

⊤
1 Y Q1Q⊤. By

choosing sufficiently small δ > 0, we can get X0 := X∗ − δ(Y − X∗) = Q1((1 −
δ)Diag(λ(X∗)) − δ(Q⊤

1 Y Q1))Q
⊤
1 � 0. Evidently, X0 ∈ F and X∗ � X0 with X∗ 6=

X0. This contradicts to the fact that X � X∗ for any X ∈ F . Here the solution

uniqueness is concluded. Observe that X∗ = V +H � H . It follows from Corollary

2.4 that rank(X∗) ≥ rank(H) = rank(B). This completes the proof.

It is worth mentioning that the extended Lyapunov equation turns out to be the

continuous-time or discrete-time Lyapunov equation ifW = 0 or A = − 1

2
I. Therefore,

the exact relaxation theorem, as discussed in Theorem 3.2, holds for both of these

two specific cases. Meanwhile, compared with the existing exact relaxation results on

semidefinite matrix rank minimization proposed in [16, 18], we focus on the equality

constraints other than inequalities, and the surrogate of the rank function used as

the objective function, is more general which includes the convex (when p = 1) and

non-convex (when 0 < p < 1) heuristics.

4. Conclusions. Semidefinite matrix rank minimization problems are generally

hard to solve due to the discontinuity and nonconvexity of the rank function. In this

paper, we have dealt with a special case, the extended Lyapunov equation case from

system control. Based on the structures of the involved linear transformation, the

properties of matrix rank function and the features of the semidefinite matrix cone,

we have established the exact relaxation theory for this special semidefinite matrix

rank minimization problems and its convex and non-convex relaxation problems. The

proposed results are of importance both in theory and in practice since they can be

served as an important refinement for the exact relaxation theory for general matrix

rank minimization, and are useful in low-order optimal control problems.
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