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NEW RESULTS ON NONSINGULAR POWER LCM MATRICES∗

JIXIANG WAN† , SHUANGNIAN HU‡ , AND QIANRONG TAN§

Abstract. Let e and n be positive integers and S = {x1, . . . , xn} be a set of n distinct positive

integers. The n × n matrix having eth power [xi, xj ]e of the least common multiple of xi and xj

as its (i, j)-entry is called the eth power least common multiple (LCM) matrix on S, denoted by

([S]e). The set S is said to be gcd closed (respectively, lcm closed) if (xi, xj) ∈ S (respectively,

[xi, xj ] ∈ S) for all 1 ≤ i, j ≤ n. In 2004, Shaofang Hong showed that the power LCM matrix ([S]e)

is nonsingular if S is a gcd-closed set such that each element of S holds no more than two distinct

two prime factors. In this paper, this result is improved by showing that if S is a gcd-closed set such

that every element of S contains at most two distinct prime factors or is of the form plqr with p, q

and r being distinct primes and 1 ≤ l ≤ 4 being an integer, then except for the case that e = 1 and

270, 520, 810, 1040 ∈ S, the power LCM matrix ([S]e) on S is nonsingular. This gives an evidence

to a conjecture of Hong raised in 2002. For the lcm-closed case, similar results are established.

Key words. Gcd-closed set, Lcm-closed set, Greatest-type divisor, Power LCM matrix,

Nonsingularity.

AMS subject classifications. 11C20, 11A05, 15B36.

1. Introduction. Let S = {x1, . . . , xn} be a set of n distinct positive integers.

For any integer x and y, we use (x, y) and [x, y] to denote their greatest common

divisor and least common multiple, respectively. The matrix having (xi, xj) (resp.,

[xi, xj ]) as its (i, j)-entry is called the greatest common divisor (GCD) matrix (resp.,

least common multiple (LCM) matrix) defined on S, denoted by ((xi, xj)) (resp.,

([xi, xj ])). A set S is called factor closed if all divisors of x ∈ S are also in S. In 1876,

Smith [24] obtained that the determinant of GCD matrix ((xi, xj)) on a factor-closed

set S is the product
n
∏

i=1

ϕ(xi), where ϕ is Euler’s totient function and the determinant
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of LCM matrix ([xi, xj ]) on a factor-closed set S is the product
n
∏

i=1

ϕ(xi)π(xi) with

π being the multiplicative function and being defined for the prime power pr by

π(pr) = −p. Since then this topic has received a lot of attention from many authors

and particularly became extremely active in the past decades (see, for example, [1]–

[23] and [25]–[30]).

In [2], Beslin and Ligh generalized Smith’s result on a gcd-closed set S (i.e.,

(xi, xj) ∈ S for all integers i and j with 1 ≤ i, j ≤ n) by showing that det((xi, xj)) =
n
∏

k=1

αk, where αk =
∑

d|xk,d∤xt
xt<xk

ϕ(d). In [3], Bourque and Ligh proved that the LCM

matrix ([xi, xj ]) on a gcd-closed set S is
n
∏

k=1

x2
kβk with βk =

∑

d|xk,d∤xt
xt<xk

g(d), where the

arithmetical function g is defined by g(m) = 1
m

∑

d|m

dµ(d) and µ is the Möbius function.

In [11], Hong extended Beslin and Ligh’s result by showing that the determinant of

power LCM matrix ([xi, xj ]
e) defined on a gcd-closed set S is given as

det([xi, xj ]
e) =

n
∏

k=1

x2e
k αe,k, (1.1)

where

αe,k = αe,k(x1, . . . , xk) =
∑

d|xk,d∤xt
xt<xk

(
1

ζe
∗ µ)(d) (1.2)

and ζe is the arithmetical function defined by ζe(x) = xe. Clearly, α1,k = αk.

Nonsingularity is an important topic in the field of power GCD matrices and

power LCM matrices. From Smith’s result [24], one can easily deduce that the GCD

matrix ((xi, xj)) and LCM matrix ([xi, xj ]) defined on a factor-closed set S are always

nonsingularity. It is known that the GCD matrix ((xi, xj)) on any gcd-closed set S

is nonsingular (see, for instance, Theorem 3 of [1]). In 1992, Bourque and Ligh

[3] conjectured that the LCM matrix ([xi, xj ]) on any gcd-closed set is nonsingular.

Haukkanen et al. [8] gave a counterexample to this conjecture when n = 9. By

introducing the concept of greatest-type divisor, Hong [9] obtained a great reduced

formula for the determinant of the LCM matrix ([xi, xj ]) on any gcd-closed set S and

then he proved that the Bourque-Ligh conjecture is true when n ≤ 7. That is, the

LCM matrix ([xi, xj ]) on any gcd-closed set S = {x1, . . . , xn} is nonsingular if n ≤ 7.

However, for n ≥ 8, Hong [9] showed that there exist gcd-closed sets S = {x1, . . . , xn}

such that αn = 0. Therefore the Bourque-Ligh conjecture is not true when n ≥ 8.

Let e be a given positive integer. By [4], we know that the eth power GCD matrix

((xi, xj)
e) on any gcd-closed set S is nonsingular. By [9], we see that the LCM matrix
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([xi, xj ]) on any gcd-closed set S is not always nonsingular. However, it is still unclear

whether the eth power LCM matrix ([xi, xj ]
e) on any gcd-closed set S is nonsingular

or not with e ≥ 2 being a positive integer. Hong [11] proposed the following conjecture

which answered this problem.

Conjecture. [11] Let e be a given positive integer. Then there exists a positive

integer k(e), depending only on e, such that if n ≤ k(e), then the power LCM matrix

([xi, xj ]
e) on any gcd-closed set S = {x1, . . . , xn} is nonsingular. But for n ≥ k(e)+1,

there exists a gcd-closed set S = {x1, . . . , xn} such that the power LCM matrix

([xi, xj ]
e) on S is singular.

For any integer x > 1, ω(x) denotes the number of distinct prime factors of x

and ω(1) = 0. Regarding the above conjecture, Hong showed the following interesting

result.

Theorem 1.1. [14] Let e ≥ 1 be an integer and S be a gcd-closed set with

maxx∈S{ω(x)} ≤ 2. Then the power LCM matrix ([xi, xj ]
e) on S is nonsingular.

Furthermore, Hong, Shum and Sun [20] considered the case maxx∈S{ω(x)} = 3,

i.e., pqr, p2qr, p3qr ∈ S. They proved that the following result is true.

Theorem 1.2. [20] Let S = {x1, . . . , xn} be a gcd-closed set satisfying every

element is of the form pqr, or p2qr, or p3qr, where p, q, r are distinct primes. If

either e = 1 and 270, 520 /∈ S or e ≥ 2, then the power LCM matrix ([xi, xj ]
e) on S

is nonsingular.

In this paper, our main goal is to continue to study the nonsingularity of the

power LCM matrices. We consider the next case p4qr ∈ S. Incorporated with the

above Theorems 1.1 and 1.2, we have the following improved result.

Theorem 1.3. Let e ≥ 1 be an integer and S be a gcd-closed set such that each

element x of S satisfies that ω(x) ≤ 2 or x = plqr with l ≤ 4 being a positive integer

and p, q and r being distinct prime numbers. Then except for the case that e = 1 and

270, 520, 810, 1040 ∈ S, the power LCM matrix ([xi, xj ]
e) on S is nonsingular.

The paper is organized as follows. In Section 2, we present several basic lemmas

which are needed for the proof of Theorem 1.3. Then in Section 3, we give the proof

of Theorem 1.3. In Section 4, as an application of Theorem 1.3, we establish similar

results when S is lcm closed (i.e., [xi, xj ] ∈ S for all 1 ≤ i, j ≤ n).

The present paper depends heavily on Hong’s methods developed in his previous

papers [9], [14], [15] and [20]. Throughout this paper, we let S = {x1, . . . , xn} be a

gcd-closed set and let |A| denote the cardinality of any finite set A.
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2. Preliminaries. In this section, we state some known definitions and lemmas

which are needed in the proof of Theorem 1.3.

Definition 2.1. [9] Let T be a given positive integers set. For any a, b ∈ T , we

say that a is a greatest-type divisor of b in T , if a | b, a < b and it can be deduced

that c = a from a | c, c | b, c < b and c ∈ T .

Definition 2.2. [20] Let e and k be positive integers and Z = {z1, . . . , zk} be a

set of k distinct positive integers. Then the function βe,k on Z is called a gcd power

function on Z if βe,k is defined by

βe,k(z1, . . . , zk) =























1

ze1
, if k = 1,

1

zek
+

k−1
∑

r=1

(−1)r
∑

1≤i1<···<ir≤k−1

1

(zi1 , . . . , zir , zk)
e
, if k ≥ 2,

where (zi1 , . . . , zir , zk) denotes the greatest common divisor of zi1 , . . . , zir and zk,

respectively.

Lemma 2.3. [15] Let Rk = {yk,1, yk,2, . . . , yk,lk}, where yk,1 < yk,2 < · · · < yk,lk ,

l1 = 0, l2 = 1, l3 = 1 and 1 ≤ lk ≤ k − 2 for k ≥ 4, be the set of all the greatest-type

divisors of xk in S. If αe,k is defined as in (1.2), then

αe,k = βe,lk+1(yk,1, yk,2, . . . , yk,lk , xk).

In the following lemmas, we let Rk = {y1, y2, . . . , ym} be the set of all greatest-

type divisors of xk (1 ≤ k ≤ n) in S, where y1 < y2 < · · · < ym. Then Rk 6= ∅

when k ≥ 2 and R1 = ∅. If m ≥ 2, we define M (m) =
⋃m

r=2M
(m)
r , where M

(m)
r =

{(yi1 , . . . , yir )|1 ≤ i1 < · · · < ir ≤ m} (2 ≤ r ≤ m), and the (yi1 , . . . , yir ) denotes the

greatest common divisor of yi1 , . . . , yir . So, (yi1 , . . . , yir ) ∈ M (m) and |M (m)| ≥ 1.

Lemma 2.4. [20] Let m ≤ 2 be a positive integer. Then we have

βe,m+1(y1, . . . , ym, xk) 6= 0.

Lemma 2.5. [20] Let m ≥ 3 be a positive integer. If |M (m)| = 1, then

βe,m+1(y1, . . . , ym, xk) 6= 0.

Lemma 2.6. [20] If |M (3)| ≤ 3, then βe,4(y1, y2, y3, xk) 6= 0.

Lemma 2.7. [14] If xk = plqf (1 ≤ k ≤ n), where p and q are distinct primes, l

and f are positive integers, then αe,k 6= 0.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 652-669, September 2014



ELA

656 J. Wan, S. Hu, and Q. Tan

3. Lemmas and proof of Theorem 1.3. Throughout let S = {x1, . . . , xn} be

a gcd-closed set. Without loss of generality, we may let 1 ≤ x1 < · · · < xn. In the

following lemmas, we always let xk = p4qr (1 ≤ k ≤ n) be a given positive integer,

where p, q, r are distinct prime numbers. By the remark at the end of [11], we may

let k ≥ 8. Clearly, S = {x1, . . . , xk} is a gcd-closed set. Let Rk = {y1, y2, . . . , ym} be

the set of all greatest-type divisors of xk in S, where y1 < y2 < · · · < ym. Then by

using Lemma 2.3, one has

αe,k = βe,m+1(y1, y2, . . . , ym, xk). (3.1)

Note that yi 6 |yj for all 1 ≤ i 6= j ≤ m. We observe that

Rk ⊆ {p, p2, p3, p4, q, pq, p2q, p3q, p4q, r, pr, p2r, p3r, p4r, qr, pqr, p2qr, p3qr}.

If m ≤ 2, from Lemma 2.4 and (3.1) we obtain that αe,k 6= 0. So we need only to

treat with the case m ≥ 3. We assume that m ≥ 3 in Lemmas 3.1 to 3.5 below.

Lemma 3.1. If at least one of p, q, r is in Rk, then αe,k 6= 0.

Proof. If p ∈ Rk, then Rk ⊆ {q, r, qr, p}. Note that since m ≥ 3, we have

Rk = {p, q, r}. Thus, |M (3)| = 1, and consequently, the result follows from Lemma

2.5 and (3.1). Now we suppose that p /∈ Rk.

If both q ∈ Rk and r ∈ Rk, then we have Rk ⊆ {p2, p3, p4, q, r}. Since m ≥ 3,

Rk = {p2, q, r}, or {p3, q, r}, or {p4, q, r}. This leads to |M (3)| = 1. Thus, the

result follows from Lemma 2.5 and (3.1). If q ∈ Rk and r /∈ Rk, then Rk ⊆

{p2, p3, p4, q, pr, p2r, p3r, p4r}. By m ≥ 3, we have Rk = {p2, q, pr}, or {p3, q, pr},

or {p4, q, pr}, or {p3, q, p2r}, or {p4, q, p2r}, or {p4, q, p3r}. This leads to |M (3)| = 2,

and hence, from Lemma 2.6 and (3.1), the result follows immediately. For q /∈ Rk

and r ∈ Rk, we can show αe,k 6= 0 by using the same arguments as in the case q ∈ Rk

and r /∈ Rk. So Lemma 3.1 is proved.

Lemma 3.2. If p, q, r /∈ Rk, and either p2 ∈ Rk or p3 ∈ Rk, then αe,k 6= 0.

Proof. Since p, q, r /∈ Rk, one has

Rk ⊆ {p2, p3, p4, pq, p2q, p3q, p4q, pr, p2r, p3r, p4r, qr, pqr, p2qr, p3qr}.

If p2 ∈ Rk, then we consider the following two cases:

Case 1. qr /∈ Rk. In this case, Rk ⊆ {p2, pq, pr, pqr}. By m ≥ 3, we have Rk =

{p2, pq, pr}, then we can observe M (3) = {p}. Thus, |M (3)| = 1, and consequently,

we can obtain αe,k 6= 0 by Lemma 2.5 and (3.1).

Case 2. qr ∈ Rk. Then Rk ⊆ {p2, pq, pr, qr}. For m ≥ 3, we have Rk =

{pq, qr, p2}, or Rk = {pr, qr, p2}, or Rk = {pq, pr, qr, p2}. For the former two cases,
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we deduce that |M (3)| = 3. Then the result follows from Lemma 2.6 and (3.1). For

the latter case, Rk = {pq, pr, qr, p2}. From (3.1) and [20], we have

αe,k = βe,5(pq, pr, qr, p
2, p4qr) < βe,5(pq, pr, qr, p

2, p2qr) < 0.

If p3 ∈ Rk, then we also consider the following two cases:

Case 2.1. qr /∈ Rk. In this case, Rk ⊆ {p3, pq, p2q, pr, p2r, pqr, p2qr}. We can

deduce p2qr /∈ Rk. Assume p2qr ∈ Rk, then it is easy to show that Rk ⊆ {p3, p2qr}

and m ≤ 2 < 3. This is clearly a contradiction. If pqr /∈ Rk, then in this case,

Rk ⊆ {p3, pq, p2q, pr, p2r}. Then Rk = {p3, pq, pr}, or Rk = {p3, p2q, p2r}, or

Rk = {p3, pq, p2r}, or Rk = {p3, p2q, pr}. This leads to |M (3)| ≤ 2, and hence,

the desired result follows by Lemma 2.6 and (3.1). If pqr ∈ Rk, In this case,

Rk ⊆ {p3, p2q, p2r, pqr}. Then Rk = {p3, p2q, pqr}, or Rk = {p3, p2r, pqr}, or

Rk = {p3, p2q, p2r, pqr}. For the former two cases, we have |M (3)| = 3, and hence,

by using Lemma 2.6 and (3.1) the desired result follows immediately. For the latter

case, Rk = {p3, p2q, p2r, pqr}, we have

αe,k = βe,5(p
3, p2q, p2r, pqr, p4qr) < βe,5(p

3, p2q, p2r, pqr, p3qr).

By using the Hong-Shum-Sun result in [20], we get that αe,k < 0.

Case 2.2. qr ∈ Rk. Then Rk ⊆ {p3, pq, p2q, pr, p2r, qr}. Since m ≥ 3, we

see that Rk = {piq, qr, p3}, i ∈ {1, 2}, or Rk = {pjr, qr, p3}, j ∈ {1, 2}, or Rk =

{piq, pjr, qr, p3}, i, j ∈ {1, 2}. For the former two cases, we have |M (3)| = 3. So the

result follows from Lemma 2.6 and (3.1). For the case Rk = {piq, pjr, qr, p3}, with

i, j ∈ {1, 2}, by Hong et al. [20], we know that αe,k = βe,5(p
iq, pjr, qr, p3, p3qr) 6= 0.

This ends the proof of Lemma 3.2.

Lemma 3.3. Let p, q, r, qr /∈ Rk and p4 ∈ Rk. Then each of the following is

true:

(i) If either e ≥ 2 or xk 6∈ {810, 1040}, then αe,k 6= 0.

(ii) For xk = 810 or 1040, there exists a gcd-closed set S = {x1, . . . , xk}, where

1 ≤ x1 < · · · < xk−1 < xk, such that α1,k = 0.

Proof. Since p4 ∈ Rk, qr /∈ Rk, we have

Rk ⊆ {p4, pq, p2q, p3q, pr, p2r, p3r, pqr, p2qr, p3qr}.

We can deduce p3qr /∈ Rk. If p3qr ∈ Rk, then it is easy to show that Rk ⊆
{p4, p3qr} and m ≤ 2 < 3. This is a contradiction. If p2qr ∈ Rk, then Rk ⊆
{p4, p3q, p3r, p2qr}. We can easily deduce Rk = {p4, p3q, p3r}, or Rk = {p4, p3q, p2qr},
or Rk = {p4, p3r, p2qr}, or Rk = {p4, p3q, p3r, p2qr}. For the former three cases, we
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have |M (3)| ≤ 3. The desired result follows immediately from Lemma 2.6 and (3.1).
For the latter case, Rk = {p4, p3q, p3r, p2qr}, we have

αe,k = βe,5(p
4
, p

3
q, p

3
r, p

2
qr, p

4
qr)

=
1

(p4qr)e
−

1

(p4)e
−

1

(p3q)e
−

1

(p3r)e
−

1

(p2qr)e
+

2

(p3)e
+

1

(p2q)e
+

1

(p2r)e
−

1

(p2)e

=
1

(p4qr)e
[1− (pe + r

e
− p

e
r
e)(pe + q

e
− p

e
q
e)] < 0.

If pqr ∈ Rk, then Rk ⊆ {p4, p2q, p3q, p2r, p3r, pqr}. Hence, one can easily deduce

that Rk = {p4, piq, pqr}, i ∈ {2, 3}, or Rk = {p4, pjr, pqr}, j ∈ {2, 3}, or Rk =

{p4, piq, pjr, pqr}, i, j ∈ {2, 3}. For the former two cases, we have |M (3)| = 3,

and hence, the result follows by Lemma 2.6 and (3.1). For the latter case, Rk =

{p4, piq, pjr, pqr}, i, j ∈ {2, 3}.

For i = j = 3, we have

αe,k = βe,5(p
4, p3q, p3r, pqr, p4qr) =

∆

(p4qr)e
,

where

∆ = 1− qere − pere − peqe − p3e + (2peqere + p3ere + p3eqe − p3eqere).

If e ≥ 2, then

2peqere+p3ere+p3eqe−p3eqere = peqere(2−
p2e

3
)+p3ere(1−

qe

3
)+p3eqe(1−

re

3
) < 0.

Hence, αe,k < 0.

Now let e = 1. In this case, ∆ = 1− qr− pr− pq− p3+(2pqr+ p3r+ p3q− p3qr).

Consider the following cases:

(a) p = 2. In this case, we have ∆ = −(5qr − 6q − 6r + 7). Since q ≥ 3, we have

5qr− 6q− 6r+7 = q(5r− 6)− 6r+7≥ 3(5r− 6)− 6r+7= 9r− 11 > 0. Thus, ∆ < 0

and αk < 0.

(b) p ≥ 3. If both q 6= 2 and r 6= 2, we have 2pqr + p3r + p3q − p3qr =

pqr(2 − p2

3 ) + p3r(1 − q

3 ) + p3q(1 − r
3 ) < 0. We conclude that ∆ < 0, and therefore,

αk < 0. If q = 2, then

∆ = 1− 2r − 2p+ 3pr + p3 − p3r = −p[p2(r − 1)− 3r] + 1− 2p− 2r.

Since p ≥ 3, p2(r − 1) − 3r ≥ 9(r − 1)− 3r = 6r − 9 > 0. Thus, ∆ < 0. This shows

that αk < 0. For the case r = 2, we can also prove that αk < 0.
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For i = j = 2, we have

αe,k = βe,5(p
4, p2q, p2r, pqr, p4qr) =

∆

(p4qr)e

with

∆ = 1− qere − p2ere − p2eqe − p3e + (2p2eqere + p3ere + p3eqe − p3eqere).

Assume that e ≥ 2. Then

2p2eqere+p3ere+p3eqe−p3eqere = p2eqere(2−
pe

2
)+p3e[

qe

4
(4−re)+

re

4
(4−qe)] < 0.

Hence, αe,k < 0.

Now we return to the case e = 1. In this case,

∆ = 1− qr − p2r − p2q − p3 + (2p2qr + p3r + p3q − p3qr).

Consider the following cases:

(a) p = 2. Then ∆ = 1− [(q− 4)(r− 4)− 8]. Suppose that (q− 4)(r− 4)− 8 6= 1.

Thus, αk 6= 0. If (q − 4)(r − 4)− 8 = 1, then we can get q − 4 = 1 and r − 4 = 9, or

q − 4 = 9 and r − 4 = 1. Thus, q = 5 and r = 13, or q = 13 and r = 5. Let

S = {2, 22, 2× 5, 2× 13, 24, 22 × 5, 22 × 13, 2× 5× 13, 24 × 5× 13}

= {2, 4, 10, 16, 20, 26, 52, 130, 1040}.

Clearly, S is gcd closed and α9(2, 4, 10, 16, 20, 26, 52, 130, 1040) = 0.

(b) p = 3. We consider ∆ = −10qr + 18q + 18r − 26. Thus, ∆ = 0 if and only if

q = 2, r = 5, or q = 5, r = 2. If we let p = 3, q = 2, r = 5 and S = {3, 2 × 3, 32, 3 ×

5, 34, 32 × 5, 32 × 2, 3× 2× 5, 34 × 2× 5} = {3, 6, 9, 15, 18, 30, 45, 81, 810}, then S is a

gcd-closed set and αk = α9(3, 6, 9, 15, 18, 30, 45, 81, 810) = 0. For p = 3, q = 5, r = 2,

we can reduce the same result. For q > 5, 5qr− 9q− 9r+ 13 = q(5r− 9)− 9r+13 >

5(5r − 9)− 9r + 13 = 16r − 32 ≥ 0. It means that ∆ < 0 and αk < 0.

(c) p = 5. ∆ = −4(19qr−25q−25r+31). We consider 19qr−25q−25r+31 = 0.

If q = 2, or q = 3, it follows that r is not a prime number. Then we can get ∆ 6= 0,

and it means αk 6= 0. For q ≥ 7, 19qr − 25q − 25r + 31 = q(19r − 25)− 25r + 31 ≥

7(19r − 25)− 25r + 31 = 108r − 144 > 0. Thus, ∆ < 0 and αk < 0.

(d) p ≥ 7. If q = 2, then ∆ = −p3r + p3 + 3p2r − 2p2 − 2r + 1 = −p2[p(r − 1)−

3r+2]−2r+1. Since p ≥ 7, we have p(r−1)−3r+2 ≥ 7(r−1)−3r+2 = 4r−5 > 0.

Thus, ∆ < 0. Using the same arguments to the case r = 2, we can get that ∆ < 0.

For q ≥ 3 and r ≥ 3, we have

2p2qr + p3r + p3q − p3qr = p2qr(2 −
p

3
) + p3[

q

3
(3− r) +

r

3
(3− q)] < 0.
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Thus, ∆ < 0. Hence, we conclude that ∆ < 0, and therefore, αk < 0.

For i = 2, j = 3, we have

αe,k = βe,5(p
4, p2q, p3r, pqr, p4qr) =

∆

(p4qr)e
,

where ∆ = 1− qere−p2ere−peqe−p3e+(p2eqere+peqere+p3ere+p3eqe−p3eqere).

It is easy to see that ∆ < 0 when e ≥ 2. Now let e = 1, then ∆ = 1− qr − p2r −

pq − p3 + (p2qr + pqr + p3r + p3q − p3qr). Consider the following three cases:

(a′) p = 2. In this case, ∆ = −(3qr − 6q − 4r + 7) = −((3q − 4)(r − 2)− 1) < 0.

It means that αk < 0.

(b′) p = 3. ∆ = −26qr + 24q + 18r − 26. We have 13qr − 12q − 9r + 13 =

q(13r − 12) − 9r + 13 ≥ 2(13r − 12) − 9r + 13 = 17r − 11 > 0. Thus, ∆ < 0 and

αk < 0.

(c′) p ≥ 5. In this case, we have

p2qr + pqr + p3r + p3q − p3qr = pqr(p+ 1−
p2

3
) + p3[

q

3
(3 − r) +

r

3
(3− q)].

Clearly, p + 1 − p2

3 = 1
3 [−(p − 3

2 )
2 + 21

4 ] < 0. If both q 6= 2 and r 6= 2, then

p2qr + pqr + p3r + p3q − p3qr < 0. It leads to ∆ < 0.

If q = 2, then ∆ = −p(p2r − p2 − pr − 2r) − 2r − 2p− 1 = −p[p(p(r − 1)− r) −

2r] − 2r − 2p − 1. We have p
(

p(r − 1) − r
)

− 2r ≥ 5(4r − 5) − 2r = 18r − 25 > 0.

Then ∆ < 0. If r = 2, then ∆ = −p[p(p(q − 1) − 2q) − q] − 2p2 − 2q + 1. Since

p(q−1)−2q ≥ 5q−5−2q = 3q−5 > 0, we observe that p[p(q−1)−2q]−q ≥ 14q−25 > 0.

Then we conclude that ∆ < 0 and αk < 0.

For i = 3, j = 2, we have αe,k = βe,5(p
4, p3q, p2r, pqr, p4qr). Using the same

arguments, one has αe,k < 0.

Finally, if pqr, p2qr, p3qr /∈ Rk, we have Rk ⊆ {p4, pq, p2q, p3q, pr, p2r, p3r}. At

this moment, Rk = {p4, piq, pjr}, i, j ∈ {1, 2, 3}. It can be confirmed that |M (3)| ≤ 2.

Then from Lemma 2.6 and (3.1), we can easily deduce that αk 6= 0. This ends the

proof of Lemma 3.3.

Lemma 3.4. If p, q, r /∈ Rk and p4, qr ∈ Rk, then αe,k 6= 0.

Proof. Since p4 ∈ Rk and qr ∈ Rk, we have Rk ⊆ {p4, pq, p2q, p3q, pr, p2r, p3r, qr}.

Thus, we can obtain that Rk = {piq, qr, p4}, i ∈ {1, 2, 3}, or Rk = {pjr, qr, p4},

j ∈ {1, 2, 3}, or Rk = {piq, pjr, qr, p4}, i, j ∈ {1, 2, 3}. In the former two cases, we

deduce that |M (3)| = 3. Then the desired result follows from Lemma 2.6 and (3.1).
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For the latter case, Rk = {piq, pjr, qr, p4}, i, j ∈ {1, 2, 3}. Therefore we have

αe,k =βe,5(p
4, qr, piq, pjr, p4qr)

=
1

(p4qr)e
−

1

(p4)e
−

1

qere
−

1

(piq)e
−

1

(pjr)e
+

1

pie
+

1

pje
+

1

qe
+

1

re
− 1

=
∆

(p4qr)e
,

where ∆ = 1− qere − p4e − p(4−i)ere − p(4−j)eqe + p(4−i)eqere + p(4−j)eqere + p4ere +

p4eqe − p4eqere.

For i = 1, j = 1, we have

∆ = (1− pe)[(1 + pe + p2e + p3e)+ p3e(
qere

2
− (qe + re)) + qere(pe(

p2e

2
− pe− 1)− 1)].

It is easy to see that αe,k < 0 when e ≥ 2. Now we return to the case e = 1. Let

A = 1+p+p2+p3+p3( qr2 − (q+r))+qr(p(p
2

2 −p−1)−1). We consider the following

cases.

(a) If p = 2, then A = (q− 8)(r− 8)− 49. We have A = 0 if and only if q− 8 = 1

and r − 8 = 49, or q − 8 = 49 and r − 8 = 1, or q − 8 = 7 and r − 8 = 7. For q and r

are distinct primes, clearly this is a contradiction. Thus, A 6= 0, hence αk 6= 0.

(b) If p ≥ 3, we have p(p
2

2 − p− 1)− 1 = p( (p−1)2−3
2 )− 1 > 0. Now we return to

qr

2 −(q+r). Suppose that (q−2)(r−2)−4 ≥ 0. Then qr

2 −(q+r) = 1
2 ((q−2)(r−2)−4) ≥

0. It leads to αk < 0. If (q−2)(r−2)−4 < 0, we have (q−2)(r−2) = 0, 1, 2, 3. For q

and r are distinct primes, we can obtain (q−2)(r−2) = 0 or 3. When (q−2)(r−2) = 3,

we have q = 3 and r = 5, or q = 5 and r = 3. Then

A = 8p3−14p2−14p−14 = p(8p2−14p−14)−14 ≥ 3×(8×32−14×3−14)−14 > 0.

It leads to αk < 0. When (q − 2)(r − 2) = 0, we can solve the equation and get

q = 2, or r = 2. If q = 2, A = (r − 1)p3 + (1 − 2r)p2 + (1 − 2r)p + (1 − 2r) =

p[(r − 1)p2 + (1 − 2r)p + (1 − 2r)] + (1 − 2r). If p = 3, at the moment, A = 27(r −

1) + 9(1− 2r) + 3(1− 2r) + (1− 2r) = r− 14 6= 0. Thus, αk 6= 0. If p ≥ 5, define the

function h(x) := (r−1)x2+(1−2r)x+(1−2r). Then h
′

(x) = 2(r−1)x+(1−2r). We

can obtain that the derivative h
′

(x) > 0 if x > 2r−1
2(r−1) . It is easy to see 5 > 2r−1

2(r−1) and

h(5) = 13r− 19 > 0. Hence, A = ph(p) + (1− 2r) ≥ 5h(5)+ (1− 2r) = 63r− 94 > 0.

So αk < 0.

For i = 1, j = 2, we have Rk = {p4, qr, pq, p2r}. Then

αe,k = βe,5(p
4, qr, pq, p2r, p4qr) =

∆

(p4qr)e
.
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We still have

∆ = 1− qere − p4e − p3ere − p2eqe + p3eqere + p2eqere + p4ere + p4eqe − p4eqere

= (1− pe)[pe(p2e(1− qe)(1− re) + pe(1− qe) + (1− qere)) + (1− qere)].

Consider the function h(x) = (1− qe)(1− re)x2 − (qe− 1)x+1− qere. If x > 1
2(re−1) ,

then h′(x) > 0. Assume that e ≥ 2, we have pe ≥ 4 and h(4) > 0. This leads to

peh(pe) + 1− qere ≥ 4h(4) + 1− qere = 4[16(1− qe)(1− re)− 4(qe − 1) + 1− qere] +

1− qere=59qere−80qe−64re+85 ≥ 59×4qe+59×4re−80qe−64re−16×59+85=

156qe + 172re − 859 > 0. This proves that ∆ < 0 and αe,k < 0.

Now let e = 1. If p = 2, we consider the function k(p) = p3(1− q)(1− r)+ p2(1−

q) + p(1− qr) + (1− qr). Then k(2) = 5qr − 12q − 8r + 15. We can prove k(2) 6= 0.

Suppose that k(2) = 0. If q = 3, it is easy to see 7r = 21. For q, r are distinct

prime number, this is clearly a contradiction. Thus, k(2) 6= 0. Similarly, by using

the same arguments as in the cases q = 5, q = 7, we can show k(2) 6= 0. If q ≥ 11,

k(2) = 4q(r − 3) + r(q − 8) + 15 > 0. Thus, we conclude that k(2) 6= 0. It means

that ∆ 6= 0 if p = 2, and therefore, αk 6= 0. If p ≥ 3, then consider the function

h(x) := (1 − q)(1 − r)x2 − (q − 1)x + 1− qr. We have h(3) = 8qr − 12q − 9r + 13 ≥

8(2q+2r− 4)− 12q− 9r+13 = 4q+7r− 19 > 0. Since h′(x) > 0 for x > 1
2(r−1) , then

ph(p)+1−qr ≥ 3h(3)+1−qr = 23qr−36q−27r+40 ≥ 23(2q+2r)−92−36q−27r+40 =

10q+19r− 52 > 0. Therefore, we obtain ∆ = (1− p)[ph(p)+ 1− qr] < 0 and αk < 0.

For i = 2, j = 1, Rk = {p4, qr, p2q, pr}. We have

αe,k = βe,5(p
4, qr, p2q, pr, p4qr) =

∆

(p4qr)e
,

where

∆ = (1− pe)[pe(p2e(1− qe)(1 − re) + pe(1− re) + (1− qere)) + (1− qere)].

By the same arguments as in the case i = 1, j = 2, we can show that αe,k 6= 0.

For i = 2, j = 2, Rk = {p4, qr, p2q, p2r}. Then

αe,k = βe,5(p
4, qr, p2q, p2r, p4qr) =

∆

(p4qr)e
,

where

∆ = (1− pe)[(p3e(qe − 1)(re − 1)− peqere) + p2e(qere − qe − re + 1)+ pe + 1− qere].

For qe

qe−1 ≤ 2, re

re−1 ≤ 2 and q 6= r, we observe qere

(qe−1)(re−1) < 22 ≤ p2e. Therefore

p2e(qe − 1)(re − 1) − qere > 0, and it leads to p3e(qe − 1)(re − 1) − peqere > 0.

Since p2e(qere − qe − re + 1) + pe + 1 − qere≥ 4(qere − qe − re + 1) + 2 + 1 − qere
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= 3qere − 4qe − 4re +7≥ 6qe + 6re − 12− 4qe − 4re +7 = 2qe +2re − 5 > 0, we have

∆ < 0 and αe,k < 0.

For i = 3, j = 3, Rk = {p4, qr, p3q, p3r}. In this case, one has

αe,k = βe,5(p
4, qr, p3q, p3r, p4qr) =

∆

(p4qr)e
,

where ∆ = (1− pe)[(qere + 1− qe − re)pe(p2e + pe + 1) + 1− qere].

We consider A = (qere + 1 − qe − re)pe(p2e + pe + 1) + 1 − qere. For pe ≥ 2

and qere + 1 − qe − re > 0, we have A ≥ 14(qere − qe − re + 1) + 1 − qere =

13qere − 14qe − 14re + 15 ≥ 12qe + 12re − 37 > 0. This proves that ∆ < 0 and

αe,k < 0.

For i = 1, j = 3, Rk = {p4, qr, pq, p3r}. It follows that

αe,k = βe,5(p
4, qr, pq, p3r, p4qr) =

∆

(p4qr)e

with ∆ = (1− pe)[(qe − 1)pe((re − 1)p2e − pe − 1) + 1− qere].

Assume that e ≥ 2. Then it is easy to show that ∆ < 0, and hence, αe,k < 0.

Now we return to e = 1. Let A(p) = (q − 1)p((r − 1)p2 − p− 1) + 1− qr.

If p = 2, A(2) = 7qr − 14q − 8r + 15. Suppose A(2) = 0, this means 7qr − 14q −

8r + 15 = 0. For r 6= 2, then q = 8r−15
7r−14 = 1 + r−1

7(r−2) . Since 0 < r−1
7(r−2) < 1 for r > 2,

this contradicts with that q is a prime number. Thus, we can deduce A(2) 6= 0, and

therefore ∆ 6= 0. It leads to αe,k 6= 0. If p ≥ 3, let the function h(x) = (r−1)x2−x−1.

One has h′(x) = 2(r−1)x−1. It is obvious that h′(x) > 0 if x > 1
2(r−1) . Since h(3) >

0, then A(p) = (q−1)ph(p)+1−qr ≥ 3(q−1)h(3)+1−qr = 3(q−1)(9r−13)+1−qr

= 26qr− 39q − 27r+ 40≥ 52q+ 52r− 104− 27r− 39q+ 40= 13q+ 25r− 64 > 0. So

we have ∆ < 0. It leads to αk < 0.

For i = 3, j = 1, Rk = {p4, qr, p3q, pr}. We have

αe,k = βe,5(p
4, qr, p3q, pr, p4qr) =

∆

(p4qr)e
,

where

∆ = (1− pe)[(re − 1)pe((qe − 1)p2e − pe − 1) + 1− qere].

We can still prove that αe,k < 0 by using similar arguments as i = 1, j = 3.

For i = 2, j = 3, Rk = {p4, qr, p2q, p3r}. In this case, we have

αe,k = βe,5(p
4, qr, p2q, p3r, p4qr) =

∆

(p4qr)e
,
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where

∆ = (1− pe)[pe((qere + 1− qe − re)p2e + (qere + 1− qe − re)pe + 1− qe) + 1− qere].

Let h(x) = (qere + 1 − qe − re)x2 + (qere + 1 − qe − re)x + 1 − qe, and thereby

h′(x) = 2(qere + 1 − qe − re)x + qere + 1 − qe − re. It is easy to see that h′(x) > 0

if x > − 1
2 . And pe ≥ 2 implies h(pe) ≥ h(2) = 6qere − 7qe − 6re + 7≥ 12qe + 12re −

24− 7qe − 6re + 7= 5qe + 6re − 17 > 0. Then peh(pe) + 1 − qere≥ 2h(2) + 1 − qere

= 11qere−14qe−12re+15≥ 8qe+10re−29 > 0. It follows that ∆ < 0 and αe,k < 0.

For i = 3, j = 2, Rk = {p4, qr, p3q, p2r}. We have

αe,k = βe,5(p
4, qr, p3q, p2r, p4qr) =

∆

(p4qr)e
,

where

∆ = (1− pe)[pe((qere + 1− qe − re)p2e + (qere + 1− qe − re)pe + 1− re) + 1− qere].

By using similar arguments as the case i = 2, j = 3, the result will be observed. This

finishes the proof of Lemma 3.4.

Lemma 3.5. If p, q, r, p2, p3 and p4 /∈ Rk, then αe,k 6= 0.

Proof. The proof of the lemma is rather complicated. We proceed the proof by

considering two cases.

Case 1. qr /∈ Rk. For p, q, r, p
2, p3, p4 /∈ Rk, one has

Rk ⊆ {pq, p2q, p3q, p4q, pr, p2r, p3r, p4r, pqr, p2qr, p3qr}.

Assume pqr, p2qr and p3qr /∈ Rk. Then Rk ⊆ {pq, p2q, p3q, p4q, pr, p2r, p3r, p4r}.

Thus, Rk = {piq, pjr}, i, j ∈ {1, 2, 3, 4}. This contradicts m ≥ 3. Then Rk contains

exactly one of pqr, p2qr and p3qr.

If p3qr ∈ Rk, then Rk = {p4q, p4r, p3qr}. It follows that

αe,k = βe,4(p
4q, p4r, p3qr, p4qr) =

1

(p4qr)e
(1 − pe)(1 − qe)(1 − re) < 0.

If p2qr ∈ Rk, then Rk ⊆ {p3q, p4q, p3r, p4r, p2qr}. Thus, Rk = {piq, pjr, p2qr}, i,

j ∈ {3, 4}. In [20], Hong, Shum and Sun proved that βe,4(p
lq, pgr, pqr, p3qr) < 0 for

l, g ∈ {2, 3}. For i, j ∈ {3, 4}, we have

αe,k = βe,4(p
iq, pjr, p2qr, p4qr) =

1

pe
βe,4(p

lq, pgr, pqr, p3qr) < 0

with l, g ∈ {2, 3}.
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If pqr ∈ Rk, then Rk ⊆ {p2q, p3q, p4q, p2r, p3r, p4r, pqr}. In this case, Rk =

{piq, pjr, pqr}, i, j ∈ {2, 3, 4}. It follows that

αe,k = βe,4(p
iq, pjr, pqr, p4qr)

=
1

(p4qr)e
−

1

(piq)e
−

1

(pjr)e
−

1

(pqr)e
+

1

(pq)e
+

1

(pr)e
+

1

pe·min{i,j}
−

1

pe

≤ (
1

(p4qr)e
−

1

(piq)e
)−

1

(pjr)e
−

1

(pqr)e
+

1

(pq)e
+

1

(pr)e
+

1

p2e
−

1

pe

= (
1

(p4qr)e
−

1

(piq)e
)−

1

(pjr)e
−

1

(pqr)e
+

1

pe
(
1

qe
+

1

re
+

1

pe
− 1).

It is easy to see that αe,k < 0 when e ≥ 2. Let e = 1. Then

αk ≤
1

p4qr
−

1

piq
−

1

pjr
−

1

pqr
+

1

p
(
1

q
+

1

r
+

1

p
− 1).

If {p, q, r} 6= {2, 3, 5}, then 1
q
+ 1

r
+ 1

p
− 1 ≤ 1

2 + 1
3 + 1

7 − 1 = − 1
42 . This shows that

αk < 0. If {p, q, r} = {2, 3, 5}, we have 1
q
+ 1

r
+ 1

p
− 1 = 1

2 + 1
3 + 1

5 − 1 = 1
30 . At this

time, pqr = 30 and − 1
pqr

+ 1
p
(1
q
+ 1

r
+ 1

p
− 1) = − 1

30 + 1
30p < 0. Hence, αk < 0.

Case 2. qr ∈ Rk. Since p, q, r, p2, p3, p4 /∈ Rk, we have

Rk ⊆ {pq, p2q, p3q, p4q, pr, p2r, p3r, p4r, qr}.

From m ≥ 3, one has Rk = {piq, pjr, qr}, i, j ∈ {1, 2, 3, 4}. Thus,

αe,k =
1

(p4qr)e
−

1

(qr)e
−

1

(piq)e
−

1

(pjr)e
+

1

qe
+

1

re
+

1

pe·min(i,j)
− 1. (3.2)

For i, j ∈ {1, 2, 3}, by (3.1) and the Hong-Shum-Sun theorem [20], we have

αe,k = βe,4(p
iq, pjr, qr, p4qr) < βe,4(p

iq, pjr, qr, p3qr) < 0.

For i = 1, j = 4, or i = 4, j = 1, by (3.2) we have

αe,k =
1

(p4qr)e
−

1

(qr)e
−

1

(pq)e
−

1

(p4r)e
+

1

qe
+

1

re
+

1

pe
− 1

=
1

(p4qr)e
[(1− pe)(1− qe)(p3e(1− re) + p2e + p+ 1)] < 0,

or

αe,k =
1

(p4qr)e
[(1− pe)(1− re)(p3e(1− qe) + p2e + p+ 1)] < 0.
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For i = 2, j = 4, or i = 4, j = 2, by (3.2) we have

αe,k =
1

(p4qr)e
−

1

(qr)e
−

1

(p2q)e
−

1

(p4r)e
+

1

qe
+

1

re
+

1

p2e
− 1

=
(1− pe)(1− qe)(1 − re)

(pqr)e
+

(1− pe)(1 − qe)(p2e + pe + 1− p2ere)

(p4qr)e
< 0,

or

αe,k =
(1− pe)(1− qe)(1 − re)

(pqr)e
+

(1− pe)(1 − re)(p2e + pe + 1− p2eqe)

(p4qr)e
< 0.

For i = 3, j = 4, or i = 4, j = 3, by (3.2) we have

αe,k =
1

(p4qr)e
−

1

(qr)e
−

1

(p3q)e
−

1

(p4r)e
+

1

qe
+

1

re
+

1

p3e
− 1

=
(1 − pe)(1 − qe)(1 − re)

(pqr)e
+

(1− pe)(1− qe)[1 + (1− re)(pe + p2e)]

(p4qr)e
< 0,

or

αe,k =
(1 − pe)(1 − qe)(1 − re)

(pqr)e
+

(1− pe)(1− re)[1 + (1− qe)(pe + p2e)]

(p4qr)e
< 0.

For i = 4, j = 4, by (3.2) we have

αe,k =
1

(p4qr)e
−

1

(qr)e
−

1

(p4q)e
−

1

(p4r)e
+

1

qe
+

1

re
+

1

p4e
− 1

=
(p4e − 1)(qe + re − qere − 1)

(p4qr)e
< 0.

Hence, the proof of Lemma 3.5 is complete.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let S = {x1, . . . , xn} be a gcd-closed set. By [11], we know

that the determinant of power LCM matrix ([xi, xj ]
e) defined on S equals the product

∏n

k=1 x
2e
k αe,k with αe,k being defined as in (1.2). Clearly, if there exists an element

xk ∈ S (1 ≤ k ≤ n) such that αe,k = 0, then the power LCM matrix ([xi, xj ]
e) on S is

singular. The assumption tells us that each element xk of S satisfies that ω(xk) ≤ 2

or xk = plqr with l ≤ 4 being a positive integer and p, q and r being distinct prime

numbers. First Lemma 2.7 gives us that if xk ∈ S such that ω(xk) ≤ 2, then αe,k 6= 0.

Now we turn our attention to the case that xk = plqr with l ≤ 4. It is divided into

the following two cases.

Case 1. 1 ≤ l ≤ 3. It is easy to see that except for the case that e = 1 and 270,

520∈ S, the power LCM matrix ([xi, xj ]
e) on S is nonsingular by Theorem 1.2.
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Case 2. l = 4. Note that we use Rk = {y1, y2, . . . , ym} to denote the set of all

the greatest-type divisors of xk in S. Thus,

Rk ⊆ {p, p2, p3, p4, q, pq, p2q, p3q, p4q, r, pr, p2r, p3r, p4r, qr, pqr, p2qr, p3qr}.

If m ≤ 2, from Lemma 2.4 and (3.1) we can obtain that αe,k 6= 0. Then we can only

concentrate on the case m ≥ 3. Consider the following five subcases:

Subcase 2.1. At least one of p, q and r is in Rk. By Lemma 3.1 we have αe,k 6= 0.

Subcase 2.2. p, q, r /∈ Rk, and either p2 ∈ Rk or p3 ∈ Rk. By Lemma 3.2,

αe,k 6= 0.

Subcase 2.3. p, q, r, qr /∈ Rk and p4 ∈ Rk. If e ≥ 2 or xk 6∈ {810, 1040},

then Lemma 3.3 tells us that αe,k 6= 0. If e = 1 and xk = 810 or 1040, then

by Lemma 3.3 we know that there exists a gcd-closed set S = {x1, . . . , xk}, where

1 ≤ x1 < · · · < xk−1 < xk, such that αe,k = 0.

Subcase 2.4. p, q, r /∈ Rk and p4, qr ∈ Rk. Then αe,k 6= 0 by Lemma 3.4.

Subcase 2.5. p, q, r, p2, p3 and p4 /∈ Rk. Then αe,k 6= 0 by Lemma 3.5.

It follows from the above five subcases that if l = 4, then except for the case that

e = 1 and 810, 1040 ∈ S, the power LCM matrix ([xi, xj ]
e) on S is nonsingular.

This completes the proof of Theorem 1.3.

4. Application. In this section, we give an application of our main result. First

we need a known definition.

Definition 4.1. [14] Let S = {x1, . . . , xn} be a set of n distinct positive integers.

Let m = lcm(S) denote the least common multiple of all elements in S. Then the

reciprocal set of S, denoted by mS−1, is defined by mS−1 = {m
x1

, . . . , m
xn

}.

Lemma 4.2. [14] Let S = {x1, . . . , xn} be a set of n distinct positive integers.

Let e be a real number and m = lcm(S). Then,

([xi, xj ]
e) =

1

me
· diag(xe

1, . . . , x
e
n) ·

([m

xi

,
m

xj

]e)

· diag(xe
1, . . . , x

e
n).

Lemma 4.3. [20] Let S = {x1, . . . , xn} be a set of n distinct positive integers.

Then, S is lcm closed if and only if the reciprocal set lcm(S)S−1 is gcd closed.

Theorem 4.4. Let e ≥ 1 be an integer and S be an lcm-closed set such that each

element x of the reciprocal set lcm(S)S−1 satisfies that ω(x) ≤ 2 or x = plqr with

1 ≤ l ≤ 4 being a positive integer and p, q and r being distinct prime numbers. Then
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except for the case that e = 1 and 270, 520, 810, 1040 ∈ lcm(S)S−1, the power LCM

matrix ([xi, xj ]
e) on S is nonsingular.

Proof. By Lemmas 4.1 to 4.2 and Theorem 1.3, the desired result follows imme-

diately.

Corollary 4.5. Let e ≥ 1 be an integer and S be an odd lcm-closed set such

that each element x of the reciprocal set lcm(S)S−1 satisfies that ω(x) ≤ 2 or x = plqr

with 1 ≤ l ≤ 4 being a positive integer and p, q and r being distinct prime numbers.

Then the power LCM matrix ([xi, xj ]
e) on S is nonsingular.

Proof. This corollary follows immediately from Theorem 4.3.
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