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PER-SYMMETRIC TRIANGULAR MATRICES∗
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Abstract. Let F be a field and m,n be integers m,n > 3. Let SMn(F) and STn(F) denote the

linear space of n × n per-symmetric matrices over F and the linear space of n × n per-symmetric

triangular matrices over F, respectively. In this note, the structure of spaces of bounded rank-two

matrices of STn(F) is determined. Using this structural result, a classification of bounded rank-two

linear preservers ψ : STn(F) → SMm(F), with F of characteristic not two, is obtained. As a corollary, a

complete description of bounded rank-two linear preservers between per-symmetric triangular matrix

spaces over a field of characteristic not two is addressed.
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1. Introduction. A linear mapping between matrix spaces is said to be rank-k

non-increasing (respectively, a rank-k preserver) if it sends rank less than or equal to

k matrices (respectively, if it sends rank k matrices) to matrices of the same type.

Motivated by the studies of rank-one non-increasing linear mappings and rank-two

non-increasing linear mappings on symmetric matrices [2, 5, 10, 11, 13] and rank-one

non-increasing linear mappings on triangular matrices [3, 4], we investigate the struc-

ture of bounded rank-two linear preservers ψ on per-symmetric triangular matrices

satisfying the condition

(1.1) 1 6 rankψ(A) 6 2 whenever 1 6 rankA 6 2,

where rankA denotes the rank of the matrix A.

It is a known fact that the structure of rank preservers is one of the basic results

and useful in the study of linear preserver problems [9, 16]. Many linear preservers

problems quite often depend on or can be solved with the help of such mappings.

For instance, Minc [15] deduced from rank-one linear preservers the classical theorem

∗Received by the editors on August 20, 2013. Accepted for publication on April 30, 2014. Handling

Editor: Raphael Loewy.
†Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia

(wlchooi@um.edu.my, khkwa@um.edu.my, limmh@um.edu.my). Supported by FRGS National

Research Grant Scheme FP011-2013A.
‡School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia

(zc ng2004@yahoo.com)

619

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 619-651, August 2014



ELA

620 W.L. Chooi, K.H. Kwa, M.H. Lim, and Z.C. Ng

of Frobenius [6] concerning determinant linear preservers. Watkins [17] classified

commutativity linear preservers by using the structure of rank-one linear preservers.

In [14], rank-k non-increasing linear mappings were used by Loewy and Pierce to verify

the John-Pierce conjecture [7] for certain balanced singular inertia classes. Beasley

[1] showed that rank-additivity preserving linear mappings are rank-k non-increasing.

For works concerning rank preservers on various matrix spaces, we refer the reader

to [16, Chapter 2] and [18, Chapter 2].

Let F be a field and m,n be positive integers. Let Mm,n(F) denote the linear

space of m × n matrices over F. We abbreviate Mn,n(F) to Mn(F) and M1,n(F)

to F
n. Given A ∈ Mm,n(F), let A

+ := JnA
T Jm ∈ Mn,m(F), where AT stands for

the transpose of A and Jn is the element of Mn(F) with ones on the minor diagonal

and zeros elsewhere. A matrix A ∈ Mn(F) is called per-symmetric if it is symmetric

around the minor diagonal, i.e., A+ = A. We denote by SMn(F) the linear subspace

of Mn(F) consisting of per-symmetric matrices, and STn(F) := SMn(F)∩Tn(F). Here

Tn(F) stands for the linear space of n × n upper triangular matrices over F. We

shall call SMn(F) and STn(F) the per-symmetric matrix space and the per-symmetric

triangular matrix space, respectively.

The study of rank-k non-increasing linear mappings led naturally to the investi-

gation of linear spaces of bounded rank k (i.e., linear subspaces consisting of matrices

of rank at most k) and k-spaces (i.e., linear subspaces consisting of the zero matrix

and matrices of rank k). In this note, we first give a classification of linear spaces of

bounded rank-two per-symmetric matrices of STn(F) over an arbitrary field F. As a

corollary, a description of 2-spaces of STn(F) is obtained. We next deduce from the

structural result of spaces of bounded rank-two per-symmetric triangular matrices

a characterization of bounded rank-two linear preservers from STn(F) into SMm(F),

with m,n > 3 and F of characteristic not two. As an immediate consequence, a

complete description of bounded rank-two linear preservers between per-symmetric

triangular matrix spaces over a field of characteristic not two is addressed.

As a side remark, the structure of rank-one non-increasing linear mappings on

triangular matrices is much more complicated than the one of those on symmetric

matrices. Some examples of rank-one non-increasing linear mappings and rank-two

non-increasing linear mappings on per-symmetric triangular matrices are given at the

end of this note to indicate the aptness of condition (1.1) in arriving at our results.

In the sequel, we write {f1, . . . , fm} and {e1, . . . , en} for the standard bases of

Mm,1(F) and Mn,1(F), respectively, and let Eij := fi · e
T
j be the matrix unit in

Mm,n(F) with one as the (i, j) entry and zero elsewhere. We use 〈u1, . . . , ur〉 designate

the linear span of the vectors u1, . . . , ur.
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2. Preliminaries. Let F be a field and n be an integer such that n > 2. For

each α ∈ F and each pair of integers i, j satisfying 1 6 i, j 6 n and j 6= n+ 1− i, we

set

(2.1) Z α
ij := Eij + E+

ij + αEi,n+1−i ∈ Mn(F)

and write Zij = Z 0
ij for short. It is obvious that Zα

ij is a per-symmetric triangular

matrix for every 1 6 i 6 j 6 n+ 1− i and j 6= n+ 1− i.

We begin with a result on the decomposition of per-symmetric triangular matrices.

Lemma 2.1. Let F be a field and n be an integer such that n > 2. A nonzero

matrix A ∈ STn(F) is of rank k if and only if there exist an integer 0 6 h 6
k
2 ,

scalars α1, . . . , αh ∈ F, nonzero scalars β2h+1, . . . , βk ∈ F, and an invertible matrix

P ∈ Tn(F) such that

A = P

(

h
∑

i=1

Z αi

si ti
+

k
∑

i=2h+1

βiEpi,n+1−pi

)

P+,

where {s1, . . . , sh, n + 1 − t1, . . . , n + 1 − th, p2h+1, . . . , pk} and {t1, . . . , th, n + 1 −

s1, . . . , n + 1 − sh, n + 1 − p2h+1, . . . , n + 1 − pk} are two sets of k distinct positive

integers such that 1 6 si 6 ti 6 n + 1 − si and ti 6= n + 1 − si for i = 1, . . . , h, and

1 6 pi 6
n+1
2 for i = 2h+ 1, . . . , k; and (α1, . . . , αh) 6= 0 only if F has characteristic

two.

Proof. The proof of sufficiency is immediate. We now consider necessity.

Let A = (aij) ∈ STn(F) be a nonzero rank k matrix. We denote by A(i) and A
(j)

the i-th row and the j-th column of the matrix A, respectively. Let A(j0) be the first

nonzero column from the left of A, and let ai0 j0 be the first nonzero entry from the

bottom of the column A(j0). Then aij0 = 0 for every i0 + 1 6 i 6 n, and aij = 0

for every 1 6 i 6 n and 1 6 j 6 j0 − 1, and also 1 6 i0 6 j0 6 n + 1 − i0 since

A ∈ STn(F). We divide our proof into the following two cases:

Case I: j0 = n+1−i0. For each 1 6 s 6 i0−1, we apply the following elementary

row and column operations on A :

(2.2) A(s) → A(s) − as j0 a
−1
i0 j0

A(i0) and A
(n+1−s) → A(n+1−s) − ai0,n+1−s a

−1
i0 j0

A(j0).

For each 1 6 s 6 i0 − 1, there exists the elementary matrix In − csEs i0 ∈ Tn(F)

corresponding to the row operation A(s) → A(s) − csA(i0), where cs = as j0 a
−1
i0 j0

∈ F.

Since A+ = A, we have ai0,n+1−s = as j0 for every 1 6 s 6 i0 − 1, and so there exists

an invertible matrix P1 ∈ Tn(F) such that

(2.3) P1AP
+
1 = ai0 j0Ei0 j0 +B
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for some matrix B = (bij) ∈ STn(F) such that bi j0 = 0 for every 1 6 i 6 n, bi0 j = 0

for every 1 6 j 6 n, and bij = 0 for every 1 6 i 6 n and 1 6 j 6 j0 − 1.

Case II: j0 6= n+ 1− i0. Without loss of generality, we may assume ai0 j0 = 1 =

an+1−j0,n+1−i0 . For each 1 6 s 6 i0 − 1, we apply the following elementary row and

column operations on A :

A(s) → A(s) − as j0A(i0) and A(n+1−s) → A(n+1−s) − an+1−j0,n+1−sA
(n+1−i0),

and it is followed by the elementary row and column operations on A :

A(t) → A(t) − at,n+1−i0A(n+1−j0) and A(n+1−t) → A(n+1−t) − ai0,n+1−tA
(j0)

for every 1 6 t 6 n − j0. We note that, for each 1 6 s 6 i0 − 1 (respectively, for

each 1 6 t 6 n− j0), there exists the elementary matrix In − as j0Es i0 (respectively,

In − at,n+1−i0Et,n+1−j0) in Tn(F) corresponding to the row operation A(s) → A(s) −

as j0A(i0) (respectively, A(t) → A(t)−at,n+1−i0A(n+1−j0)). Since an+1−j0,n+1−s = as j0
for every 1 6 s 6 i0 − 1, and ai0,n+1−t = at,n+1−i0 for every 1 6 t 6 n − j0, there

exists an invertible matrix P1 ∈ Tn(F) such that

(2.4) P1AP
+
1 = Zα1

i0j0
+B

for some scalar α1 ∈ F and matrix B = (bij) ∈ STn(F) such that bi j0 = 0 for every

1 6 i 6 n, bi0 j = 0 for 1 6 j 6 n, and bij = 0 for every 1 6 i 6 n and 1 6 j 6 j0 − 1.

In view of (2.3) and (2.4), if B = 0, then we are done. Suppose that B 6= 0.

Let bi1 j1 be the first nonzero entry from the bottom of the first nonzero column of

B counting from the left of the matrix B. Evidently, j1 > j0, i1 6= i0 and 1 6 i1 6

j1 6 n + 1 − i1. Since bi j0 = 0 for all 1 6 i 6 n, bi0 j = 0 for every 1 6 j 6 n, and

bij = 0 for every 1 6 i 6 n and 1 6 j 6 j0 − 1, by applying suitable elementary row

and column operations similar to (2.2) when j1 = n+ 1 − i1 (respectively, similar to

(2.4) when j1 6= n+ 1− i1), there exists an invertible matrix P2 ∈ Tn(F) such that

P2BP
+
2 = ai1 j1Ei1 j1 + C

for some matrix C ∈ STn(F), and P2Ei0 j0P
+
2 = Ei0 j0 (respectively,

P2BP
+
2 = Zα2

i1 j1
+ C

for some scalar α2 ∈ F and matrix C ∈ STn(F), and P2Z
α1

i0 j0
P+
2 = Zα1

i0 j0
). If C = 0,

then we are done. Suppose that C 6= 0. Since A is of rank k, by repeating a similar

argument on C, there exist an integer 0 6 h 6 k
2 , scalars α1, . . . , αh, β2h+1, . . . , βk ∈

F, and an invertible matrix Q ∈ Tn(F) such that

(2.5) QAQ+ =

h
∑

i=1

Z αi

si ti
+

k
∑

i=2h+1

βiEpi,n+1−pi
,

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 619-651, August 2014



ELA

Linear Spaces and Preservers of Bounded Rank-Two Per-Symmetric Triangular Matrices 623

where {s1, . . . , sh, n + 1 − t1, . . . , n + 1 − th, p2h+1, . . . , pk} and {t1, . . . , th, n + 1 −

s1, . . . , n + 1 − sh, n + 1 − p2h+1, . . . , n + 1 − pk} are two sets of k distinct positive

integers such that 1 6 si 6 ti 6 n + 1 − si and ti 6= n + 1 − si for i = 1, . . . , h, and

1 6 pi 6
n+1
2 for i = 2h+ 1, . . . , k

We denote D = QAQ+. If F is of characteristic not two, then, for each 1 6 i 6 h,

we further perform the following elementary row and column operations on D :

D(si) → D(si) −
αi

2
D(n+1−ti) and D(n+1−si) → D(n+1−si) −

αi

2
D(ti)

to annihilate αi in Z
αi

si ti
as described in (2.5). Since si < n+1−ti for every 1 6 i 6 h,

there exists an invertible P ∈ Tn(F) such that

PAP+ =

h
∑

i=1

Zsi ti +

k
∑

i=2h+1

βiEpi,n+1−pi
.

As a corollary of Lemma 2.1, we notice that if A ∈ STn(F) is of rank bounded by

two, then there exists an invertible matrix P ∈ Tn(F) such that either

A = P (αEs,n+1−s + βEt,n+1−t)P
+

for some α, β ∈ F and some integers 1 6 s < t 6 n+1
2 , or

A = PZλ
stP

+

for some integers 1 6 s 6 t 6 n + 1 − s with t 6= n + 1 − s, and some scalar λ ∈ F

with λ 6= 0 only if charF = 2.

Inspired by this observation, we define

(2.6) u⊘ v := u · v+ + v · u+ and u2 := u · u+

for every u, v ∈ Mn,1(F), where u · v+ denotes the usual matrix product of u ∈

Mn,1(F) and v+ ∈ F
n. It can easily be verified that (u, v) 7→ u ⊘ v is a symmetric

bilinear map from Mn,1(F)×Mn,1(F) into Mn(F). We also see that

ei ⊘ ej = Ei,n+1−j + E +
i,n+1−j and e2i = Ei,n+1−i

for all integers 1 6 i, j 6 n. In view of (2.1), we have

Z α
ij = ei ⊘ en+1−j + αe2i

for every α ∈ F and 1 6 i, j 6 n with j 6= n+1−i. Note that {ei⊘ej | 1 6 i < j 6 n}∪

{e2i | 1 6 i 6 n} and {ei ⊘ ej | 1 6 i < j 6 n + 1 − i} ∪ {e2i | 1 6 i 6 n+1
2 } are the

standard bases of SMn(F) and STn(F), respectively.

It follows immediately from (2.6) that the following elementary properties hold

and their straightforward proofs are omitted. Let u, v ∈ Mn,1(F), a, b, c ∈ F and

P ∈ Mn(F). We have
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(P1) (u⊘ v)+= u⊘ v and (u2)+ = u2,

(P2) u2 = 0 ⇔ u = 0,

(P3) u⊘ v = 0 ⇔ either u = 0 or v = 0 when charF 6= 2; and u⊘ v = 0 ⇔ u, v are

linearly dependent when charF = 2,

(P4) P (u⊘ v)P+ = (Pu)⊘ (Pv) and P (u2)P+ = (Pu)2, and

(P5) rank(a(u⊘ v) + bu2 + cv2) 6 2; and rank(a(u⊘ v) + bu2 + cv2) = 2 ⇔ u, v are

linearly independent and a2 6= bc.

Lemma 2.2. Let u, v, x, y ∈ Mn,1(F) and a1, a2, b1, b2, c1, c2 ∈ F.

(a) If a1u⊘ v + b1u
2 + c1v

2 = a2x⊘ y + b2x
2 + c2y

2 6= 0 with a2i 6= bici for i = 1, 2,

then 〈u, v〉 = 〈x, y〉.

(b) If F has characteristic not two, then u ⊘ v = x ⊘ y 6= 0 if and only if there

exists a nonzero a ∈ F such that either u = ax and v = a−1y, or u = ay and

v = a−1x.

Proof. (a) By our hypothesis, together with (2.6), we obtain

(2.7) u · (a1v
+ + b1u

+) + v · (a1u
+ + c1v

+) = x · (a2y
+ + b2x

+) + y · (a2x
+ + c2y

+).

Since a2i 6= bici for i = 1, 2, we have u, v are linearly independent if and only if x, y are

linearly independent. Thus, 〈u, v〉 = 〈x, y〉 when u, v are linearly independent. If u, v

are linearly dependent, assuming u, x 6= 0, then v = λ1u and y = λ2x for some scalars

λ1, λ2 ∈ F. By (2.7), we obtain (2a1λ1 + b1 + λ21c1)u
2 = (2a2λ2 + b2 + λ22c2)x

2 6= 0,

and so 〈u〉 = 〈x〉. We are done.

(b) The proof of sufficiency is straightforward. We consider necessity. First note

that u, v, x, y are nonzero and 〈u, v〉 = 〈x, y〉 by (a). If u, v are linearly dependent,

then 〈u〉 = 〈v〉 = 〈x〉 = 〈y〉. Let u = ax and v = by for some nonzero scalars a, b ∈ F.

Then x⊘ y = u⊘ v = ab(x⊘ y) implies that b = a−1, as desired. Suppose now that

u, v are linearly independent. Then x, y are linearly independent and either 〈x〉 6= 〈v〉

or 〈x〉 6= 〈u〉. We consider 〈x〉 6= 〈v〉 as the second case can be verified similarly. Then

x = au+ bv and y = cu+ dv for some a, b, c, d ∈ F with a 6= 0. Then u⊘ v = x⊘ y =

(ad+ bc)u⊘ v+2acu2 +2bdv2 leads to (ad+ bc− 1)u⊘ v+2acu2 +2bdv2 = 0. Since

u⊘ v, u2 and v2 are linearly independent, we get ad+ bc = 1 and ac = 0 = bd. Since

a 6= 0, we have c = 0 implies that ad = 1 and b = 0. So x = au and y = a−1v.

For each integer 1 6 i 6 n, we denote

U i,n :=
{

(u1, . . . , ui, 0, . . . , 0)
T ∈ Mn,1(F)

∣

∣ u1, . . . , ui ∈ F
}

and U 0,n := {0} ⊂ Mn,1(F). When n is clear from the context, U i,n is abbreviated

to U i.

Lemma 2.3. Let u, v ∈ Mn,1(F). Then the following assertions hold.
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(a) u2 ∈ STn(F)\{0} if and only if u ∈ Up\Up−1 for some 1 6 p 6 n+1
2 .

(b) u⊘ v ∈ STn(F)\{0} if and only if either

(i) there exist integers 1 6 p 6 n + 1 − q such that u ∈ Up\Up−1 and

v ∈ Uq\Uq−1, or

(ii) there exists an integer n+1
2 < q 6 n such that u, v ∈ Uq\Uq−1 in which

v = αu+z for some α ∈ F\{0} and z ∈ Up\Up−1 with 1 6 p 6 n+1− q,

and this case holds only if F has characteristic two.

Proof. (a) This is an immediate consequence of (2.6).

(b) Sufficiency is clear. We consider necessity. Since u ⊘ v 6= 0, we argue in two

cases:

Case A: If u ⊘ v is of rank one, then, by Lemma 2.1, u ⊘ v = αx2 for some

α ∈ F\{0} and x ∈ Up with 1 6 p 6
n+1
2 . Then charF 6= 2 and u, v are nonzero

linearly dependent vectors such that 〈u〉 = 〈x〉 = 〈v〉. So u, v ∈ Up and statement (i)

holds true.

Case B: If u⊘ v is of rank two, then, by Lemma 2.1, we consider two subcases:

Case B-1: u ⊘ v = αx2 + βy2 for some α, β ∈ F\{0} and linearly independent

vectors x, y ∈ Up with 1 6 p 6 n+1
2 . By Lemma 2.2 (a), we have 〈u, v〉 = 〈x, y〉. Then

u, v ∈ Up and statement (i) holds true.

Case B-2: u⊘ v = x ⊘ y + λx2 for some λ ∈ F and linearly independent vectors

x ∈ Up\Up−1, y ∈ Uq\Uq−1 with 1 6 p 6 n+ 1− q 6 n+ 1− p and p 6= q. By Lemma

2.2 (a), we have 〈u, v〉 = 〈x, y〉. Then

(2.8) u = ax+ by and v = cx+ dy

for some a, b, c, d ∈ F. We thus have u⊘ v = (2ac)x2 + (2bd)y2 + (ad+ bc)x⊘ y, and

hence,

(2ac− λ2)x2 + (2bd)y2 + (ad+ bc− 1)x⊘ y = 0.

Since x2, y2, x ⊘ y are linearly independent, we have 2bd = 0. We first consider

charF 6= 2. Then bd = 0 implies that either b = 0 or d = 0. It follows from (2.8) that

either u ∈ Up or v ∈ Up with 1 6 p 6 n+1
2 , and so statement (i) holds true. Next, if

charF = 2, then u⊘ v = (ad+ bc)x ⊘ y. If q 6 n+1
2 , b = 0, or d = 0, then, by (2.8),

statement (i) holds. If q > n+1
2 and b, d 6= 0, then 1 6 p < n+1

2 , and by (2.8), we have

u, v ∈ Uq\Uq−1 and y = b−1(u− ax). So

v = cx+ dy = cx+ b−1d(u − ax) = αu+ z,

where α = b−1d ∈ F and z = b−1(ad+ bc)x ∈ Up\Up−1. It is clear that α 6= 0 and u, z

are linearly independent vectors. Thus, statement (ii) holds.
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Let u ∈ Mn,1(F) and V be a subset of Mn,1(F). We denote

u⊘ V := {u⊘ v : v ∈ V}.

It is immediate that u⊘V is a linear subspace of SMn(F) when V is a linear subspace.

Lemma 2.4. Let x ∈ Mn,1(F) be nonzero. If x⊘Mn,1(F) contains two linearly

independent elements u ⊘ v + αu2, u ⊘ w + βu2 for some u, v, w ∈ Mn,1(F) and

α, β ∈ F, then 〈u〉 = 〈x〉.

Proof. Denote A = u⊘ v + αu2 and B = u ⊘ w + βu2. Clearly, u, x are nonzero

since A,B are linearly independent. It follows from Lemma 2.2 (a) that x ∈ 〈u, v〉

and x ∈ 〈u,w〉. The result follows immediately when u,w are linearly dependent.

Consider now u,w are linearly independent. Suppose that v /∈ 〈u,w〉. Then x ∈

〈u, v〉 ∩ 〈u,w〉 = 〈u〉 because u, v, w are linearly independent. We next consider

v ∈ 〈u,w〉. Then A = a(u⊘w)+ bu2 for some scalars a, b ∈ F. Since A,B are linearly

independent, it follows that 0 6= A− aB ∈ x⊘Mn,1(F), and thus, u2 ∈ x⊘Mn,1(F).

Then u2 = x ⊘ y for some y ∈ Mn,1(F). Since u2 is of rank one, we have x, y

are linearly dependent. If charF = 2, then x ⊘ y = 0 by (P3), and so u2 = 0,

an impossibility. We thus have charF 6= 2 and u2 = λx2 for some nonzero λ ∈ F.

Therefore, 〈u〉 = 〈x〉, as required.

Let u, v, w ∈ Mn,1(F). One sees immediately that u, v, w are linearly independent

implies u ⊘ v, v ⊘ w,w ⊘ u are linearly independent. The converse is true if the

characteristic of F is two. It can also be checked that if u, v, w are linearly independent

and F has characteristic two, then each nonzero element in 〈u⊘ v, v ⊘ w, w ⊘ u〉 has

rank two. By this observation, we next obtain a result that describes the uniqueness

of 〈u⊘ v, v ⊘ w, w ⊘ u〉.

Lemma 2.5. Let F be a field of characteristic two and u, v, w, x, y, z ∈ Mn,1(F)

be vectors such that u, v, w are linearly independent. Then 〈u⊘ v, v ⊘ w, w ⊘ u〉 =

〈x⊘ y, y ⊘ z, z ⊘ x〉 if and only if 〈u, v, w〉 = 〈x, y, z〉.

Proof. We first claim that if a, b ∈ Mn,1(F) are linearly independent vectors, then

(2.9) a⊘ b ∈ 〈u⊘ v, v ⊘ w, w ⊘ u〉 ⇒ a, b ∈ 〈u, v, w〉 .

Note that a⊘ b = αu ⊘ v + βv ⊘ w + γw ⊘ u for some α, β, γ ∈ F with (α, β, γ) 6= 0.

We consider only for the case α 6= 0 as the other cases can be proved similarly. Then

a ⊘ b = (u + βα−1w) ⊘ (αv + γw) implies that 〈a, b〉 =
〈

u+ βα−1w, αv + γw
〉

by

Lemma 2.2 (a). We thus have a, b ∈
〈

u+ βα−1w, αv + γw
〉

⊆ 〈u, v, w〉, as claimed.

If 〈x⊘ y, y ⊘ z, z ⊘ x〉 = 〈u⊘ v, v ⊘ w, w ⊘ u〉, then x, y, z are linearly indepen-

dent. By (2.9), we have x, y, z ∈ 〈u, v, w〉, and so 〈z, y, z〉 = 〈u, v, w〉. Conversely, if

〈x, y, z〉 = 〈u, v, w〉, then x⊘y, y⊘z, z⊘x are linearly independent vectors contained
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in 〈u⊘ v, v ⊘ w, w ⊘ u〉.

Lemma 2.6. Let F be a field, m and n be integers such that m > n > 2, and

P ∈ Mm,n(F) be a full rank matrix. Then PAP+ ∈ STm(F) for every A ∈ STn(F) if

and only if Pei ∈ Upi,m\Upi−1,m for i = 1, . . . , n such that 1 6 pi 6
m+1
2 for every

1 6 i 6 n+1
2 , and pi 6 m + 1 − pj for every 1 6 i < j 6 n + 1 − i. In particular,

P ∈ Tn(F) when m = n.

Proof. Denote ui = Pei for i = 1, . . . , n. So u1, . . . , un are linearly independent.

Let Pei ∈ Upi,m\Upi−1,m for i = 1, . . . , n. Recall that {e2i | 1 6 i 6 n+1
2 }∪{ei⊘ej | 1 6

i < j 6 n + 1 − i} is a basis of STn(F). For each 1 6 i 6 n+1
2 , by (P4) and Lemma

2.3 (a), we have P (e2i )P
+ = u2i ∈ STm(F) since pi 6

m+1
2 . Again, by (P4) and Lemma

2.3 (b), P (ei ⊘ ej)P
+ = ui⊘ uj ∈ STm(F) for every 1 6 i < j 6 n+1− i. This proves

sufficiency. For necessity, we argue in the following two cases.

Case I: m > n. In view of Lemma 2.3 (a), u2i = P (e2i )P
+ ∈ STm(F) for 1 6 i 6

n+1
2 implies that 1 6 pi 6

m+1
2 for every 1 6 i 6 n+1

2 . On the other hand, by Lemma

2.3 (b), ui ⊘ uj = P (ei ⊘ ej)P
+ ∈ STm(F) and pi 6

m+1
2 for 1 6 i < j 6 n + 1 − i

leads to pi 6 m+ 1− pj for every 1 6 i < j 6 n+ 1− i. This establishes the desired

conclusion.

Case II: m = n. We shall show that pi = i for i = 1, . . . , n by induction on i.

To begin with, note that the linear independence of u1, . . . , un implies that pi0 = n

for some 1 6 i0 6 n. By the fact that u21, u1 ⊘ ui0 ∈ STn(F), we conclude that

p1 = 1. Suppose that the inductive hypothesis holds, i.e., pj = j for j = 1, . . . , k for

some k < n. We wish to claim that pk+1 = k + 1. Since u1, . . . , uk+1 are linearly

independent, together with our induction hypothesis, we have k + 1 6 pk+1 6 n.

Since u1, . . . , un−k are linearly independent, there exists an integer 1 6 i1 6 n − k

such that n− k 6 pi1 6 n. Note that uk+1 ⊘ u1, . . . , uk+1 ⊘ un−k ∈ STn(F), and also

u2k+1 ∈ STn(F) provided that k + 1 6 n− k. We consider two possibilities.

• Say i1 = k + 1. Then pi1 = pk+1 and k + 1 = i1 6 n − k. We thus have

u2k+1 ∈ STn(F). Hence, k + 1 6 pk+1 6 n+1
2 and n − k 6 pi1 6 n+1

2 . So,

k >
n−1
2 and thus k = n−1

2 , since k + 1 6 n − k. Hence, k + 1 = n+1
2 .

Therefore, pk+1 = k + 1.

• Say i1 6= k + 1. Since i1 6 n − k, we have uk+1 ⊘ ui1 ∈ STn(F). Then

k + 1 6
n+1
2 or ii 6

n+1
2 . To see this, if k + 1 6

n+1
2 , then we are done.

Suppose that k + 1 > n+1
2 . Then i1 6 n− k implies k + 1 6 n+ 1− i1, and

so n + 1 − i1 >
n+1
2 . We thus have i1 <

n+1
2 , as desired. In consequence,

pk+1 6
m+1
2 or pi1 6

m+1
2 . By Lemma 2.3 (b), we have pk+1 6 n + 1 − pi1 .

Then since pi1 > n− k, we have n− k 6 n+ 1− pk+1, and so pk+1 6 k + 1.

Together with pk+1 > k + 1, we conclude that pk+1 = k + 1.
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By induction, we conclude that Pei ∈ Ui,n\Ui−1,n for i = 1, . . . , n. It follows that

P ∈ Tn(F).

3. Linear spaces of bounded rank-two matrices. We recall that a linear

subspace of a matrix space is a linear space of bounded rank-two matrices provided

each matrix in it has rank bounded above by two. In [10], Lim classified linear spaces

of bounded rank-two symmetric matrices over an infinite field of characteristic not

two. Indeed, by a slight modification in the last paragraph of the proof of [10, Theorem

3, p. 49], the result holds for any field of characteristic not two. More recently, [5,

Theorem 2.6] completes the work on characterization of spaces of bounded rank-two

symmetric matrices over a field of characteristic two.

In this section, using the structural results of [10, Theorem 3] and [5, Theorem

2.6], we classify spaces of bounded rank-two per-symmetric triangular matrices over

an arbitrary field. By treating the symmetricity on the minor diagonal, we can now

rephrase [10, Theorem 3] and [5, Theorem 2.6] as follows.

Lemma 3.1. Let F be a field and n be an integer such that n > 2. Let S be a

linear subspace of SMn(F). Then S is a linear space of bounded rank-two matrices if

and only if one of the following holds:

(I) S ⊆
〈

u2, v2, u⊘ v
〉

for some linearly independent vectors u, v ∈ Mn,1(F).

(II) S ⊆ u⊘Mn,1(F) for some nonzero u ∈ Mn,1(F).

(III) S = u⊘V+ 〈u2〉 for some nonzero u ∈ Mn,1(F) and some linear subspace V of

Mn,1(F); and S is of this form only if charF = 2. Here, + denotes the sum

of linear subspaces of SMn(F).

(IV) S =
〈

u⊘ v1 + λ1u
2, . . . , u⊘ vk + λku

2
〉

for some linearly independent vectors

u, v1, . . . , vk in Mn,1(F) and some λ1, . . . , λk ∈ F with (λ1, . . . , λk) 6= 0; and

S is of this form only if charF = 2.

(V) S = 〈u⊘ v, u⊘ w, v ⊘ w〉 for some linearly independent vectors u, v, w in

Mn,1(F); and S is of this form only if charF = 2.

(VI) S ⊆
〈

u2 + v2, u2 + w2, (u+ v)⊘ (u+ w)
〉

for some linearly independent vectors

u, v, w in Mn,1(F); and S is of this form only if |F| = 2.

Let F be a field of characteristic not two. As a side remark, we notice from (2.6)

that x⊘ y + αx2 = x⊘ (y + α
2 x) for every x, y ∈ Mn,1(F) and α ∈ F, and thus, any

linear space of bounded rank-two of Form (III) or (IV) in Lemma 3.1 can be simplified

to Form (I) or (II) in Lemma 3.1. On the other hand, for any linearly independent

vectors u, v, w ∈ Mn,1(F), 〈u⊘ v, u⊘ w, v ⊘ w〉 contains rank three matrices. By a

direct verification, rank(u⊘ v + u⊘ w + v ⊘ w) = 3 since

det





1 1 0

1 0 1

0 1 1



 = −2 6= 0.
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In consequence, Form (V) in Lemma 3.1 is not a linear space of bounded rank-two

when charF 6= 2.

Lemma 3.2. Let F be a field of characteristic two. Let α ∈ F be nonzero and

u, v ∈ Mn,1(F) be linearly independent vectors. Then the following assertions hold.

(a) u ⊘ v + αu2 ∈ STn(F) if and only if u ∈ Up\Up−1 and v ∈ Uq\Uq−1 for some

integers 1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p.

(b) u2 + v2 ∈ STn(F) if and only if u + v ∈ Up\Up−1 and u, v ∈ Uq\Uq−1 for some

integers 1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p.

Proof. (a) Since charF = 2, the minor diagonal of u⊘v is zero. Then u⊘v+αu2 ∈

STn(F) with α 6= 0 if and only if u2, u ⊘ v ∈ STn(F) if and only if u ∈ Up for some

integer 1 6 p 6 n+1
2 , and v ∈ Uq for some integer 1 6 q 6 n+ 1− p by Lemma 2.3.

(b) By noting u2 + v2 = (u+ v)⊘ v+ (u+ v)2 and (u+ v)⊘ v = (u+ v)⊘ u, the

conclusion follows immediately from part (a).

We are now in a position to provide a characterization of spaces of bounded

rank-two per-symmetric triangular matrices over an arbitrary field.

Theorem 3.3. Let F be a field and n be an integer such that n > 2. Let S be a

linear subspace of STn(F). Then S is a linear space of bounded rank-two matrices if

and only if one of the following holds:

(a) S ⊆
〈

u2, v2, u⊘ v
〉

for some linearly independent vectors u, v ∈ Up with 1 6

p 6 n+1
2 .

(b) S = u ⊘ V for some nonzero u ∈ Up and some linear subspace V of Uq with

1 6 p 6 n+ 1− q 6 n.

(c) S = u ⊘ V + 〈u2〉 for some nonzero u ∈ Up with 1 6 p 6
n+1
2 and some linear

subspace V of Uq with 1 6 q 6 n + 1 − p 6 n; and S is of this form only if

charF = 2.

(d) S =
〈

u⊘ v1 + λ1u
2, . . . , u⊘ vk + λku

2
〉

for some scalars λ1, . . . , λk ∈ F with

(λ1, . . . , λk) 6= 0, and some linearly independent vectors u, v1, . . . , vk such

that u ∈ Up, v1, . . . , vk ∈ Uq with 1 6 p 6
n+1
2 and 1 6 q 6 n + 1 − p 6 n;

and S is of this form only if charF = 2.

(e) S = 〈u⊘ v, u⊘ w, v ⊘ w〉 for some linearly independent vectors u ∈ Up, v ∈ Uq

and w ∈ Ur such that 1 6 p, q 6 n+ 1 − r 6 n and p 6 n + 1 − q; and S is

of this form only if charF = 2.

(f) There exist linearly independent vectors u, v, w ∈ Mn,1(F) such that

◦ S =
〈

u2 + v2, u2 + w2, (u+ v)⊘ (u + w)
〉

, or S =
〈

u2 + v2, u2 + w2
〉

,

or S =
〈

x2 + y2, (x+ z)⊘ y + (x+ z)2
〉

with {x, y, z} = {u, v, w},

where u+ v, u+w ∈ Up and u, v, w ∈ Uq for some integers 1 6 p 6 n+1
2

and 1 6 q 6 n+ 1− p, or
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◦ S =
〈

x2 + y2, (u + v)⊘ (u+ w)
〉

for a pair of distinct vectors x, y ∈

{u, v, w} with x+y ∈ Up and u, v, w ∈ Uq for some integers 1 6 p 6 n+1
2

and 1 6 q 6 n+ 1− p ;

and S is of this form only if |F| = 2.

Proof. If S satisfies one of the statements (a) - (f) in Theorem 3.3, then S is a

linear space of bounded rank-two matrices of SMn(F). Moreover, by Lemmas 2.3 and

3.2, we have S ⊆ STn(F). This proves sufficiency.

We now consider necessity. Suppose that S 6= {0}. Since S is a linear space of

bounded rank-two matrices of SMn(F), we see that S satisfies one of the statements

(I) - (VI) as described in Lemma 3.1. We use the notation that have been employed

in Lemma 3.1 and divide our argument in the following cases.

Case I : Suppose that S satisfies (I) in Lemma 3.1. Let u ∈ Us\Us−1 and v ∈

Ut\Ut−1 for some integers 1 6 s, t 6 n. We divide our argument into the following

three subcases:

• Case I-i: If 1 6 s, t 6 n+1
2 , then u, v ∈ Up with p = max{s, t}. So S satisfies

statement (a).

• Case I-ii: If 1 6 s 6 n+ 1− t and n+1
2 < t 6 n, then u2, u⊘ v ∈ STn(F) and

v2 /∈ STn(F). If S has no rank two matrices, then S =
〈

u2
〉

and it satisfies

statement (a). Suppose that S has a rank two matrix. Then S ⊆
〈

u2, u⊘ v
〉

and it is of one of the following forms:

◦ S = 〈u⊘ v〉 = u⊘ 〈v〉 and it satisfies statement (b);

◦ S =
〈

u⊘ v + au2
〉

with a ∈ F\{0}. When charF = 2, S satisfies state-

ment (d); and when charF 6= 2, we get S = u⊘
〈

v + a
2u
〉

and it satisfies

statement (b);

◦ S =
〈

u2, u⊘ v
〉

. When charF = 2, we obtain S = u⊘ 〈v〉+
〈

u2
〉

and it

satisfies statement (c); when charF 6= 2, we see that S = u⊘
〈

v, 2−1u
〉

and it satisfies statement (b).

• Case I-iii: Suppose that n+1
2 < s, t 6 n. If S contains no rank two matrices,

then dimS = 1. By Lemma 2.1, we have S =
〈

x2
〉

for some nonzero vector

x ∈ Up with 1 6 p 6
n+1
2 . Thus, S satisfies statement (a). Suppose now

that S has a rank two matrix, say A. Then A = au2 + bv2 + cu⊘ v for some

a, b, c ∈ F with c2− ab 6= 0 by (P5). On the other hand, by Lemma 2.1, there

exist linearly independent vectors x, y such that either A = αx2 + βy2 for

some α, β ∈ F\{0} and x, y ∈ Up with 1 6 p 6
n+1
2 ; or A = x ⊘ y + αx2

for some α ∈ F\{0} and some x ∈ Up and y ∈ Uq with 1 6 p 6
n+1
2 and

1 6 q 6 n+ 1− p. Then

au2 + bv2 + cu⊘ v = αx2 + βy2 or au2 + bv2 + cu⊘ v = x⊘ y + αx2.

In both cases, 〈x, y〉 = 〈u, v〉 by Lemma 2.2 (a). Thus,
〈

x2, y2, x⊘ y
〉

=
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〈

u2, v2, u⊘ v
〉

, and so S ⊆
〈

x2, y2, x⊘ y
〉

. The result follows by a similar

argument as in Cases I-i and I-ii.

Case II : If S satisfies (II) in Lemma 3.1, then for each nonzero A ∈ S, there

exists a nonzero vA ∈ Mn,1(F) such that A = u ⊘ vA. Since A ∈ STn(F), it follows

from Lemma 2.3 that

(i) u ∈ Up\Up−1 and vA ∈ U rA\U rA−1 for some integers 1 6 p 6 n+ 1− rA, or

(ii) u ∈ Up\Up−1 and vA = αAu + zA ∈ Up\Up−1 for some αA ∈ F\{0} and

zA ∈ U rA\U rA−1, where 1 6 rA 6 n + 1 − p < n+1
2 and u, zA are linearly

independent, and in addition, this case holds only if charF = 2.

Notice that if (ii) holds, then charF = 2 and A can be rewritten as

A = u⊘ (αAu+ zA) = u⊘ zA.

Consequently, in view of (i) and (ii), for each A ∈ S, there exists vA ∈ U rA\U rA−1

with 1 6 rA 6 n + 1 − p such that A = u ⊘ vA. Accordingly, there exists a linear

subspace V of Uq with 1 6 q 6 n+ 1− p such that S = u⊘ V . Thus, S satisfies (b).

Case III: If S satisfies (III) in Lemma 3.1, then u2, u ⊘ v ∈ STn(F) for every

v ∈ V . It follows from Lemma 2.3 that u ∈ Up for some 1 6 p 6 n+1
2 , and for each

v ∈ V , there exists an integer 1 6 rv 6 n+ 1− p such that v ∈ Urv . Consequently, V

is a subspace of Uq for some integer 1 6 q 6 n+ 1− p 6 n. Hence, S satisfies (c).

Case IV: If S satisfies (IV) in Lemma 3.1, then u⊘ vi + λiu
2 ∈ STn(F) for every

i = 1, . . . , k. Since u, v1, . . . , vk are linearly independent and (λ1, . . . , λk) 6= 0, the

result follows directly from Lemma 3.2 (a) and S satisfies (d).

Case V: If S satisfies (V) of Lemma 3.1, then u ⊘ v, u ⊘ w, v ⊘ w ∈ STn(F). In

view of Lemma 2.3, each pair of elements of {u, v, w} satisfies either (b)(i) or (b)(ii)

of Lemma 2.3. If all pairs of elements of {u, v, w} satisfy (b)(i) of Lemma 2.3, then

S is readily seen to satisfy (e). Suppose not. We shall show that {u, v, w} can be

replaced by some other {x, y, z} such that S = 〈x⊘ y, x⊘ z, y⊘ z〉 satisfies (e). With

no loss of generality, say {u, v} satisfies (b)(ii) of Lemma 2.3. Then u ∈ Uq\Uq−1 and

v = αu+ y ∈ Uq\Uq−1, where y ∈ Up\Up−1, for some α ∈ F\{0} and integers p, q such

that 1 6 p 6 n+1−q < n+1
2 . Note that 〈u, y, w〉 = 〈u, v, w〉, from which, together with

Lemma 2.5, follows that S = 〈u⊘ y, u⊘w, y⊘w〉. If {u,w} satisfies (b)(i) of Lemma

2.3, we are done by setting x = u and z = w. Otherwise, say {u,w} satisfies (b)(ii) of

Lemma 2.3. Then u ∈ Uq\Uq−1 and w = βu + z ∈ Uq\Uq−1, where z ∈ Ur\Ur−1, for

some β ∈ F\{0} and an integer r such that 1 6 r 6 n+ 1 − q < n+1
2 . As before, we

get that 〈u, y, z〉 = 〈u, y, w〉, from which follows that S = 〈u⊘ y, u⊘ z, y⊘ z〉 satisfies

(e). Setting u = x, we are done.
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Case VI: Suppose S satisfies (VI) in Lemma 3.1. Note that

〈

u2 + v2, u2 + w2, (u+ v)⊘ (u + w)
〉

=
{

0, u2 + v2, u2 + w2, v2 + w2, (u+ v)⊘ (u+ w), (u + v)⊘ w + (u+ v)2,

(u+ w)⊘ v + (u+ w)2, (v + w) ⊘ u+ (v + w)2
}

with

u2 + v2 + (u+ v)⊘ (u + w) = (u + v)⊘ w + (u+ v)2,

u2 + w2 + (u+ v)⊘ (u + w) = (u + w)⊘ v + (u+ w)2,

v2 + w2 + (u+ v)⊘ (u + w) = (v + w) ⊘ u+ (v + w)2,

and each nonzero matrix in S is of rank two. We argue in the following three cases:

• If dimS = 1, then S = 〈A〉 for some nonzero per-symmetric upper triangular

matrix A ∈
〈

u2 + v2, u2 + w2, (u+ v)⊘ (u+ w)
〉

. By Lemma 2.1, there exist

linearly independent vectors x, y such that either (i) A = αx2+βy2 with x, y ∈

Up for some integer 1 6 p 6
n+1
2 and α, β ∈ F \{0}; or (ii) A = x ⊘ y + γx2

with x ∈ Up and y ∈ Uq for some integers 1 6 p 6 n+1
2 and 1 6 q 6 n+1−p,

and γ ∈ F. Then S satisfies (a) when (i) holds, S satisfies (b) when (ii) holds

with γ = 0, or S satisfies (d) when (ii) holds with γ 6= 0.

• If dimS = 3, then S =
〈

u2 + v2, u2 + w2, (u+ v)⊘ (u + w)
〉

. Since u2 + v2

and u2 + w2 are in STn(F), Lemma 3.2 (b) implies that u + v ∈ Up1
\Up1−1,

u+w ∈ Up2
\Up2−1, u, v ∈ Uq1\Uq1−1, and u,w ∈ Uq2\Uq2−1 for some integers

p1, p2, q1, q2 such that 1 6 pi 6
n+1
2 and 1 6 qi 6 n+1−pi for i = 1, 2. Since

u ∈ (Uq1\Uq1−1)∩ (Uq2\Uq2−1), it is necessary that q1 = q2 = q for a common

q. Setting p = max{p1, p2}, we note that S satisfies (f).

• If dimS = 2, then one of the following holds:

◦ S = {0, u2 + v2, u2 + w2, v2 + w2} =
〈

u2 + v2, u2 + w2
〉

, where u +

v, u + w ∈ Up and u, v, w ∈ Uq for some integers 1 6 p 6
n+1
2 and

1 6 q 6 n+ 1− p ;

◦ S = {0, u2 + v2, (u + w) ⊘ v + (u + w)2, (v + w) ⊘ u + (v + w)2} =
〈

u2 + v2, (u+ w)⊘ v+ (u + w)2
〉

, where u+v, u+w ∈ Up and u, v, w ∈

Uq for some integers 1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p ;

◦ S = {0, u2 + w2, (v + w) ⊘ u + (v + w)2, (u + v) ⊘ w + (u + v)2} =
〈

u2 + w2, (u+ v)⊘ w+ (u+ v)2
〉

, where u+v, u+w ∈ Up and u, v, w ∈

Uq for some integers 1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p ;

◦ S = {0, v2 + w2, (u + v) ⊘ w + (u + v)2, (u + w) ⊘ v + (u + w)2} =
〈

v2 + w2, (v + u)⊘ w+ (v + u)2
〉

, where v+w, v+u ∈ Up and u, v, w ∈

Uq for some integers 1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p ;

◦ S = {0, u2 + v2, (u+ v)⊘ (u+ w), (u + v)⊘ w + (u+ v)2} =
〈

u2 + v2,

(u+ v)⊘ (u+ w)〉, where u+ v ∈ Up and u, v, w ∈ Uq for some integers

1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p ;
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◦ S = {0, u2 +w2, (u+ v)⊘ (u+w), (u+w)⊘ v+ (u+w)2} =
〈

u2 + w2,

(u+ v)⊘ (u+ w)〉, where u+w ∈ Up and u, v, w ∈ Uq for some integers

1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p ;

◦ S = {0, v2 +w2, (u+ v)⊘ (u+w), (v +w)⊘ u+ (v +w)2} =
〈

v2 + w2,

(u+ v)⊘ (u+ w)〉, where v+w ∈ Up and u, v, w ∈ Uq for some integers

1 6 p 6 n+1
2 and 1 6 q 6 n+ 1− p.

Hence, S satisfies (f).

We now continue our investigation of 2-spaces of STn(F). We first study some

examples of 2-spaces of STn(F).

Example 3.4. Let F be a field and n be an integer such that n > 2. Recall that

{e1, . . . , en} denotes the standard basis of Mn,1(F).

(a) Let n > 2. Then
〈

e1 ⊘ e2 + αe21
〉

is a 1-dimensional 2-space of STn(F) for any

α ∈ F.

(b) Let n > 3 and α, β, γ ∈ F be such that γ2 6= αβ. Then
〈

αe21 + βe22 + γe1 ⊘ e2
〉

is a 1-dimensional 2-space of STn(F).

(c) Let n > 3 and F = R. Then
〈

e1 ⊘ e2, e1 ⊘ e2 + e21 − e22
〉

is a 2-dimensional

2-space of STn(R). Let A = a(e1 ⊘ e2) + b(e1 ⊘ e2 + e21 − e22) ∈ 〈e1 ⊘ e2,

e1 ⊘ e2 + e21 − e22
〉

for some a, b ∈ R with (a, b) 6= 0. We see that A is of rank

two since

det

[

a+ b b

−b a+ b

]

= (a+ b)2 + b2 6= 0.

(d) Let F be a field with four elements. Then char F = 2 and the multiplicative

group of F is cyclic. We set F = {0, 1, α, α2}, where α is a primitive element

of F. We see that
〈

e1 ⊘ e2 + e21, e1 ⊘ e2 + αe22
〉

is a 2-dimensional 2-space

of STn(F). To proof this, let A = λ1(e1 ⊘ e2 + e21) + λ2(e1 ⊘ e2 + αe22) ∈
〈

e1 ⊘ e2 + e21, e1 ⊘ e2 + αe22
〉

for some λ1, λ2 ∈ F with (λ1, λ2) 6= 0. By a

direct verification, we have

det

[

λ1 + λ2 λ1
λ2α λ1 + λ2

]

= λ21 + λ22 + αλ1λ2 6= 0.

Hence, A is of rank two.

Example 3.5. Let F be a field of characteristic two. Let u ∈ Up\Up−1, v ∈

Uq\Uq−1 and w ∈ Ur\Ur−1 be linearly independent vectors such that 1 6 p, q 6

n + 1 − r and p 6 n + 1 − q. Then u ⊘ v, u ⊘ w, v ⊘ w are linearly independent

elements in STn(F) and each nonzero element in 〈u⊘ v, u⊘ w, v ⊘ w〉 has rank two.

Thus, 〈u⊘ v, u⊘ w, v ⊘ w〉 is a 3-dimensional 2-space of STn(F). Note also that each

element in 〈u⊘ v, u⊘ w, v ⊘ w〉 has a zero minor diagonal.

Example 3.6. Let F be a field of characteristic two. Let u ∈ Up\Up−1 and
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v1, . . . , vk ∈ Uq\Uq−1 be linearly independent vectors such that 1 6 p 6 n+1
2 and

1 6 q 6 n + 1 − p, and λ1, . . . , λk ∈ F be such that (λ1, . . . , λk) 6= 0. It is easily

checked that u ⊘ v1 + λ1u
2, . . . , u ⊘ vk + λku

2 are linearly independent. Let A ∈
〈

u⊘ v1 + λ1u
2, . . . , u⊘ vk + λku

2
〉

be nonzero. Then there exist β1, . . . , βk ∈ F not

all of which are zero such that

A = β1(u⊘ v1 + λ1u
2) + · · ·+ βk(u ⊘ vk + λku

2)

= u⊘ (β1v1 + · · ·+ βkvk) + (β1λ1 + · · ·+ βkλk)u
2.

Since u, v1, . . . , vk are linearly independent and (β1, . . . , βk) 6= 0, we get β1v1 + · · ·+

βkvk, u are linearly independent, and so rankA = 2. Then
〈

u⊘ v1 + λ1u
2, . . . ,

u⊘ vk + λku
2
〉

is a k-dimensional 2-space of STn(F).

As an immediate consequence of Theorem 3.3, we obtain a complete description

of 2-spaces of STn(F) over an arbitrary field F.

Corollary 3.7. Let F be a field and n be an integer such that n > 2. Then S

is a 2-space of STn(F) if and only if one of the following holds:

(a) S =
〈

aiu⊘ v + biu
2 + civ

2
∣

∣ i = 1, 2
〉

for some linearly independent vectors

u, v ∈ Up with 1 6 p 6 n+1
2 , and some fixed scalars ai, bi, ci ∈ F for i = 1, 2

such that

(λ1a1 + λ2a2)
2 6= (λ1b1 + λ2b2)(λ1c1 + λ2c2)

for every λ1, λ2 ∈ F with (λ1, λ2) 6= 0.

(b) S = u ⊘ V for some nonzero vector u ∈ Up and some subspace V of Uq with

1 6 p 6 n+ 1− q 6 n, and V ∩ 〈u〉 = {0} when charF 6= 2.

(c) S =
〈

u⊘ v1 + λ1u
2, . . . , u⊘ vk + λku

2
〉

for some scalars λ1, . . . , λk ∈ F with

(λ1, . . . , λk) 6= 0, and some linearly independent vectors u, v1, . . . , vk such

that u ∈ Up with 1 6 p 6 n+1
2 and v1, . . . , vk ∈ Uq with 1 6 q 6 n + 1 − p;

and S is of this form only if charF = 2.

(d) S = 〈u⊘ v, u⊘ w, v ⊘ w〉 for some linearly independent vectors u ∈ Up, v ∈ Uq

and w ∈ Ur such that 1 6 p, q 6 n+ 1 − r 6 n and p 6 n + 1 − q; and S is

of this form only if charF = 2.

(e) There exist linearly independent vectors u, v, w ∈ Mn,1(F) such that

• S =
〈

u2 + v2, u2 + w2, (u + v)⊘ (u+ w)
〉

, or S =
〈

u2 + v2, u2 + w2
〉

,

or S =
〈

x2 + y2, (x+ z)⊘ y + (x+ z)2
〉

with {x, y, z} = {u, v, w},

where u+ v, u+w ∈ Up and u, v, w ∈ Uq for some integers 1 6 p 6 n+1
2

and 1 6 q 6 n+ 1− p; or

• S =
〈

x2 + y2, (u+ v)⊘ (u+ w)
〉

for a pair of distinct vectors x, y ∈

{u, v, w} with x+y ∈ Up and u, v, w ∈ Uq for some integers 1 6 p 6 n+1
2

and 1 6 q 6 n+ 1− p,

and S is of this form only if |F| = 2.
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4. Bounded rank-two linear preservers. In this section, we characterize

bounded rank-two linear preservers ψ : STn(F) → SMm(F), with m,n > 3 and

charF 6= 2. We then obtain a classification of bounded rank-two linear preservers

between per-symmetric triangular matrix spaces over a field of characteristic not two.

We start with the following lemma whose proof is straightforward and omitted.

Lemma 4.1. Let F be a field and u, v, x, y, z ∈ Mn,1(F). Then the following

statements hold.

(a) If x, y are linearly independent, then the following are equivalent.

(i) ax2 + by2 + cx⊘ y ∈
〈

u2, v2, u⊘ v
〉

for some a, b, c ∈ F with ab 6= c2.

(ii) 〈x, y〉 = 〈u, v〉.

(iii)
〈

x2, y2, x⊘ y
〉

=
〈

u2, v2, u⊘ v
〉

.

(b) If y, z are linearly independent and x⊘y, x⊘z ∈
〈

u2, v2, u⊘ v
〉

, then x ∈ 〈y, z〉.

Lemma 4.2. Let F be a field of characteristic not two and n be an integer such that

n > 2. Let A = u⊘v and B = w⊘z be nonzero matrices for some u, v, w, z ∈ Mn,1(F)

such that u, v, w are linearly independent. If rank(A + λB) 6 2 for all λ ∈ F, then

either z ∈ 〈u〉 or z ∈ 〈v〉.

Proof. Since u, v, w are linearly independent and rank(A + B) 6 2, we have

z ∈ 〈u, v, w〉. Let z = au+ bv+ cw for some a, b, c ∈ F. Since A+ λB = 2λcw2 + u⊘

v + λa(u⊘ w) + λb(w ⊘ v) has rank bounded above by two, it follows that

0 = det





1 λa 0

λb 2λc λa

0 λb 1



 = −2abλ2 + 2cλ for every λ ∈ F.

Since |F| > 3, we obtain c = 0 and ab = 0.

Theorem 4.3. Let F be a field of characteristic not two and m,n be integers such

that m,n > 3. Then ψ : STn(F) → SMm(F) is a bounded rank-two linear preserver if

and only if m > n and ψ is of one of the following forms:

(i) There exist a nonzero vector u ∈ Mm,1(F) and a linear mapping ϕ : STn(F) →

Mm,1(F) such that

(4.1) ψ(A) = u⊘ ϕ(A) for all A ∈ STn(F),

where ϕ(A) 6= 0 for every nonzero bounded rank-two matrix A ∈ STn(F).

(ii) There exist a full rank matrix P ∈ Mm,n(F) and a nonzero λ ∈ F such that

ψ(A) = λPAP+ for all A ∈ STn(F).
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(iii) When n = 4, in addition to (i) and (ii), ψ also takes the form

ψ(A) = P









a11 a12 αa13 + θ(a14 − a23) βa14
0 a22 (2α− β)a23 αa13 + θ(a14 − a23)

0 0 a22 a12
0 0 0 a11









P+

for all A = (aij) ∈ ST4(F), where P ∈ Mm,4(F) is a full rank matrix, α, β ∈ F

are nonzero with β 6= 2α, and θ ∈ F is nonzero only if |F| = 3.

(iv) When n = 3, in addition to (i) and (ii), ψ also takes one of the following forms:

(a) There exist a surjective linear mapping φ : ST3(F) → F
3 and a full rank

matrix P ∈ Mm,2(F) such that

ψ(A) = P

[

φ(A)3 φ(A)1
φ(A)2 φ(A)3

]

P+ for all A ∈ ST3(F),

where φ(A)i denotes the i-th component of φ(A) ∈ F
3 and φ(A) 6= 0 for

every nonzero bounded rank-two matrix A ∈ ST3(F).

(b) There exist a full rank matrix P ∈ Mm,3(F) and λ1, λ2, λ3 ∈ F with

λ3 6= 0 such that either

ψ(A) = P





app η2a12 + a13 + λ2aqq η1a12 + λ1aqq
0 λ3aqq η2a12 + a13 + λ2aqq
0 0 app



P+

for all A = (aij) ∈ ST3(F), where η1, η2 ∈ F are nonzero and {p, q} =

{1, 2}, or

ψ(A) = P





app a1s + λ2aqq ηa1t + λ1aqq
0 λ3aqq a1s + λ2aqq
0 0 app



P+

for all A = (aij) ∈ ST3(F), where η ∈ F is nonzero and {p, q} = {s, t} =

{1, 2}.

Proof. Sufficiency is clear. We now consider necessity. Let X1 = e1 ⊘ 〈e1, . . . , en〉

and X2 = e2 ⊘ 〈e1, . . . , en−1〉. By Lemma 3.1 and Theorem 3.3, together with the

assumption of ψ, we see that ψ(X1) and ψ(X2) are spaces of bounded rank-two ma-

trices of SMm(F) containing linearly independent sets {ψ(e1 ⊘ e1), . . . , ψ(e1 ⊘ en)}

and {ψ(e2 ⊘ e1), . . . , ψ(e2 ⊘ en−1)}, respectively. Thus, m > n. We now divide our

proof into three main cases:

Case I: n > 5. By Lemma 3.1, we have

(4.2) ψ(e21) = u⊘ v1 and ψ(e1 ⊘ ei) = u⊘ vi for i = 2, . . . , n,
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for some nonzero vector u ∈ Mm,1(F) and linearly independent vectors v1, . . . , vn ∈

Mm,1(F), and

(4.3) ψ(e22) = x⊘ y2 and ψ(e2 ⊘ ei) = x⊘ yi for i = 1, 3, 4, . . . , n− 1,

for some nonzero vector x ∈ Mm,1(F) and linearly independent vectors y1, . . . , yn−1 ∈

Mm,1(F). We consider the following two subcases:

Case 1-A: 〈x〉 = 〈u〉. There is no loss of generality in assuming x = u. For each

3 6 i 6 n+1
2 , let Xi = ei⊘〈e1, e2, ei〉. Clearly, ψ(Xi) is a 3-dimensional linear space of

bounded rank-two matrices of SMm(F). Then each ψ(Xi) can be expressed in either

of the forms (I) and (II) in Lemma 3.1. Suppose that there exists 3 6 i0 6 n+1
2 such

that ψ(Xi0) satisfies (I). Since ψ(ei0⊘e1) = u⊘vi0 , ψ(ei0⊘e2) = u⊘yi0 and ψ(e2i0) are

linearly independent elements in ψ(Xi0 ), vi0 , yi0 are linearly independent, and together

with Lemma 4.1 (a), we have
〈

u2, v2i0 , u⊘ vi0
〉

= ψ(Xi0 ) =
〈

u2, y2i0 , u⊘ yi0
〉

. Again,

by Lemma 4.1, 〈u, vi0〉 = 〈u, yi0〉. In particular, yi0 ∈ 〈u, vi0〉. Then ψ(ei0 ⊘ e2) =

η1u
2 + η2u⊘ vi0 and ψ(e2i0) = αu2 + βv2i0 + γu⊘ vi0 for some η1, η2, α, β, γ ∈ F with

η1, β 6= 0. By (4.2), note that

• if u, v1 are linearly dependent, then ψ(e21) = λ1u
2 for some λ1 ∈ F \{0};

• if u, v1 are linearly independent, then vi0 ∈ 〈u, v1〉. For, if not, then vi0 , u, v1
are linearly independent, and so ψ(e2i0+e

2
1) = αu2+βv2i0+γu⊘vi0+u⊘v1 is of

rank three, a contradiction. Therefore, v1 ∈ 〈u, vi0〉 since {u, vi0} is linearly

independent. Thus, ψ(e21) = ς1(u ⊘ vi0) + λ1u
2 for some scalars ς1, λ1 ∈ F

with λ1 6= 0.

Accordingly, we may write generally that

(4.4) ψ(e21) = ς1(u ⊘ vi0) + λ1u
2

for some ς1, λ1 ∈ F with (ς1, λ1) 6= 0. We apply this argument again, with (4.2) and

v1 replaced by (4.3) and y2, to obtain

(4.5) ψ(e22) = ς2(u ⊘ vi0) + λ2u
2

for some ς2, λ2 ∈ F with (ς2, λ2) 6= 0. Furthermore, since ψ(
〈

e21, e
2
2, e1 ⊘ e2

〉

) has

dimension three, it follows from (4.2), (4.4) and (4.5) that u, vi0 , v2 are linearly inde-

pendent. Then

ψ(e2i0 + (e21 + e22 + e1 ⊘ e2)) = βv2i0 + u⊘ v2 + (α+ λ1 + λ2)u
2 + (γ + ς1 + ς2)u⊘ vi0

is of rank three, a contradiction. Thus, ψ(Xi) satisfies (II) in Lemma 3.1 for every

3 6 i 6 n+1
2 . Consequently, by Lemma 2.4, for each 3 6 i 6 n+1

2 , there exists a

nonzero vector zi ∈ Mm,1(F) such that

(4.6) ψ(e2i ) = u⊘ zi.
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For n > 6, we will consider Xij = ei ⊘ 〈e1, e2, ei, ej〉 for any 3 6 i 6 n+1
2 and

i < j 6 n + 1 − i. Clearly, ψ(Xij) is a linear space of bounded rank-two matrices

of SMm(F) containing linearly independent elements ψ(ei ⊘ ej), ψ(e
2
i ), ψ(e1 ⊘ ei),

ψ(e2 ⊘ ei). By Lemmas 3.1 and 2.4, we obtain ψ(Xij) ⊆ u⊘Mm,1(F). Then for each

3 6 i 6 n+1
2 and i < j 6 n+ 1− i, there exists a nonzero vector vij ∈ Mm,1(F) such

that

(4.7) ψ(ei ⊘ ej) = u⊘ vij .

Consequently, by (4.2), (4.3), (4.6), (4.7) and the linearity of ψ, we conclude, for

n > 5, that there exists a linear mapping ϕ : STn(F) → Mm,1(F) such that

ψ(A) = u⊘ ϕ(A) for all A ∈ STn(F),

where ϕ(A) 6= 0 for every nonzero bounded rank-two matrix A ∈ STn(F). Hence, (4.1)

holds.

Case 1-B: 〈x〉 6= 〈u〉. By (4.2) and (4.3), we see that u⊘v2 = ψ(e1⊘e2) = x⊘y1.

It follows from Lemma 2.2 (b) that y1 = ςu and x = ς−1v2 for some nonzero scalar

ς ∈ F, because u, x are linearly independent. Then

(4.8) ψ(e1 ⊘ e2) = ςu⊘ x.

Our next claim is that

(4.9) {u, x, v3 . . . , vn} is linearly independent.

We first show that v1 ∈ 〈u, x〉. Suppose that v1 /∈ 〈u, x〉. Since rankψ(e21 + γe22) 6 2

for all γ ∈ F, we have either y2 ∈ 〈u〉 or y2 ∈ 〈v1〉 by Lemma 4.2. Note that 〈y1〉 = 〈u〉

and 〈y1〉 6= 〈y2〉 implies y2 ∈ 〈v1〉, and so y2 /∈ 〈u, x〉. Let v1 = ǫy2 for some nonzero

scalar ǫ ∈ F. It follows that ψ((e1 + e2)
2) = ǫu⊘ y2 + x⊘ y2 + ςu⊘ x is of rank three,

a contradiction. Hence, v1 ∈ 〈u, x〉. Similarly, we obtain y2 ∈ 〈u, x〉. By (4.2) and

(4.3), since ψ(e21), ψ(e
2
2), ψ(e1 ⊘ e2) are linearly independent, we obtain

(4.10) ψ(e21) = u⊘ (θ1x+ ϑ1u) and ψ(e22) = x⊘ (θ2u+ ϑ2x)

for some scalars θ1, θ2, ϑ1, ϑ2 ∈ F with ϑ1, ϑ2 6= 0. Since ψ(e21), ψ(e1 ⊘ e2), . . . , ψ(e1 ⊘

en) are linearly independent, it follows from (4.2), (4.8) and (4.10) that {θ1x +

ϑ1u, ςx, v3, . . . , vn} is a linearly independent set, and hence, Claim (4.9) is proved.

Let 3 6 i 6 n − 1. Since rankψ((e1 + γe2) ⊘ ei) 6 2 for every γ ∈ F, it follows

from (4.9) and Lemma 4.2 that either yi ∈ 〈vi〉 or yi ∈ 〈u〉. Since u ∈ 〈y1〉, we

have yi ∈ 〈vi〉. Setting w1 = u, w2 = x, and wi = vi for i = 3, . . . , n, we thus have

{w1, . . . , wn} is linearly independent by (4.9). In view of (4.2), (4.3) and (4.8), we

have

(4.11) ψ(e1 ⊘ e2) = ςw1 ⊘ w2 and ψ(e1 ⊘ en) = w1 ⊘ wn,
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and for each 3 6 i 6 n− 1, there exists a nonzero scalar ζi ∈ F such that ψ(e1⊘ ei) =

w1⊘wi and ψ(e2⊘ei) = ζiw2⊘wi. Moreover, since 1 6 rankψ((e1+e2)⊘(ei+ej)) 6 2

for every distinct pair 3 6 i, j 6 n − 1, we have ζi = ζj for any distinct integers

3 6 i, j 6 n− 1. Consequently, there exists a nonzero scalar ζ ∈ F such that

(4.12) ψ(e1 ⊘ ei) = w1 ⊘ wi and ψ(e2 ⊘ ei) = ζw2 ⊘ wi

for all i = 3, . . . , n− 1.

We next claim that for each 1 6 i 6 n+1
2 , there exists a nonzero scalar µi ∈ F

such that

(4.13) ψ(e2i ) = µiw
2
i .

Recall that Xi = ei⊘〈e1, e2, ei〉 for 3 6 i 6 n+1
2 . Then ψ(Xi) is a 3-dimensional linear

space of bounded rank-two matrices of SMm(F). In view (4.12), since w1, w2, wi are

linearly independent, it follows from Lemma 4.1 (b) that ψ(Xi) is of Form (II) in

Lemma 3.1. Thus, ψ(Xi) ⊆ wi ⊘ Mm,1(F) by Lemma 2.4. For each 3 6 i 6 n+1
2 ,

there exists a nonzero vector zi ∈ Mm,1(F) such that ψ(e2i ) = wi ⊘ zi. We shall

show that θ1 = 0. Suppose not. In view of (4.9), we have {w1, θ1w2 + ϑ1w1, wi} and

{w1, 2θ1w2+2ϑ1w1+wi, wi} are linearly independent sets. Since rankψ(e21+γe
2
i ) 6 2

and rankψ(e1 ⊘ (e1 + ei) + γe2i ) 6 2 for all γ ∈ F, it follows from (4.10), (4.12) and

Lemma 4.2 that

zi ∈ 〈w1〉 or zi ∈ 〈θ1w2 + ϑ1w1〉,

and

zi ∈ 〈w1〉 or zi ∈ 〈2θ1w2 + 2ϑ1w1 + wi〉 .

We thus have zi ∈ 〈w1〉. Therefore, ψ(e2i ), ψ(e1 ⊘ ei) are linearly dependent, a

contradiction. Hence, θ1 = 0. Thus, ψ(e21) ∈
〈

w2
1

〉

by (4.10). Similarly, we can

show that θ2 = 0 in (4.10). Consequently, Claim (4.13) holds for i = 1, 2. We now

consider 3 6 i 6 n+1
2 . Since rankψ(e1 ⊘ (e1 + ei) + γe2i ) 6 2 for every γ ∈ F, we

have rank(w1 ⊘ (µ1w1 + wi) + γzi ⊘ wi) 6 2 for every γ ∈ F. If zi /∈ 〈w1, wi〉, then,

by Lemma 4.2, we have either wi ∈ 〈w1〉 or wi ∈ 〈µ1w1 + wi〉. Since w1, wi are

linearly independent, we obtain µ1 = 0, a contradiction. Therefore, zi ∈ 〈w1, wi〉.

Furthermore, since rankψ(e2 ⊘ (e2 + ei) + γe2i ) 6 2 for all γ ∈ F, in the same manner

we can show that zi ∈ 〈w2, wi〉. Hence, zi ∈ 〈w1, wi〉 ∩ 〈w2, wi〉 = 〈wi〉. Accordingly,

Claim (4.13) is proved.

Next, we consider n > 6. Let 3 6 i 6 n+1
2 and i+ 1 6 j 6 n+ 1− i. Recall that

Xij = ei ⊘〈e1, e2, ei, ej〉. Since ψ(Xij) is a linear space of bounded rank-two matrices

of SMm(F) containing linearly independent elements ψ(ei ⊘ ej), ψ(e
2
i ), ψ(e1 ⊘ ei),
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ψ(e2 ⊘ ei), it follows from Lemmas 3.1 and 2.4 that ψ(Xij) ⊆ wi ⊘Mm,1(F). Then

there exists a nonzero vector zij ∈ Mm,1(F) such that ψ(ei ⊘ ej) = wi ⊘ zij . On

the other hand, ψ(ej ⊘ 〈e1, e2, ei〉) is a linear space of bounded rank-two matrices of

SMm(F) containing linearly independent elements ψ(ei ⊘ ej), ψ(e1 ⊘ ej), ψ(e2 ⊘ ej).

Since w1, w2, wj are linearly independent, it follows from Lemmas 3.1, 4.1 (b) and

2.4 that ψ(ej ⊘ 〈e1, e2, ei〉) ⊆ wj ⊘ Mm,1(F). Then ψ(ei ⊘ ej) = wj ⊘ yij for some

nonzero vector yij ∈ Mm,1(F). Therefore, wi ⊘ zij = ψ(ei ⊘ ej) = wj ⊘ yij , and so

〈zij〉 = 〈wj〉 and 〈yij〉 = 〈wi〉 by Lemma 2.2 (b). Consequently, for each 3 6 i 6 n+1
2

and i+ 1 6 j 6 n+ 1− i, there exists a nonzero scalar ηij ∈ F such that

(4.14) ψ(ei ⊘ ej) = ηijwi ⊘ wj .

After composing the map: A 7→ µ−1
1 A for A ∈ SMm(F), if necessary, we have

(4.15) ψ(e21) = w2
1 and ψ(e1 ⊘ ei) = µ−1

1 w1 ⊘ wi

for i = 3, . . . , n, and for simplicity of notation, we abbreviate µ−1
1 ς to ς in (4.11),

µ−1
1 ζ to ζ in (4.12), µ−1

1 µi to µi in (4.13) for 2 6 i 6 n+1
2 , and µ−1

1 ηij to ηij in (4.14)

for 3 6 i 6 n+1
2 and i + 1 6 j 6 n + 1 − i. Since rankψ((e1 + e2)

2 + e2k) 6 2 and

rankψ((ei + ek)
2 + e2j) 6 2 for any distinct integers 1 6 i, j 6 2 and 3 6 k 6

n+1
2 ,

it follows from (4.11), (4.12), (4.13) and (4.15) that µ2 = ς2, ζ2 = (µ−1
1 ς)2 and

µi = (µ−1
1 )2 for 3 6 i 6 n+1

2 . Moreover, in view of (4.12), (4.13), (4.14) and (4.15), we

have ψ((e1+ei)⊘ej+(e1+ei)
2) = µ−1

1 w1⊘wj+ηijwi⊘wj+w
2
1+(µ−1

1 )2w2
i +µ

−1
1 w1⊘wi

is of rank bounded above by two for every 3 6 i 6 n+1
2 and i < j 6 n + 1 − i, and

hence,

0 = det





µ−1
1 µ−1

1 1

ηij (µ−1
1 )2 µ−1

1

0 ηij µ−1
1



 = ((µ−1
1 )2 − ηij)

2 ⇒ ηij = (µ−1
1 )2

for every 3 6 i 6 n+1
2 and i < j 6 n+1− i. Also, since ζ2 = (µ−1

1 ς)2, we have either

ζ = µ−1
1 ς or ζ = −µ−1

1 ς . Suppose that ζ = −µ−1
1 ς . Then

ψ((e1 + e2 + e3)
2 − e23) = w2

1 + ς2w2
2 + ςw1 ⊘ w2 + µ−1

1 w1 ⊘ w3 + (−µ−1
1 ς)w2 ⊘ w3

is of rank three, a contradiction. So ζ = µ−1
1 ς . Consequently, by (4.11), (4.12), (4.13),

(4.14) and (4.15) that ψ(e2i ) = (αiei)
2 for all 1 6 i 6 n+1

2 , and ψ(ei ⊘ ej) = (αiwi)⊘

(αjwj) for all 1 6 i 6 n+1
2 and i < j 6 n+1− i, where α1 = 1, α2 = ς and αi = µ−1

1

for i = 3, . . . , n. Let P ∈ Mm,n(F) be the matrix defined by Pei = αiwi for every

i = 1, . . . , n. Evidently, P is of rank n since {w1, . . . , wn} is linearly independent. By

the linearity of ψ, we conclude that

ψ(A) = λPAP+ for all A ∈ STn(F),
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where λ = µ−1
1 ∈ F is nonzero. We are done.

Case II: n = 4. Let S1 = e1⊘〈e1, e2, e3, e4〉 and S2 = e2⊘〈e1, e2, e3〉. Then ψ(S1)

and ψ(S2) are 4-dimensional and 3-dimensional spaces of bounded rank-two matrices

of SMm(F), respectively. By Lemma 3.1, there exist a nonzero vector u ∈ Mm,1(F)

and linearly independent vectors v1, v2, v3, v4 ∈ Mm,1(F) such that

(4.16) ψ(e21) = u⊘ v1 and ψ(e1 ⊘ ei) = u⊘ vi for i = 2, 3, 4,

and ψ(S2) is either of Form (I) or Form (II) in Lemma 3.1. We claim that ψ(S2)

is of Form (II). Suppose to the contrary that ψ(S2) is of Form (I). We argue in the

following two cases:

Case II-1: 〈v2〉 6= 〈u〉. By Lemma 4.1 (a), we obtain ψ(S2) =
〈

u2, v22 , u⊘ v2
〉

.

Let ψ(e22) = µ1u ⊘ v2 + µ2u
2 + µ3v

2
2 and ψ(e2 ⊘ e3) = η1u ⊘ v2 + η2u

2 + η3v
2
2 for

some µi, ηi ∈ F, i = 1, 2, 3. Suppose that µ3 6= 0. Note that rankψ(e21 + e22) 6 2

implies v1 ∈ 〈u, v2〉. Since v1, v2, v3 are linearly independent, it follows that u, v2, v3
are linearly independent. In view of (4.16), we have ψ(e21) = λ1u⊘ v2+λ2u

2 for some

scalars λ1, λ2 ∈ F with λ2 6= 0. We set

ζ =

{

1 if η3 = 0,

η−1
3 µ3 if η3 6= 0.

Then ζ 6= 0 and ζη3 + µ3 6= 0, and

ψ(ζ(e1 + e2)⊘ e3 + (e1 + e2)
2) = ζu⊘ v3 + (ζη3 + µ3)v

2
2

+ (ζη1 + λ1 + µ1 + 1)u⊘ v2 + (ζη2 + λ2 + µ2)u
2

is of rank three, a contradiction. Hence, µ3 = 0. Since ψ(e2 ⊘ e1), ψ(e
2
2), ψ(e2 ⊘ e3)

are linearly independent, it follows that η3 6= 0. By a similar argument, with ψ(e21)

replaced by ψ(e2 ⊘ e3), to obtain ψ(ζ′(e1 + e2)⊘ e3 + (e1 + e2)
2) is of rank three for

ζ′ ∈ F, which is impossible.

Case II-2: 〈v2〉 = 〈u〉. By (4.16), we have ψ(e1 ⊘ e2) = αu2 for some α ∈ F \{0}

and v1, u, v3, v4 are linearly independent. Let ψ(S2) =
〈

x2, v2, x⊘ v
〉

for some linearly

independent vectors x, v ∈ Mm,1(F). Since ψ(e1 ⊘ e2) ∈ ψ(S2), it follows that

αu2 = θ1x
2 + θ2v

2 + θ3x ⊘ v for some θ1, θ2, θ3 ∈ F with (θ1, θ2, θ3) 6= 0. We now

show that u ∈ 〈x, v〉. Suppose to the contrary that u /∈ 〈x, v〉. If θ3 = 0, then

αu2 − θ1x
2 − θ2v

2 = 0 implies that α = θ1 = θ2 = 0, a contradiction. Thus, θ3 6= 0,

and so αu2−θ3x⊘v = θ1x
2+θ2v

2, which is an impossibility. We thus have u ∈ 〈x, v〉.

Since x, v are linearly independent, we may assume without loss of generality that

u, v are linearly independent. Then 〈u, v〉 = 〈x, v〉, so ψ(S2) =
〈

u2, v2, u⊘ v
〉

by

Lemma 4.1 (a). Let ψ(e22) = a1u ⊘ v + a2u
2 + a3v

2 for some a1, a2, a3 ∈ F. Suppose

that a3 6= 0. Since ψ(e21 + e22) = u ⊘ v1 + a1u ⊘ v + a2u
2 + a3v

2 has rank bounded
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above by two, it follows that v ∈ 〈u, v1〉. Then
〈

u2, v2, u⊘ v
〉

=
〈

u2, v21 , u⊘ v1
〉

, and

therefore, ψ(e22) = b1u⊘ v1 + b2u
2 + b3v

2
1 for some b1, b2, b3 ∈ F with b3 6= 0, because

u, v are linearly independent. Let ψ(e2⊘ e3) = c1u⊘ v1+ c2u
2+ c3v

2
1 for some scalars

c1, c2, c3 ∈ F, and let

β =

{

1 if c3 = 0,

c−1
3 b3 if c3 6= 0.

Then β 6= 0 and βc3 + b3 6= 0, and

ψ(β(e1 + e2)⊘ e3 + (e1 + e2)
2) = βu⊘ v3 + (βc3 + b3)v

2
1

+ (βc1 + b1 + 1)u⊘ v1 + (βc2 + b2 + α)u2

is of rank three, a contradiction. Then a3 = 0. Since ψ(e22), ψ(e2 ⊘ e1), ψ(e2 ⊘ e3)

are linearly independent, it follows that ψ(e2 ⊘ e3) = d1u⊘ v + d2u
2 + d3v

2 for some

d1, d2, d3 ∈ F with d3 6= 0. Note that ψ((e1+e2)⊘e3) = u⊘v3+d1u⊘v+d2u
2+d3v

2 has

rank bounded above by two implies v ∈ 〈u, v3〉. So
〈

u2, v2, u⊘ v
〉

=
〈

u2, v23 , u⊘ v3
〉

.

We now apply a similar argument as above, with v1 replaced by v3, to obtain ψ(β
′(e1+

e2)⊘e3+(e1+e2)
2) is of rank three for some β′ ∈ F \{0}. This leads to a contradiction.

Accordingly, ψ(S2) is of Form (II). Then there exists a nonzero vector x ∈

Mm,1(F) such that

(4.17) ψ(e22) = x⊘ y2 and ψ(e2 ⊘ ei) = x⊘ yi for i = 1, 3

for some linearly independent vectors y1, y2, y3 ∈ Mm,1(F). We divide into two

subcases:

Case A: 〈x〉 = 〈u〉. It follows from (4.16) and (4.17), together with the linearity

of ψ, that there exists a linear mapping ϕ : ST4(F) → Mm,1(F) such that

ψ(A) = u⊘ ϕ(A) for all A ∈ ST4(F),

where ϕ(A) 6= 0 for every nonzero bounded rank-two matrix A ∈ ST4(F). So (4.1)

holds true.

Case B: 〈x〉 6= 〈u〉. Note that x⊘ y1 = ψ(e1 ⊘ e2) = u ⊘ v2 implies v2 = ςx and

y1 = ςu for some nonzero scalar ς ∈ F. Thus,

(4.18) ψ(e1 ⊘ e2) = ςu⊘ x.

By a similar argument as in (4.9), we show that {u, x, v3, v4} are linearly independent.

Setting w1 = u, w2 = ςx, w3 = v3 and w4 = v4, we thus have {w1, w2, w3, w4} is

linearly independent. In view of (4.16), (4.17) and (4.18), we have

(4.19) ψ(e21) = w1 ⊘ v1 and ψ(e1 ⊘ ei) = w1 ⊘ wi, i = 2, 3, 4,
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and

(4.20) ψ(e22) = w2 ⊘ z2 and ψ(e2 ⊘ e3) = w2 ⊘ z3,

where zi = ς−1yi for i = 2, 3. We claim that

(4.21) v1 ∈ 〈w1, w2〉 and z2 ∈ 〈w1, w2〉 .

We will only verify v1 ∈ 〈w1, w2〉 as the second statement can be proved similarly.

Suppose, contrary to our claim, that v1 /∈ 〈w1, w2〉. Since rankψ(e21 + γe22) 6 2 for

all γ ∈ F, it follows from (4.19), (4.20) and Lemma 4.2 that z2 ∈ 〈w1〉 or z2 ∈ 〈v1〉.

Since y1, y2 are linearly independent and w1 ∈ 〈y1〉, we conclude that z2 = λv1 for

some nonzero λ ∈ F. Consequently, ψ((e1 + e2)
2) = w1 ⊘ v1 + w1 ⊘w2 + λw2 ⊘ v1 is

of rank three, a contradiction. Claim (4.21) is proved. By (4.19) and (4.20),

(4.22) ψ(e21) = λ1w
2
1 + λ2w1 ⊘ w2 and ψ(e22) = λ3w

2
2 + λ4w1 ⊘ w2

for some scalars λ1, λ2, λ3, λ4 ∈ F with λ1, λ3 6= 0. Moreover, since rankψ(e1 ⊘ e3 +

γe2⊘e3) 6 2 for all γ ∈ F, it follows from (4.19), (4.20) and Lemma 4.2 that z3 ∈ 〈w1〉

or z3 ∈ 〈w3〉. Since y1, y3 are linearly independent, we have z3 = ξw3 for some nonzero

scalar ξ ∈ F. By (4.20), we have

(4.23) ψ(e2 ⊘ e3) = ξw2 ⊘ w3.

In view of (4.19), (4.20), (4.22) and (4.23), we see that

ψ((γe1 + e2)
2 + (γe1 + e2)⊘ e3) = γ2λ1w

2
1 + λ3w

2
2 + (γ2λ2 + γ + λ4)w1 ⊘ w2

+ γw1 ⊘ w3 + ξw2 ⊘ w3

has rank bounded above by two for all γ ∈ F. It follows that

0 = det





γ γ2λ2 + γ + λ4 γ2λ1
ξ λ3 γ2λ2 + γ + λ4
0 ξ γ





= −γ
(

2λ2ξγ
2 − (λ3 − ξ(2− ξλ1))γ + 2λ4ξ

)

(4.24)

for all γ ∈ F. Since F is a field of characteristic not two, we conclude immediately

from (4.24) that λ3 = ξ(2 − ξλ1) with ξλ1 6= 2, and λ4 = −λ2. Moreover, if |F| > 4,

then we can deduce from (4.24) that λ2 = 0 = λ4.

Let P ∈ Mm,4(F) be the matrix defined by Pei = wi for i = 1, 3, 4, and Pe2 =

ξw2. Clearly, P is of full rank. Denote α = ξ−1, β = λ1 and θ = λ2ξ
−1. Then

α, β 6= 0 and 2α− β = λ3ξ
−2 6= 0. By (4.19), (4.20), (4.22), (4.23) and the linearity
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of ψ, we obtain

ψ(A) = P









a11 a12 αa13 + θ(a14 − a23) βa14
0 a22 (2α− β)a23 αa13 + θ(a14 − a23)

0 0 a22 a12
0 0 0 a11









P+

for all A = (aij) ∈ ST4(F), where θ is nonzero only if |F| = 3. We are done.

Case III: n = 3. Let W = e1 ⊘ 〈e1, e2, e3〉. Then ψ(W) is a 3-dimensional linear

space of bounded rank-two matrices of SMm(F). By Lemma 3.1, ψ(W) is either of

Form (I) or Form (II) in Lemma 3.1. Then either

(4.25) ψ(W) ⊆ u⊘Mm,1(F)

for some nonzero vector u ∈ Mm,1(F); or

(4.26) ψ(W) =
〈

u2, v2, u⊘ v
〉

for some linearly independent vectors u, v ∈ Mm,1(F). We argue in the following two

cases:

Case III-1: ψ(e22) ∈ ψ(W). We consider the following two subcases.

If (4.25) holds, then Imψ ⊆ u ⊘ Mm,1(F). We thus obtain a linear mapping

ϕ : ST3(F) → Mm,1(F) such that

ψ(A) = u⊘ ϕ(A) for all A ∈ ST3(F),

where ϕ(A) 6= 0 for every nonzero bounded rank-two matrix A ∈ ST3(F). Hence, (4.1)

holds.

If (4.26) holds, then Imψ =
〈

u2, v2, u⊘ v
〉

. So, for each A ∈ ST3(F), there exists

a unique ordered triple (αA, βA, γA) ∈ F
3 such that ψ(A) = αAu

2 + βAv
2 + γAu⊘ v.

We define the linear mapping φ : ST3(F) → F
3 such that

φ(A) = (αA, βA, γA) for all A ∈ ST3(F).

Note that Imψ =
〈

u2, v2, u⊘ v
〉

and ψ preserves nonzero bounded rank-two matrices

implies φ is surjective and φ(A) 6= 0 for every nonzero bounded rank-two matrix

A ∈ ST3(F). Let P ∈ Mm,2(F) be the matrix defined by Pe1 = u and Pe2 = v. Then

P is of full rank and

ψ(A) = P

[

φ(A)3 φ(A)1
φ(A)2 φ(A)3

]

P+ for all A ∈ ST3(F),

where φ(A)i denotes the i-th component of φ(A) ∈ F
3. We are done.
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Case III-2: ψ(e22) /∈ ψ(W). Let W1 =
〈

e21, e
2
2, e1 ⊘ e2

〉

. Note that ψ(W1) is a

3-dimensional linear space of bounded rank-two matrices of SMm(F). By Lemma 3.1,

we have either

(4.27) ψ(W1) ⊆ x⊘Mm,1(F)

for some nonzero vector x ∈ Mm,1(F); or

(4.28) ψ(W1) =
〈

x2, y2, x⊘ y
〉

for some linearly independent vectors x, y ∈ Mm,1(F). We need to consider the

following four subcases:

Case III-2-A: (4.25) and (4.27) hold. Since ψ(W) ⊆ u ⊘Mm,1(F) contains two

linearly independent elements ψ(e21) = x⊘y1 and ψ(e1⊘e2) = x⊘y2 for some y1, y2 ∈

Mm,1(F), it follows from Lemma 2.4 that 〈x〉 = 〈u〉. Thus, Imψ ⊆ u⊘Mm,1(F), and

hence, (4.1) holds true.

Case III-2-B: (4.26) and (4.28) hold. By (4.26) and (4.28), we see that

a1u
2 + a2v

2 + a3u⊘ v = ψ(e21) = b1x
2 + b2y

2 + b3x⊘ y

is of rank one or rank two for some nonzero elements (ai), (bi) ∈ F
3, and

c1u
2 + c2v

2 + c3u⊘ v = ψ(e1 ⊘ e2) = d1x
2 + d2y

2 + d3x⊘ y

is of rank one or rank two for some nonzero elements (ci), (di) ∈ F
3. Therefore,

u · (a1u
+ + a3v

+) + v · (a2v
+ + a3u

+) = x · (b1x
+ + b3y

+) + y · (b2y
+ + b3x

+),

u · (c1u
+ + c3v

+) + v · (c2v
+ + c3u

+) = x · (d1x
+ + d3y

+) + y · (d2y
+ + d3x

+).

Since ψ(e21), ψ(e1 ⊘ e2) are linearly independent, it follows that, in each case, we

obtain 〈u, v〉 = 〈x, y〉. By Lemma 4.1 (a),
〈

u2, v2, u⊘ v
〉

=
〈

x2, y2, x⊘ y
〉

, and so

ψ(e22) ∈ ψ(W), a contradiction.

Case III-2-C: (4.25) and (4.28) hold. Let ψ(e21) = u⊘ z1, ψ(e1⊘ e2) = u⊘ z2 and

ψ(e1 ⊘ e3) = u ⊘ z3 for some linearly independent vectors z1, z2, z3 ∈ Mm,1(F). By

(4.28), we get

u⊘ z1 = a1x
2 + a2y

2 + a3x⊘ y,

u⊘ z2 = b1x
2 + b2y

2 + b3x⊘ y

for some nonzero elements (ai), (bi) ∈ F
3. Thus,

(4.29) u · z+1 + z1 · u
+ = x · (a1x

+ + a3y
+) + y · (a2y

+ + a3x
+),
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(4.30) u · z+2 + z2 · u
+ = x · (b1x

+ + b3y
+) + y · (b2y

+ + b3x
+).

We consider the following four subcases:

Subcase III-2-C-1: rankψ(e21) = rankψ(e1 ⊘ e2) = 1. Then 〈z1〉 = 〈u〉 = 〈z2〉.

This contradicts the fact that z1, z2 are linearly independent.

Subcase III-2-C-2: rankψ(e21) = rankψ(e1 ⊘ e2) = 2. Then {u, zi} is linearly

independent for i = 1, 2. It follows from (4.29) and (4.30) that 〈u, z1〉 = 〈x, y〉 =

〈u, z2〉. Since rankψ(e1⊘e2) = 2 and {z1, z2} is linearly independent, z2 = µ1u+µ2z1
for some nonzero scalars µ1, µ2 ∈ F. We thus have {z1, u, z3} is linearly independent

and ψ(e1 ⊘ e2) = η1u
2 + η2u ⊘ z1, with η1 = 2µ1 and η2 = µ2 nonzero. Since

〈

x2, y2, x⊘ y
〉

=
〈

u2, z21 , u⊘ z1
〉

, we have ψ(e22) = λ1u
2 + λ2u ⊘ z1 + λ3z

2
1 for some

(λi) ∈ F
3 with λ3 6= 0. Let P ∈ M3,m(F) be the matrix defined by Pe1 = u,

Pe2 = z1 and Pe3 = z3. Then P is of full rank, and ψ(e21) = P (e1 ⊘ e2)P
+,

ψ(e1 ⊘ e2) = P (η1e
2
1 + η2e1 ⊘ e2)P

+, ψ(e1 ⊘ e3) = P (e1 ⊘ e3)P
+ and ψ(e22) =

P (λ1e
2
1 + λ2e1 ⊘ e2 + λ3e

2
2)P

+. By the linearity of ψ, we obtain

ψ(A) = P





a11 η2a12 + a13 + λ2a22 η1a12 + λ1a22
0 λ3a22 η2a12 + a13 + λ2a22
0 0 a11



P+

for all A = (aij) ∈ ST3(F). We are done.

Subcase III-2-C-3: rankψ(e21) = 1 and rankψ(e1 ⊘ e2) = 2. Then 〈z1〉 = 〈u〉, and

so ψ(e21) = ηu2 for some nonzero scalar η ∈ F. Note that {u, z2, z3} is linearly inde-

pendent. By (4.30), we have 〈u, z2〉 = 〈x, y〉, and so
〈

u2, z22 , u⊘ z2
〉

=
〈

x2, y2, x⊘ y
〉

by Lemma 4.1 (a). Thus, ψ(e22) = λ1u
2 + λ2u ⊘ z2 + λ3z

2
2 for some (λi) ∈ F

3 with

λ3 6= 0. Let P ∈ M3,m(F) be the matrix defined by Pe1 = u, Pe2 = z2 and Pe3 = z3.

Then P is of full rank and

ψ(A) = P





a11 a12 + λ2a22 ηa13 + λ1a22
0 λ3a22 a12 + λ2a22
0 0 a11



P+

for all A = (aij) ∈ ST3(F). We are done.

Subcase III-2-C-4: rankψ(e21) = 2 and rankψ(e1 ⊘ e2) = 1. Then 〈z2〉 = 〈u〉 and

ψ(e1⊘e2) = ηu2 for some nonzero scalar η ∈ F. So {z1, u, z3} is linearly independent.

By (4.29), we conclude that
〈

u2, z21 , u⊘ z1
〉

=
〈

x2, y2, x⊘ y
〉

. Thus, ψ(e22) = λ1u
2 +

λ2u ⊘ z1 + λ3z
2
1 for some (λi) ∈ F

3 with λ3 6= 0. Let P ∈ M3,m(F) be the matrix

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 619-651, August 2014



ELA

Linear Spaces and Preservers of Bounded Rank-Two Per-Symmetric Triangular Matrices 647

defined by Pe1 = u, Pe2 = z1 and Pe3 = z3. Then P is of full rank and

ψ(A) = P





a11 a13 + λ2a22 ηa12 + λ1a22
0 λ3a22 a13 + λ2a22
0 0 a11



P+

for all A = (aij) ∈ ST3(F). We are done.

Case III-2-D: (4.26) and (4.27) hold. Let τ : ST3(F) → ST3(F) be the bijective

linear mapping defined by

τ(A) =





a22 a12 a13
0 a11 a12
0 0 a22



 for all A = (aij) ∈ ST3(F).

It is easily seen that τ is a bounded rank-two linear preserver such that τ(W) = W1

and τ(W1) = W . It follows from (4.26) and (4.27) that

(ψ ◦ τ)(W) = ψ(W1) ⊆ x⊘Mm,1(F) and (ψ ◦ τ)(W1) = ψ(W) =
〈

u2, v2, u⊘ v
〉

.

We then infer by similar arguments as in Subcase III-2-C and conclude that ψ takes

one of the following forms: there exists a full rank matrix P ∈ M3,m(F) such that

ψ(A) = P





a22 η2a12 + a13 + λ2a11 η1a12 + λ1a11
0 λ3a11 η2a12 + a13 + λ2a11
0 0 a22



P+

for all A = (aij) ∈ ST3(F), where λ1, λ2, λ3, η1, η2 ∈ F with λ3, η1, η2 6= 0; or

ψ(A) = P





a22 a12 + λ2a11 ηa13 + λ1a11
0 λ3a11 a12 + λ2a11
0 0 a22



P+

for all A = (aij) ∈ ST3(F), where λ1, λ2, λ3, η ∈ F with λ3, η 6= 0; or

ψ(A) = P





a22 a13 + λ2a11 ηa12 + λ1a11
0 λ3a11 a13 + λ2a11
0 0 a22



P+

for all A = (aij) ∈ ST3(F), where λ1, λ2, λ3, η ∈ F with λ3, η 6= 0.

By Theorem 4.3, Lemma 2.3 (a) and (b) (i), and Lemma 2.6, we obtain a clas-

sification of bounded rank-two linear preservers between per-symmetric triangular

matrix spaces over a field of characteristic not two.

Corollary 4.4. Let F be a field of characteristic not two and m,n be integers

such that m,n > 3. Then ψ : STn(F) → STm(F) is a bounded rank-two linear preserver

if and only if m > n and ψ is of one of the following forms:
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(i) There exist a nonzero vector u ∈ Up,m and a linear mapping ϕ : STn(F) → Uq,m,

with 1 6 p 6 m+ 1− q 6 m, such that

ψ(A) = u⊘ ϕ(A) for all A ∈ STn(F),

where ϕ(A) 6= 0 for every nonzero bounded rank-two matrix A ∈ STn(F).

(ii) There exist a full rank matrix P ∈ Mm,n(F) and a nonzero λ ∈ F such that

ψ(A) = λPAP+ for all A ∈ STn(F),

where Pei ∈ Upi,m\Upi−1,m for i = 1, . . . , n such that 1 6 pi 6
m+1
2 for

every 1 6 i 6 n+1
2 , and pi 6 m+ 1 − pj for every 1 6 i < j 6 n+ 1 − i. In

particular, P ∈ Tn(F) when m = n.

(iii) When n = 4, in addition to (i) and (ii), ψ also takes the form

ψ(A) = P









a11 a12 αa13 + θ(a14 − a23) βa14
0 a22 (2α− β)a23 αa13 + θ(a14 − a23)

0 0 a22 a12
0 0 0 a11









P+

for all A = (aij) ∈ ST4(F), where α, β, θ ∈ F are scalars such that α, β are

nonzero with β 6= 2α, and θ is nonzero only if |F| = 3, and P ∈ Mm,4(F)

is a full rank matrix in which Pei ∈ Upi,m for 1 6 i 6 4 with 1 6 pi 6
m+1
2

for every 1 6 i 6 2, and pi 6 m + 1 − pj for every 1 6 i < j 6 5 − i. In

particular, P ∈ T4(F) when m = 4.

(iv) When n = 3, in addition to (i) and (ii), ψ also takes one of the following forms:

(a) There exist a surjective linear mapping φ : ST3(F) → F
3 and a full rank

matrix P ∈ Mm,2(F) such that

ψ(A) = P

[

φ(A)3 φ(A)1
φ(A)2 φ(A)3

]

P+ for all A ∈ ST3(F),

where Pe1, P e2 ∈ Up,m for some integer 1 6 p 6
m+1
2 , φ(A)i is the

i-th component of φ(A) ∈ F
3, and φ(A) 6= 0 for every nonzero bounded

rank-two matrix A ∈ ST3(F).

(b) There exist scalars λ1, λ2, λ3 ∈ F with λ3 6= 0 such that either

ψ(A) = P





app η2a12 + a13 + λ2aqq η1a12 + λ1aqq
0 λ3aqq η2a12 + a13 + λ2aqq
0 0 app



P+

for all A = (aij) ∈ ST3(F), where η1, η2 ∈ F are nonzero and {p, q} =

{1, 2}; or

ψ(A) = P





app a1s + λ2aqq η1a1t + λ1aqq
0 λ3aqq a1s + λ2aqq
0 0 app



P+

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 619-651, August 2014



ELA

Linear Spaces and Preservers of Bounded Rank-Two Per-Symmetric Triangular Matrices 649

for all A = (aij) ∈ ST3(F), where η ∈ F is nonzero and {p, q} = {s, t} =

{1, 2}. Here, P ∈ Mm,3(F) is a full rank matrix such that Pe1, Pe2 ∈

Up,m with 1 6 p 6
m+1
2 and Pe3 ∈ Uq,m with 1 6 q 6 m + 1 − p. In

particular, P ∈ T3(F) when m = 3.

We end this section by giving an example of rank-one linear preserver / rank-one

non-increasing linear mapping and some examples of rank-two non-increasing linear

mappings on per-symmetric triangular matrices.

Example 4.5. Let F be a field and m,n be integers > 2. Let p :=
⌊

n+1
2

⌋

, where

⌊·⌋ is the floor function. Let ψ : STn(F) → SMm(F) be the linear mapping defined by

ψ(A) = λP

[

φ(A1) ϕ(A2)

0 φ(A1)
+

]

P+ for every A =

[

A1 A2

0 A+
1

]

∈ STn(F)

with A1 ∈ Tp,n−p (F) and A2 ∈ SMp (F), where λ ∈ F\{0}, P ∈ Mm,n(F) is of

full rank, and φ : Tp,n−p(F) → Mp,n−p(F) and ϕ : SMp(F) → SMp(F) are linear

mappings. Here Tp,n−p(F) = Tp(F) when n− p = p, and

Tp,n−p(F) =

{[

T

0

]

∈ Mp,n−p(F)

∣

∣

∣

∣

T ∈ Tp−1(F)

}

when n− p = p− 1.

It is easily verified that

• ψ is a rank-one linear preserver whenever ϕ is a rank-one linear preserver on

SMp(F), and

• ψ is rank-one non-increasing whenever ϕ is a rank-one non-increasing linear

mapping on SMp(F).

By the structural results of rank-one linear preservers and rank-one non-increasing

linear mappings on symmetric matrices (see a complete result under a more general

setting in [8], [12]), the structure of ψ can be established immediately.

Example 4.6. Let F be a field and m,n be integers > 2. Let ψ : STn(F) →

SMm(F) be the linear mapping defined by

ψ(A) = λPAP+

for every A ∈ STn(F), where λ ∈ F and P ∈ Mm,n(F). Clearly, ψ is rank-two

non-increasing.

Example 4.7. Let F be a field and n be an integer > 2. Let ψ : STn(F) →

SMn(F) be the linear mapping defined by

ψ(A) = diag (a11, . . . , ann)
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for every A = (aij) ∈ STn(F). It is immediate to see that rankψ(A) 6 2 whenever

rankA 6 2.

Example 4.8. Let F be a field and n be an integer > 2. Let ψ : STn(F) →

SMn(F) be the linear mapping defined by

ψ(A) =

















λ1A11 0 · · · 0 0

0 λ2A22 · · · 0 0
...

...
. . .

...
...

0 0 · · · λ2A22 0

0 0 · · · 0 λ1A11

















for every A = (Aij) ∈ STn(F) with Aij ∈ Mni,nj
(F) for 1 6 i 6 j 6 k. Here λi ∈ F

with λk+1−i = λi for i = 1, . . . , k, and n1 + · · · + nk = n with nk+1−i = ni for

i = 1, . . . , k. It is easily verified that is rank-two non-increasing.

Example 4.9. Let F be a field. We define the linear mapping ψ : ST5(F) →

SM5(F) such that

ψ(A) =















a11 0 0 0 0

a12 a22 a23 a24 0

0 0 a33 a23 0

0 0 0 a22 0

0 0 0 a12 a11















for every A = (aij) ∈ ST5(F). A direct verification shows that ψ satisfies rankψ(A) 6

2 whenever rankA 6 2.

Example 4.10. Let F be a field and ψ : ST5(F) → SM5(F) be the linear mapping

defined by

ψ(A) =















a11 a12 0 0 0

0 a22 0 0 0

0 a23 a33 0 0

0 0 a23 a22 a12
0 0 0 0 a11















for every A = (aij) ∈ ST5(F). Then ψ satisfies rankψ(A) 6 2 whenever rankA 6 2.

Nevertheless, we note that ψ is not rank-one non-increasing. For example, ψ(E23 +

E24 + E33 + E34) = E32 + E33 + E43 is of rank two.

Examples 4.6–4.10 demonstrate that the structure of rank-two non-increasing

linear mappings on per-symmetric triangular matrices is complicated. This shows

that condition (1.1) is a relevant assumption in our study.
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