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LINEAR SPACES AND PRESERVERS OF BOUNDED RANK-TWO
PER-SYMMETRIC TRIANGULAR MATRICES*
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Abstract. Let F be a field and m,n be integers m,n > 3. Let SMy(F) and ST,(F) denote the
linear space of n X n per-symmetric matrices over F and the linear space of n X n per-symmetric
triangular matrices over F, respectively. In this note, the structure of spaces of bounded rank-two
matrices of ST,(F) is determined. Using this structural result, a classification of bounded rank-two
linear preservers ¢ : ST, (F) — SMy, (F), with F of characteristic not two, is obtained. As a corollary, a
complete description of bounded rank-two linear preservers between per-symmetric triangular matrix
spaces over a field of characteristic not two is addressed.
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1. Introduction. A linear mapping between matrix spaces is said to be rank-k
non-increasing (respectively, a rank-k preserver) if it sends rank less than or equal to
k matrices (respectively, if it sends rank k matrices) to matrices of the same type.
Motivated by the studies of rank-one non-increasing linear mappings and rank-two
non-increasing linear mappings on symmetric matrices [2| [5, [10, 1T}, 13] and rank-one
non-increasing linear mappings on triangular matrices [3| [], we investigate the struc-
ture of bounded rank-two linear preservers i) on per-symmetric triangular matrices
satisfying the condition

(1.1) 1 <ranky(A) <2 whenever 1 <rankA <2,
where rank A denotes the rank of the matrix A.

It is a known fact that the structure of rank preservers is one of the basic results
and useful in the study of linear preserver problems [9, [16]. Many linear preservers
problems quite often depend on or can be solved with the help of such mappings.
For instance, Minc [I5] deduced from rank-one linear preservers the classical theorem
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of Frobenius [0] concerning determinant linear preservers. Watkins [I7] classified
commutativity linear preservers by using the structure of rank-one linear preservers.
In [I4], rank-k non-increasing linear mappings were used by Loewy and Pierce to verify
the John-Pierce conjecture [7] for certain balanced singular inertia classes. Beasley
[1] showed that rank-additivity preserving linear mappings are rank-k non-increasing.
For works concerning rank preservers on various matrix spaces, we refer the reader
to [16, Chapter 2] and [I8, Chapter 2].

Let F be a field and m,n be positive integers. Let M,, »(F) denote the linear
space of m X n matrices over F. We abbreviate M,, ,(F) to M, (F) and M, ,,(F)
to F". Given A € My, ,(F), let At = J,ATJ,, € My (F), where AT stands for
the transpose of A and J,, is the element of M,,(F) with ones on the minor diagonal
and zeros elsewhere. A matrix A € M, (F) is called per-symmetric if it is symmetric
around the minor diagonal, i.e., AT = A. We denote by SM,,(F) the linear subspace
of M,,(F) consisting of per-symmetric matrices, and ST,(IF) := SM,,(F) N T, (F). Here
T.(F) stands for the linear space of n x n upper triangular matrices over F. We
shall call SM,,(F) and ST,(F) the per-symmetric matriz space and the per-symmetric
triangular matrix space, respectively.

The study of rank-k£ non-increasing linear mappings led naturally to the investi-
gation of linear spaces of bounded rank k (i.e., linear subspaces consisting of matrices
of rank at most k) and k-spaces (i.e., linear subspaces consisting of the zero matrix
and matrices of rank k). In this note, we first give a classification of linear spaces of
bounded rank-two per-symmetric matrices of ST,(F) over an arbitrary field F. As a
corollary, a description of 2-spaces of ST,(FF) is obtained. We next deduce from the
structural result of spaces of bounded rank-two per-symmetric triangular matrices
a characterization of bounded rank-two linear preservers from ST,(F) into SM,,,(F),
with m,n > 3 and F of characteristic not two. As an immediate consequence, a
complete description of bounded rank-two linear preservers between per-symmetric
triangular matrix spaces over a field of characteristic not two is addressed.

As a side remark, the structure of rank-one non-increasing linear mappings on
triangular matrices is much more complicated than the one of those on symmetric
matrices. Some examples of rank-one non-increasing linear mappings and rank-two
non-increasing linear mappings on per-symmetric triangular matrices are given at the
end of this note to indicate the aptness of condition (IJ]) in arriving at our results.

In the sequel, we write {f1,..., fm} and {e1,...,e,} for the standard bases of
M1 (F) and M,, 1(F), respectively, and let E;; := f; - €] be the matrix unit in
My, o (F) with one as the (4, 7) entry and zero elsewhere. We use (us, . .., u,) designate
the linear span of the vectors uy, ..., u,.
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2. Preliminaries. Let F be a field and n be an integer such that n > 2. For
each a € F and each pair of integers i, j satisfying 1 <i,j <nand j#n+1—1, we
set

(2.1) Zi? = E,L'j + Ej]_ + aEi,n-i-l—i S Mn(F)

and write Z;; = Zi(;- for short. It is obvious that Zjj is a per-symmetric triangular
matrix forevery 1 <i<j<n+1—iand j#n+1—i.

We begin with a result on the decomposition of per-symmetric triangular matrices.

LEMMA 2.1. Let F be a field and n be an integer such that n > 2. A monzero
matriz A € ST(F) is of rank k if and only if there exist an integer 0 < h < %,
scalars aq,...,an € F, nonzero scalars Baopy1,-..,0k € F, and an invertible matrix
P € T, (F) such that

h k
A=P (ZZ;?L + 0y ﬂiEpi’ani) P+

i=1 i=2h+1

where {s1,...,$p,n+1—t1,...,n+ 1 = tp,pont1,...,0k} and {t1,...,th,n +1—
S1y,..,n+1—sp,n+1—papi1,...,n+1—pr} are two sets of k distinct positive
integers such that 1 < s; <t; <Km+1—s; andt; #n+1—s; fori=1,... h, and
1<p; < ”T“ fori=2h+1,...,k; and (aq,...,an) # 0 only if F has characteristic
two.

Proof. The proof of sufficiency is immediate. We now consider necessity.

Let A = (a;;) € ST,(F) be a nonzero rank k matrix. We denote by A, and AV
the i-th row and the j-th column of the matrix A, respectively. Let AU0) be the first
nonzero column from the left of A, and let a;, j, be the first nonzero entry from the
bottom of the column AU0). Then aij, = 0 for every ip +1 < i < n, and a;; =0
forevery 1 <i<nand1<j<jo—1,and also 1 <ig < jo < n+1—1ig since
A € 8T,(F). We divide our proof into the following two cases:

Case I: jo =n+1—iy. Foreach 1 < s < ig— 1, we apply the following elementary
row and column operations on A:

(22) A(s) — A(s) — Qs jo a; ! A(io) and A(n+175) — A(n+175) — Qjy,ntl—s a; L A(jo).

20 Jo 20 Jo

For each 1 < s < ip — 1, there exists the elementary matrix I, — csEs,, € Tn(F)
corresponding to the row operation Ay — A(s) — ¢s A, Where ¢ = as j, a;oljo eF.
Since AT = A, we have a;y ni1-s = as jo for every 1 < s <49 — 1, and so there exists
an invertible matrix P; € T, (F) such that

(23) PIAP1+ = aiojoEino + B
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for some matrix B = (b;;) € ST,(F) such that b; j, = 0 for every 1 <i < n, b;jy; =0
for every 1 < j <n,and b;; =0 forevery 1 <i<nand1<j<jo—1.

Case 1II: jo # n+ 1 —ip. Without loss of generality, we may assume a;,;, =1 =
Qn+1—jo,n+1—io- For each 1 < s <ip — 1, we apply the following elementary row and
column operations on A:

Ag) = Ay = asjo Ay and AU 5 A gy g g AR,
and it is followed by the elementary row and column operations on A:
Ay = Ay — atnt1—ioAns1—j) and ACH=E) y glnA1=0) az'o,n+1—tA(j°)

for every 1 < ¢t < n — jo. We note that, for each 1 < s < ip — 1 (respectively, for
each 1 <t < n— jo), there exists the elementary matrix I,, — as j, Es4, (respectively,
Iy — atny1—io Bt nr1-jo) in Tn(F) corresponding to the row operation Ay — A5y —
as jo Agio) (respectively, Aqy — A —@tnr1—igAnt1—jo)). SINCE Uni1—jont1-s = Gsjy
for every 1 < s < 49 — 1, and @iy nt+1—t = G n+1—4, fOr every 1 < ¢t < n — jo, there
exists an invertible matrix P, € 7, (F) such that

(2.4) PlAPY = Z2 + B

t0Jo

for some scalar a; € F and matrix B = (b;;) € STo(F) such that b; ;, = 0 for every
1<i<n, bjy;=0for1<j<n,and b =0forevery Il <i<nand1l<j<jo—1.

In view of (23) and 24, if B = 0, then we are done. Suppose that B # 0.
Let b;, j, be the first nonzero entry from the bottom of the first nonzero column of
B counting from the left of the matrix B. Evidently, j1 > jo, i1 # 99 and 1 < i1 <
ji <n+1—4d;. Since b;jj, =0 forall 1 <i<n,by; =0forevery 1 < j <n, and
bi; =0 for every 1 <¢<nand1<j<jo—1, by applying suitable elementary row
and column operations similar to (Z2)) when j; = n + 1 — i; (respectively, similar to
@) when j; # n + 1 —4y), there exists an invertible matrix Py € 7, (F) such that

PQBPQJr =ai, j, P, j, + C
for some matrix C' € ST,(F), and P2 FE;, j, Py = E, j, (respectively,
PBPf = 7% +C

for some scalar az € F and matrix C' € ST,(F), and P,Z>% Py™ = Z2 ). If C = 0,

%0 Jo 10 jo
then we are done. Suppose that C' # 0. Since A is of rank k, by repeating a similar
argument on C, there exist an integer 0 < h < %, scalars aq,...,ap, Bfopt1, .-+, Pk €

F, and an invertible matrix @ € 7, (F) such that

h

k
(25) QAQ+ = ZZSO:IL + Z Biqu,,"H'l—pq,?

i=1 i=2h+1
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where {s1,...,8p,n+1—1t1,...,n+ 1 —tn,pont1,...,06} and {t1,...,th,n +1 —
S1y..,n+1—sp,n+1—popy1,...,n+1—pi} are two sets of k distinct positive
integers such that 1 < s; <t; <Kn+1l—-—s;andt; #n+1—s; fori=1,...,h, and
1<pi<"T+1fori:2h+1,...,k

We denote D = QAQ™. If F is of characteristic not two, then, for each 1 < i < h,
we further perform the following elementary row and column operations on D :

Disyy = Doy = 5-Dni1 -1y and - DUFI=8) o plrti=sd _ ZLp(t)

to annihilate «; in Z;fit% as described in ([Z3). Since s; < n+1—t; for every 1 < i < h,
there exists an invertible P € 7, (F) such that

h k
PAPT = Z Zs,t; + Z ﬂiEPi,nJrl*Pi' a
=1 i=2h+1

As a corollary of Lemma 2] we notice that if A € ST,(F) is of rank bounded by
two, then there exists an invertible matrix P € 7, (F) such that either
A= P(aEsni1-s + BEypi1-4)PT

for some «, 8 € F and some integers 1 < s <t < "TH, or

A=PZ\P*t

for some integers 1 < s <t <n+1—s witht # n+1— s, and some scalar A € F
with A # 0 only if charF = 2.

Inspired by this observation, we define
(2.6) wovi=u-vt +ov-ut and u? i=u-ut

for every u,v € M, 1(F), where u - v denotes the usual matrix product of u €
M, 1(F) and vt € F". It can easily be verified that (u,v) — w @ v is a symmetric
bilinear map from M,, 1(F) x M,, 1(F) into M,,(F). We also see that

2
€iDej=FEijnt1-5+ Ei?rn—i-l—j and e = Ejpny1—
for all integers 1 < 7,7 < n. In view of (Z1]), we have
2
Zi?‘ =e; Qent1—j + ae;j

forevery o € Fand 1 < 4,5 < n with j # n+1—i. Note that {e;@e; |1 <i < j < n}u
{e2|l1 <i<n}and {e;0e;|l <i<j<n+1l-i}uU{e?|l <i< 2H} are the
standard bases of SM,,(F) and ST,(F), respectively.

It follows immediately from (28] that the following elementary properties hold
and their straightforward proofs are omitted. Let u,v € M, 1(F), a,b,c € F and
P e M, (F). We have
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(P1) (wov)"=uowv and (u?)T = u?,

(P2) w2 =0 u=0,

(P3) u@v =0 < either w =0 or v =0 when charF # 2; and u @ v =0 < u,v are
linearly dependent when charF = 2,

(P4) P(uo@v)PT = (Pu) © (Pv) and P(u?)P* = (Pu)?, and

(P5) rank(a(u@v) +bu? + cv?) < 2; and rank(a(u @ v) + bu® + cv?) = 2 & u,v are
linearly independent and a? # bc.

LEMMA 2.2. Let u,v,z,y € My 1(F) and a1, a2,b1,b2,c1,c2 € F.

(@) Ifaiu@v+biu? + c1v? = asx @y + bax? + cay? # 0 with a? # bie; fori=1,2,
then (u,v) = (x,y).

(b) If F has characteristic not two, then u@ v = x @y # 0 if and only if there
exists a nonzero a € F such that either uw = ax and v = a~ 'y, or u = ay and

v=a"lz.

Proof. (a) By our hypothesis, together with (2Z), we obtain
(2.7) u-(arvt +biu®) +v- (aut +c1vt) =2 (agy™ +box™) +y - (a2 + cay™).

Since a? # b;c; for i = 1,2, we have u, v are linearly independent if and only if z, y are
linearly independent. Thus, (u,v) = (x,y) when u,v are linearly independent. If u, v
are linearly dependent, assuming u, x # 0, then v = Aju and y = sz for some scalars
A1, A2 € F. By 1), we obtain (2a1A\; + by + M2cp)u? = (2a2)\e + be + A3co)2? # 0,
and so (u) = (x). We are done.

(b) The proof of sufficiency is straightforward. We consider necessity. First note
that u,v,x,y are nonzero and (u,v) = (z,y) by (a). If u,v are linearly dependent,
then (u) = (v) = (x) = (y). Let u = ax and v = by for some nonzero scalars a,b € F.
Then x @y = u @ v = ab(x © y) implies that b = a~!, as desired. Suppose now that
u, v are linearly independent. Then x,y are linearly independent and either (x) # (v)
or (x) # (u). We consider (z) # (v) as the second case can be verified similarly. Then
x =au+bv and y = cu + dv for some a,b,c,d € F with a #0. Thenuov =20y =
(ad +be)u @ v + 2acu? + 2bdv? leads to (ad + be — 1)u @ v + 2acu® + 2bdv? = 0. Since
w@wv, u? and v? are linearly independent, we get ad + bc = 1 and ac = 0 = bd. Since
a # 0, we have ¢ = 0 implies that ad =1 and b=0. So z = au and y = ¢~ 0. O

For each integer 1 < ¢ < n, we denote
ui,n = {(ul,...,ui,O,...,O)T S Mn,1(F)‘ ULy ..., U; € IF}

and Ug p := {0} C My, 1(F). When n is clear from the context, U, ,, is abbreviated
to L{i.

LEMMA 2.3. Let u,v € M,, 1(F). Then the following assertions hold.
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(a) u? € ST,(F)\{0} if and only if u € U,\Up—1 for some 1 < p < 4L,
(b) u@wv e ST,(F)\{0} if and only if either
(i) there exist integers 1 < p < n+ 1 — q such that w € U,\Up—1 and
v € U \Ug—1, or
(ii) there exists an integer "1 < q < n such that u,v € Uy\Uy—1 in which
v = au+z for some a € F\{0} and z € Uy\Up—1 with1 <p<n+1—g,
and this case holds only if F has characteristic two.

Proof. (a) This is an immediate consequence of (2.6]).

(b) Sufficiency is clear. We consider necessity. Since u @ v # 0, we argue in two
cases:

Case A: If uw @ v is of rank one, then, by Lemma 21 u @ v = az? for some
o € F\{0} and 2 € U, with 1 < p < L. Then charF # 2 and u, v are nonzero
linearly dependent vectors such that (u) = (z) = (v). So u,v € U, and statement (i)
holds true.

Case B: If uw @ v is of rank two, then, by Lemma 2.1l we consider two subcases:

Case B-1: w@ v = ax?® + py? for some a, 3 € F\{0} and linearly independent
vectors z,y € U, with 1 < p < ”T'H By Lemma [2Z2](a), we have (u,v) = (x,y). Then
u,v € U, and statement (i) holds true.

Case B-2: u@v = @y + Ax? for some A € F and linearly independent vectors
x €Upy\Up—1,y EU\Uy—1 with 1 <p<n+1—¢g<n+1-pandp#q. By Lemma
22(a), we have (u,v) = (x,y). Then

(2.8) u=ar+by and v=cr+dy

for some a,b, c,d € F. We thus have u © v = (2ac)x? + (2bd)y? + (ad + bc)x @ y, and
hence,

(2ac — \?)2® + (2bd)y* + (ad + be — 1)z @ y = 0.

Since 22,y%,x @ y are linearly independent, we have 2bd = 0. We first consider
charF # 2. Then bd = 0 implies that either b = 0 or d = 0. It follows from (Z8)) that
either u € U, or v € U, with 1 < p < ”T'H, and so statement (i) holds true. Next, if
charF =2, then u@ v = (ad + bc)x @ y. If ¢ < "TH, b=0, or d =0, then, by (23],
statement (i) holds. If ¢ > ”T“ and b,d # 0, then 1 < p < ”TH, and by (Z8), we have
u,v € U \Uy—1 and y = b~ (u — ax). So

v=cr+dy=cx+b tdu—ax)=oau+z,

where a = b7'd € F and z = b~ (ad + be)x € U,\Up—1. 1t is clear that o # 0 and u, z
are linearly independent vectors. Thus, statement (ii) holds. O
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Let u € M,, 1(F) and V be a subset of M,, 1(F). We denote
uoV:={uov:veV}
It is immediate that u @V is a linear subspace of SM,,(F) when V is a linear subspace.

LEMMA 2.4. Let z € My 1(F) be nonzero. If x @ My, 1(F) contains two linearly
independent elements u @ v + au?®, w @ w + Bu?® for some u,v,w € M, 1(F) and
a, B €T, then (u) = (z).

Proof. Denote A =u® v+ au? and B = v ® w + Bu?. Clearly, u, z are nonzero
since A, B are linearly independent. It follows from Lemma [Z2](a) that = € (u,v)
and z € (u,w). The result follows immediately when w,w are linearly dependent.
Consider now u,w are linearly independent. Suppose that v ¢ (u,w). Then z €
(u,v) N (u,w) = (u) because u,v,w are linearly independent. We next consider
v € (u,w). Then A = a(u@w)+ bu? for some scalars a,b € F. Since A, B are linearly
independent, it follows that 0 # A —aB € 2 @ M,, 1(F), and thus, u? € z © M,, 1(F).
Then u? = z @ y for some y € M,,1(F). Since u? is of rank one, we have z,y
are linearly dependent. If charF = 2, then z @ y = 0 by (P3), and so u? = 0,
an impossibility. We thus have charF # 2 and u? = Az? for some nonzero A € F.
Therefore, (u) = (z), as required. O

Let u,v,w € My 1(FF). One sees immediately that u, v, w are linearly independent
implies u @ v,v @ w,w @ u are linearly independent. The converse is true if the
characteristic of F is two. It can also be checked that if u, v, w are linearly independent
and F has characteristic two, then each nonzero element in (v @ v, v @ w, w @ u) has
rank two. By this observation, we next obtain a result that describes the uniqueness
of (u@ v, v@w, wou).

LEMMA 2.5. Let F be a field of characteristic two and u,v,w,z,y,z € My 1(F)
be vectors such that u,v,w are linearly independent. Then (v @ v, v QO w, W O u) =
(x @y, yoz, z@x) if and only if (u,v,w) = (z,y, 2).

Proof. We first claim that if a,b € M,, 1(F) are linearly independent vectors, then
(2.9) aobe UV, vOwW, WwOu) = a,b€ {uv,w).

Note that a @ b = au @ v + fv @ w + yw @ u for some a, 8,7 € F with («, 8,7) # 0.
We consider only for the case @ # 0 as the other cases can be proved similarly. Then
a@b= (u+ Batw) @ (aw + yw) implies that (a,b) = (u+ Ba'w, aw + yw) by
Lemma [2.2](a). We thus have a,b € <u + Batw, av + 'yw> C (u,v,w), as claimed.

f(zoy,y0z,20z) ={udv, v w, wdu), then x,y, z are linearly indepen-
dent. By (29), we have z,y,z € (u,v,w), and so (z,y,2) = (u,v,w). Conversely, if
(x,y,2z) = (u,v,w), then zOY, y@z, z@x are linearly independent vectors contained



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 27, pp. 619-651, August 2014

Linear Spaces and Preservers of Bounded Rank-Two Per-Symmetric Triangular Matrices 627

n{u@v, vew, wouy. O

LEMMA 2.6. Let F be a field, m and n be integers such that m > n > 2, and
P € My, n(F) be a full rank matriz. Then PAPT € ST(F) for every A € ST,(F) if
and only if Pe; € Up, ;n\Up,—1,m fori=1,...,n such that 1 < p; < mTH for every
1 << "TH, and p; < m+1—p; for every 1 <1i < j<n+1—1. In particular,
P € T,(F) when m =n.

Proof. Denote u; = Pe; fori =1,...,n. So uy,...,u, are linearly independent.
Let Pe; € Up, m \Up,—1,m fori =1,...,n. Recall that {e? |1 <i < 2} U{e;0¢; |1 <
i < j<n+1-1}is a basis of ST,(F). For each 1 <i < 2t by (P4) and Lemma
23(a), we have P(e?) P+ = u? € ST, (F) since p; < ™. Again, by (P4) and Lemma
2Z3l(b), P(e; @ e;)PT =u; ©u; € STy(F) for every 1 < i < j < n+1—i. This proves
sufficiency. For necessity, we argue in the following two cases.

Case I: m > n. In view of Lemma 23(a), u? = P(e?)PT € ST,(F) for 1 <
+ implies that 1 < p; < m+ for every 1 < i < . On the other hand, by Lemma
IZZI(b), U Quj = P(ez®e])PJr € ST(F) andpl <zH for1<i<j<n+1—i

leads to p; < m+1—p; for every 1 <7 < j <n+1—1:. This establishes the desired

2_
u; =
nl

conclusion.

Case II: m = n. We shall show that p; = ¢ for ¢ = 1,...,n by induction on 1.
To begin with, note that the linear independence of uy,...,u, implies that p;, = n
for some 1 < ig < n. By the fact that u?,u; © u;, € STo(F), we conclude that
p1 = 1. Suppose that the inductive hypothesis holds, i.e., p; = j for j =1,...,k for
some k£ < n. We wish to claim that py41 = k + 1. Since u1,...,urs1 are linearly
independent, together with our induction hypothesis, we have k + 1 < pry1 < n.
Since uq, ..., uy—k are linearly independent, there exists an integer 1 < i3 < n—k
such that n — k < p;1 < n. Note that ug41 @ ur, ..., ukr1 @ un—x € STo(F), and also
u,, € ST,(F) provided that k41 <n—k. We con51der two possibilities.

e Say i1 = k+ 1. Then p;; = pr4+1 and k+1 = i3 < n — k. We thus have
ui,, € STo(F). Hence, k+1 < ppg1 < 2 and n— k < p;, < 24, So,
k> ”T_l and thus k£ = ”T_l, since k4+1 < n—k. Hence, k+1 = ”T'H
Therefore, ppr1 =k + 1.

e Say i1 # k+ 1. Since i1 < n — k, we have up11 @ u;, € ST,(F). Then
kE+1< "TH or i; < ”TH To see this, if £ +1 < "—H then we are done.
Suppose that £+ 1 > i Then i; < n — k implies k+ 1<n+1-11, and
son+1—1i; > "TH We thus have i; < "TH, as desired. In consequence,
Prr1 < mTH or p;, < m+1 By Lemma 23](b), we have pri1 < n+1—p;,.
Then since p;, = n — k, we have n —k <n+1— pgy1, and so pr1 < k+ 1.

Together with pry1 = k + 1, we conclude that pry1 =k + 1.
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By induction, we conclude that Pe; € U; ,\Ui—1,, for i = 1,...,n. It follows that
PeT,(F).O

3. Linear spaces of bounded rank-two matrices. We recall that a linear
subspace of a matrix space is a linear space of bounded rank-two matrices provided
each matrix in it has rank bounded above by two. In [I0], Lim classified linear spaces
of bounded rank-two symmetric matrices over an infinite field of characteristic not
two. Indeed, by a slight modification in the last paragraph of the proof of [0, Theorem
3, p.49], the result holds for any field of characteristic not two. More recently, [5l
Theorem 2.6] completes the work on characterization of spaces of bounded rank-two
symmetric matrices over a field of characteristic two.

In this section, using the structural results of [I0l Theorem 3] and [5, Theorem
2.6], we classify spaces of bounded rank-two per-symmetric triangular matrices over
an arbitrary field. By treating the symmetricity on the minor diagonal, we can now
rephrase [0, Theorem 3] and [5, Theorem 2.6] as follows.

LEMMA 3.1. Let F be a field and n be an integer such that n > 2. Let S be a
linear subspace of SM,(F). Then S is a linear space of bounded rank-two matrices if
and only if one of the following holds:

(I) S C(u?v?,uv) for some linearly independent vectors u,v € My, 1(F).

(I1) S Cu@ My 1(F) for some nonzero u € My, 1(F).

(II1) S =u @ V+ (u?) for some nonzero u € M., 1(F) and some linear subspace V of
Mp1(F); and S is of this form only if charF = 2. Here, + denotes the sum
of linear subspaces of SM,,(F).

av) s = <u Qv+ MU, ..., uQu+ )\ku2> for some linearly independent vectors

U, V1, ...,V 10 My 1(F) and some A1, ..., \x € F with (A1,...,\g) # 0; and

S is of this form only if charF = 2.

= (UQv, u@w, v w) for some linearly independent vectors w,v,w in

M, 1(F); and S is of this form only if charF = 2.

VI) S C (w2 4+ v, u? +w?, (u+v) @ (u+w)) for some linearly independent vectors

(

u,v,w in My 1(F); and S is of this form only if |F| = 2.

(V) S

Let T be a field of characteristic not two. As a side remark, we notice from (2.6])
that 0y + ax®> =20 (y + Sx) for every x,y € My, 1(F) and o € F, and thus, any
linear space of bounded rank-two of Form (III) or (IV) in Lemma[B]l can be simplified
to Form (I) or (IT) in Lemma [B]1 On the other hand, for any linearly independent
vectors u, v, w € My 1(F), (u@v, u@w, v @ w) contains rank three matrices. By a
direct verification, rank(u @ v +u @ w + v @ w) = 3 since

110
det [1 0 1| =-2+#0.
01 1
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In consequence, Form (V) in Lemma B.1] is not a linear space of bounded rank-two
when charF # 2.

LEMMA 3.2. Let F be a field of characteristic two. Let oo € F be nonzero and
u, v € My, 1(F) be linearly independent vectors. Then the following assertions hold.

(a) uov+au? € ST,(F) if and only if u € Up\Up—1 and v € U\Uy,—1 for some
integerslgpgnTH andl <g<n+1-—p.
(b) u? +v? € ST(F) if and only if u+v € Up\Up—1 and u,v € Uy\Uy—1 for some

integerslgpg%’l and1<g<n+1—p.

Proof. (a) Since charF = 2, the minor diagonal of u®v is zero. Then u@®v+au? €
ST.(F) with a # 0 if and only if u?,u ©® v € ST,(F) if and only if u € U, for some
integer 1 < p < ”TH, and v € U, for some integer 1 < ¢ < n+1—p by Lemma 23]

(b) By noting u? +v%? = (u+v) @v+ (u+v)? and (u+v) ©v = (u+v) @ u, the
conclusion follows immediately from part (a). O

We are now in a position to provide a characterization of spaces of bounded
rank-two per-symmetric triangular matrices over an arbitrary field.

THEOREM 3.3. Let F be a field and n be an integer such that n > 2. Let S be a
linear subspace of ST, (F). Then S is a linear space of bounded rank-two matrices if
and only if one of the following holds:

(a) S§C <u2,v2,u®v> for some linearly independent vectors u,v € U, with 1 <
p < ntl
~ 2
(b) S =u0V for some nonzero u € U, and some linear subspace V of Uy with
I1<ps<n+l-g<n.
() S=uoV+ (u? for some nonzero u € U, with 1 < p < ™ and some linear

subspace V of Uy with 1 < ¢ <n+1—p < n; and S is of this form only if

charF = 2.

d) §= <u®vl + MU uQu )\ku2> for some scalars \1,...,\, € F with
(M,..., k) # 0, and some linearly independent vectors w,v,...,v; such
that w € Uy, v1,...,v €Uy with 1 < p < "TH and 1 <qg<n+1—-p<n

and S is of this form only if charF = 2.
() S=wov, uow,vw) for some linearly independent vectors u € Uy, v € U,
and w € U, such that 1 < p,g<n+l—r<nandp<n+1—gq; and S is
of this form only if charF = 2.
(f) There exist linearly independent vectors u,v,w € My 1(F) such that
o 8= <u2+v2, u? + w?, (u+v)®(u+w)>, or § = <u2+v2, u2—|—w2>,
or 8§ = (2 +1? (z+2)0y+ (z+2)%) with {z,y,2} = {u,v,w},
where u+v,u+w € U, and u,v,w € U, for some integers 1 < p < "TH
and 1 <qg<n+1—p, or
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o 8§ = (2?49 (ut+v) 2 (ut+w)) for a pair of distinct vectors x,y €
{u,v,w} with x+y € U, and u,v,w € Uy for some integers 1 < p < 2
and1 <g<n+1-p;

and S is of this form only if |F| = 2.

Proof. If S satisfies one of the statements (a) - (f) in Theorem B3] then S is a
linear space of bounded rank-two matrices of SM,,(F). Moreover, by Lemmas and
B2 we have S C ST,(F). This proves sufficiency.

We now consider necessity. Suppose that S # {0}. Since S is a linear space of
bounded rank-two matrices of SM,,(F), we see that S satisfies one of the statements
(I)- (VI) as described in Lemma Bl We use the notation that have been employed
in Lemma [3.J] and divide our argument in the following cases.

Case I: Suppose that S satisfies (I) in Lemma Bl Let u € U;\Us—1 and v €
U \U;—1 for some integers 1 < s,t < n. We divide our argument into the following
three subcases:

e Case I-i: If 1 < s,t < "TH, then u,v € U, with p = max{s,t}. So S satisfies
statement (a).

o Case I-i: f 1 <s<n+1-—tand "TH <t < n, then u?, v@wv € ST.(F) and
v? ¢ ST,(F). If S has no rank two matrices, then S = (u?) and it satisfies
statement (a). Suppose that S has a rank two matrix. Then S C <u2, U v>
and it is of one of the following forms:

o S=(uov)=u (v) and it satisfies statement (b);

o 8= (uov+au®) with a € F\{0}. When charF = 2, S satisfies state-
ment (d); and when charF # 2, we get S =u @ <v + %u> and it satisfies
statement (b);

o 8= (u?,u®v). When charF = 2, we obtain & = v © (v) + (u?) and it
satisfies statement (c); when charF # 2, we see that S = v © <v, 2_1u>
and it satisfies statement (b).

o (Case I-iii: Suppose that ”T“ < s,t < n. If S contains no rank two matrices,
then dimS = 1. By Lemma 211 we have § = <:c2> for some nonzero vector
x € Uy with 1 < p < ”T'H Thus, S satisfies statement (a). Suppose now
that S has a rank two matrix, say A. Then A = au? + bv? + cu @ v for some
a,b,c € F with ¢ —ab # 0 by (P5). On the other hand, by Lemma 2] there
exist linearly independent vectors x,%y such that either A = ax? + By? for
some o, € F\{0} and =,y € U, with 1 < p < "TH; or A=z0y+ az?
for some o € F\{0} and some z € U, and y € U, with 1 < p < 2 and
1<g<n+1—-p. Then

a? + b +cuov=ar’+6y> or al+b’+cuov=20y+ oz’
In both cases, (z,y) = (u,v) by Lemma [2Z2l(a). Thus, <x2,y2,x®y> =
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<u2,v2,u® v>, and so S C <x2,y2,x @y). The result follows by a similar
argument as in Cases I-i and I-ii.

Case II: If S satisfies (IT) in Lemma ] then for each nonzero A € S, there
exists a nonzero vy € M, 1(F) such that A = u @ v4. Since A € ST,(F), it follows
from Lemma that

(i) wely\Up—1 and v4 € U,,\U,,—1 for some integers 1 <p<n+1—ra,or
(i) v € Up\Up—1 and vy = aau + z4 € Uy\Up—1 for some oy € F\{0} and
za € Ur,\Upy—1, where 1 <14 < n+1-—-p< "TH and u,z4 are linearly

independent, and in addition, this case holds only if charF = 2.

Notice that if (ii) holds, then charF = 2 and A can be rewritten as
A=u0 (qau+2z4) =u® za.

Consequently, in view of (i) and (ii), for each A € S, there exists v4a € Up, \Ur,—1
with 1 <74 < n+1—psuch that A = u @ va. Accordingly, there exists a linear
subspace V of U, with 1 < ¢ < n+1— p such that S =u @ V. Thus, S satisfies (b).

Case III: If S satisfies (III) in Lemma Bl then u?, u @ v € ST,(F) for every
v € V. It follows from Lemma [2.3] that v € U, for some 1 < p < ”TH, and for each
v € V, there exists an integer 1 < r, <n + 1 — p such that v € U,.,. Consequently, V
is a subspace of U, for some integer 1 < ¢ < n+1—p < n. Hence, S satisfies (c).

Case 1V: If S satisfies (IV) in Lemma Bl then v @ v; + \ju? € ST,(F) for every
i =1,...,k Since wu,vy,...,v; are linearly independent and (A1,...,Ax) # 0, the
result follows directly from Lemma B2(a) and S satisfies (d).

Case V: If S satisfies (V) of Lemma Bl then u @ v,u @ w,v @ w € ST,(F). In
view of Lemma 23] each pair of elements of {u,v,w} satisfies either (b)(i) or (b)(ii)
of Lemma If all pairs of elements of {u,v,w} satisfy (b)(i) of Lemma 23 then
S is readily seen to satisfy (e). Suppose not. We shall show that {u,v,w} can be
replaced by some other {z,y, 2z} such that S = (x @ y,x @ z,y © z) satisfies (e). With
no loss of generality, say {u, v} satisfies (b)(ii) of Lemma[23 Then u € U;\U,;—1 and
v=ou+y € Uy \Ug—1, where y € Up\Up_1, for some o € F\{0} and integers p, g such
that 1 <p < ntl—g< ”T“ Note that (u,y, w) = (u, v, w), from which, together with
Lemma 25 follows that S = (v @y, u @ w,y @ w). If {u, w} satisfies (b)(i) of Lemma
23 we are done by setting = u and z = w. Otherwise, say {u,w} satisfies (b)(ii) of
Lemma 23] Then u € U \Uy—1 and w = fu + z € Uy\Ug—1, where z € U, \U,_1, for
some 3 € F\{0} and an integer r such that 1 <7 <n+1—¢ < 2. As before, we
get that (u,y, z) = (u,y,w), from which follows that S = (U@ y,u @ z,y @ z) satisfies
(e). Setting u = x, we are done.
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Case VI: Suppose S satisfies (VI) in Lemma Bl Note that

(v +0°, v* +0?, (u+v) O (u+w))

with

={0,u% +v*u® +w? v +w?, (u+v) O (u+w), (u+v) Qw+ (u+v)?,
(u+w)ov+ (u+w)? (v+w) u+ (v+w)?}

wW P (u+v)owtw) = (u+v)ow+ (u+v)?,
W w+(u+v)o@uwtw) =w+w ov+ (u+w)?,
V4wl + (u+v) o @ut+w) = (v+w) Qu+ (v+w)?,

and each nonzero matrix in S is of rank two. We argue in the following three cases:

e If dimS =1, then § = (A) for some nonzero per-symmetric upper triangular

matrix A € (u? + 0%, u* + w?, (u+v) @ (u+ w)). By Lemma[2]] there exist
linearly independent vectors x, y such that either (i) A = az?+8y? with x,y €
U, for some integer 1 < p < 24 and o, B € F\{0}; or (ii) A =z @ y + ya?
with x € U, and y € U, for some integers 1 < p < ”T“ and 1 <g<n+1-—p,
and v € F. Then S satisfies (a) when (i) holds, S satisfies (b) when (ii) holds
with v =0, or S satisfies (d) when (ii) holds with v # 0.

If dimS = 3, then § = (u? +v?,u? + w?, (u+v) @ (u+ w)). Since u? + v?
and u? + w? are in ST,(F), Lemma B.2/(b) implies that u + v € Up, \Up, 1,
utw € Up, \Up,—1, U, v € Uy, \Ug, -1, and u, w € Uy, \Uy, -1 for some integers
P1,P2,q1, g2 such that 1 < p; < ";1 and 1 < ¢; < n+1—p; fori=1,2. Since
u € (Ug, \Ug, —1) N (Ug, \Ugs—1), it is necessary that ¢ = g2 = ¢ for a common
q. Setting p = max{p1,p2}, we note that S satisfies (f).

e If dim S = 2, then one of the following holds:

o & = {0,u? + v, u? + w? v? + w?} = (u?+ 0% u? 4+ w?), where u +
v,u +w € Uy and u,v,w € U, for some integers 1 < p < "TH and
1<g¢g<n+1—p;

o S ={0,u®+v*(ut+w)ov+ (u+w? v+w) ou+ (v+w)?} =
<u2+v2,(u+w)®v—|— (u+w)2>,whereu+v,u+w€1/{p and u,v,w €
Uqforsomeintegerslgpg"TﬂandlgqgnJrlfp;

o §={0,u+w*(v+w ou+ (v+w?(u+v) 0w+ (u+v)?} =
<u2+w2,(u+v)®w+ (u+v)2>,whereu+v,u+weup and u,v,w €
L{qforsomeintegerslgpg"Tﬂandlgqgn—i—l—p;

o S ={0,2+w* (u+v)ow+ (ut+v)(u+w) Ov+ (u+w)?} =
<02+w2,(v+u)®w+ (v+u)2>,wherev+w,v+ueup and u,v,w €
Uqforsomeintegerslgpg"TﬂandlgqgnJrlfp;

o §={0,u*+v* (u+v) 2 (u+w),(u+v) Qw+ (u+v)?} = (u? + 0%
(u+v) @ (u+w)), where u +v € U, and u,v,w € Uy for some integers
I1<p<®H and1<g<n+1—p;
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o §={0,u*+w? (u+v) 2 u+w),(utw) v+ (utw)?} = (u? +w?
(u+v)© (u+w)), where u+w € U, and u, v, w € U, for some integers
1

p<land1<qg<n+1-p;

o §={0,24+w? (u+v) 0 (u+w),(v+w)du+ (v+w)?} = (v? 4+ w?
(u+v) @ (u+w)), where v+ w € Uy, and u, v, w € Uy for some integers
I<p< 2l and1<g<n+1—p.

Hence, S satisfies (f). O

We now continue our investigation of 2-spaces of ST,(FF). We first study some
examples of 2-spaces of ST,(IF).

EXAMPLE 3.4. Let F be a field and n be an integer such that n > 2. Recall that
{e1,...,en} denotes the standard basis of M,, 1(F).

(a) Let n > 2. Then (e; @ ez + ae}) is a 1-dimensional 2-space of ST,(F) for any
aclF.

(b) Let n > 3 and «, 8, € F be such that 42 # af. Then (ae} + Be3 + ve1 @ e2)
is a 1-dimensional 2-space of ST,(F).

(c) Let n > 3 and F = R. Then <61 @ ea, e1 Qeg+ el — e%) is a 2-dimensional
2-space of ST,(R). Let A = a(e; @ e2) + b(e1 @ ex + €2 — €3) € (e1 © ea,
e1 @ ey + €2 — e§> for some a,b € R with (a,b) # 0. We see that A is of rank
two since

det [aer b

(d) Let F be a field with four elements. Then char F = 2 and the multiplicative
group of F is cyclic. We set F = {0, 1, a, a?}, where « is a primitive element
of F. We see that <€1 @es+ ef, e1 @es+ ae§> is a 2-dimensional 2-space
of ST,(F). To proof this, let A = A\j(e1 @ ex + €2) + Xa(e1 @ ez + ae3) €
(e1 @ ez + €}, e1 @ ex+ ae3) for some A, Ay € F with (Ar,A2) # 0. By a
direct verification, we have

A1+ A2 A1

det
¢ Aoy A1+ A

=M+ A3+ alA £ 0.

Hence, A is of rank two.

EXAMPLE 3.5. Let F be a field of characteristic two. Let u € Up\Up—1, v €
U \Uy—1 and w € U, \Ur_1 be linearly independent vectors such that 1 < p,¢ <
n+l—randp<n+1-q Then u® v, u®w, v® w are linearly independent
elements in ST,(IF) and each nonzero element in (v @ v, u @ w, v @ w) has rank two.
Thus, (u @ v, 4 @ w, v @ w) is a 3-dimensional 2-space of ST,(F). Note also that each
element in (u @ v, v ® w, v @ w) has a zero minor diagonal.

EXAMPLE 3.6. Let F be a field of characteristic two. Let u € Uy\U,—1 and
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Viyeon, Vg € L{q\Uq_l be linearly independent vectors such that 1 < p < "TH and

1<g<n+1—p,and A\i,...,A\x € F be such that (A,..., ) # 0. It is easily
checked that u @ vi + A\u?,...,u @ vp + M\pu? are linearly independent. Let A €
<u ov+Mu,..., uQ U+ )\ku2> be nonzero. Then there exist §1,..., 8 € F not
all of which are zero such that

A=Bilu@ vy +Mu?) + -+ Br(u @ vy + Apu?)
=u@ (Brvr + -+ Bror) + (BiAL + - + Brup)u.
Since wu, vy, ..., v; are linearly independent and (f81,...,0k) # 0, we get Sivg + -+ +

Brvg, u are linearly independent, and so rank A = 2. Then <u®v1 + A,
u Qv + )\ku2> is a k-dimensional 2-space of ST, (F).

As an immediate consequence of Theorem 3.3 we obtain a complete description
of 2-spaces of ST,(IF) over an arbitrary field F.

COROLLARY 3.7. Let F be a field and n be an integer such that n > 2. Then S
is a 2-space of ST,(F) if and only if one of the following holds:

(a) S = <aiu O v+ bju? + c;v? ‘ 1=1, 2> for some linearly independent wvectors
u, v € Up with 1 < p < ”T'H, and some fixed scalars a;,b;,c; € F fori=1,2
such that

(Ara1 + Xaaz)? # (Aiby + Aaba)(Aic1 + Aacz)

for every A1, Ao € F with (A, A2) # 0.

(b) S=u0V for some nonzero vector u € U, and some subspace V of U, with
1<p<n+1—-¢g<n, and VN (u) ={0} when charF # 2.

(c) §= <u Qv+ Mu?, ..., uQ g+ )\ku2> for some scalars \1,...,\x € F with
(M,..., k) # 0, and some linearly independent vectors w,v,...,v; such
that uw € U, with 1 < p < ™ and vy,...,v € Uy with1 < g <n+1—p;
and S is of this form only if charF = 2.

(d) S=(wov, uw, vow) for some linearly independent vectors u € Uy, v € Uy
and w € U, such that 1 < p,g<n+1l—-—r<nandp<n+1—gq;and S is
of this form only if charF = 2.

(€) There exist linearly independent vectors u,v, w € My, 1(F) such that

e S= <u2+v2, u? + w?, (u+v)®(u+w)>, or § = <u2+v2, u2—|—w2>,
or § = (2 + 2 (x+2)0y+ (x4 2)?) with {z,y,2} = {u,v,w},
where u+v,u+w € Uy and u,v,w € Uy for some integers 1 < p < "TH
and 1 <qg<n+1—p; or

e S = (2 +y* (ut+v) @ (u+w)) for a pair of distinct vectors x,y €
{u,v,w} with x+y € U, and u,v,w € Uy for some integers 1 < p < Tl
and 1 <qg<n+1—p,

and S is of this form only if |F| = 2.
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4. Bounded rank-two linear preservers. In this section, we characterize
bounded rank-two linear preservers ¢ : ST,(F) — SM,,(F), with m,n > 3 and
charF # 2. We then obtain a classification of bounded rank-two linear preservers
between per-symmetric triangular matrix spaces over a field of characteristic not two.

We start with the following lemma whose proof is straightforward and omitted.

LEMMA 4.1. Let F be a field and u,v,z,y,2 € My 1(F). Then the following
statements hold.
(a) If x,y are linearly independent, then the following are equivalent.
(i) az? +by* +cx 0y e (v, viuv) for some a,b,c € F with ab # ¢*.
(i) (z,y) = (u,v).
(iii) (22, 9%,z 0 y) = (v?,v*, u O V).
(b) Ify,z are linearly independent and x@y, t@z € <u2,02,u %) v>, then x € (y, z).

LEMMA 4.2. Let T be a field of characteristic not two andn be an integer such that
n > 2. Let A =uQv and B = w@z be nonzero matrices for some u,v,w, z € My 1(F)
such that u,v,w are linearly independent. If rank(A + AB) < 2 for all A € F, then
either z € (u) or z € (v).

Proof. Since w,v,w are linearly independent and rank(A + B) < 2, we have
z € {u,v,w). Let z = au + bv + cw for some a,b,c € F. Since A+ AB = 2\cw? +u
v+ Aa(u @ w) + Ab(w @ v) has rank bounded above by two, it follows that

1 Xa O
0=det [Ab 2X\¢ Aa| = —2abA\* +2c)\  for every \ € F.
0 X 1

Since |F| > 3, we obtain ¢ =0 and ab = 0. O

THEOREM 4.3. Let F be a field of characteristic not two and m,n be integers such
that m,n > 3. Then ¢ : STo(F) = SMy,(F) is a bounded rank-two linear preserver if
and only if m = n and ¥ is of one of the following forms:

(i)  There exist a nonzero vector w € My, 1(F) and a linear mapping ¢ : ST,(F) —
M 1(F) such that

(4.1) P(A) =up(A) for all A€ ST,(F),

where @(A) # 0 for every nonzero bounded rank-two matric A € ST,(F).
(ii) There exist a full rank matric P € M., »,(F) and a nonzero A € F such that

W(A) = \PAPT  for all A € ST,(F).
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(iii) When n =4, in addition to (i) and (ii), ¥ also takes the form

a1 a1z oars+ 0(a1s — ags) Baig

W(A) =P 0 az (2a — Bazs aars +0(a14 —az)| py
0 0 99 a2
0 0 0 ail

for all A = (a;;) € STa(F), where P € My, 4(F) is a full rank matriz, o, € F
are nonzero with 8 # 2a, and 0 € F is nonzero only if |F| = 3.
(iv) When n = 3, in addition to (i) and (ii), ¥ also takes one of the following forms:
(a) There exist a surjective linear mapping ¢ : STH(F) — F and a full rank
matriz P € My, o(F) such that

$(A)s ¢(A)1] +
A)=P P or all A € SK(F),
o =Pl ) 7 )
where ¢(A); denotes the i-th component of ¢(A) € F* and ¢(A) # 0 for
every nonzero bounded rank-two matriz A € ST(F).
(b) There exist a full rank matric P € M., 3(F) and A, 2, A3 € F with
A3 # 0 such that either

app  M2a12 + a1z + Aadyq Na12 + Aagq
Y(A)=P | 0 A30qq Noa1a + a1z + Aaagq | PT
0 0 Qpp
for all A = (ai;) € SK(F), where ni,n2 € F are nonzero and {p,q} =
{1,2}, or
App A1s + )\2aqq nait + )\laqq
’(ﬁ(A) =P 0 Agaqq ays + )\Qaqq P
0 0 Qpp

for all A = (ai;) € SK(F), where n € F is nonzero and {p,q} = {s,t} =
{1,2}.

Proof. Sufficiency is clear. We now consider necessity. Let X1 = e1 @ (eq,...,en)
and Xo = e2 @ (€1,...,6n—1). By Lemma [B1] and Theorem B3] together with the
assumption of ¢, we see that 1(X;) and ¢ (Xs) are spaces of bounded rank-two ma-
trices of SM,,(F) containing linearly independent sets {¢(e1 @ e1),...,¢(e1 @ en)}
and {¢(e2 @ e1),...,¥(e2 @ en_1)}, respectively. Thus, m > n. We now divide our
proof into three main cases:

Case I: n > 5. By Lemma [3.1] we have

(4.2) Yle}) =uov; and Yle; @e) =uowv; fori=2,...,n,
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for some nonzero vector u € M, 1(F) and linearly independent vectors v,...,v, €
My, 1(F), and

(4.3) V(e =20y, and Y(ex0e)=xz0y; fori=1,3,4,....,n—1,

for some nonzero vector z € My, 1(F) and linearly independent vectors yi,...,Yn—1 €
My, 1(F). We consider the following two subcases:

Case 1-A: (x) = (u). There is no loss of generality in assuming x = u. For each
3<i< ”T“, let X; = e; @ {e1, ea,¢;). Clearly, 1(X;) is a 3-dimensional linear space of
bounded rank-two matrices of SM,,(F). Then each ¢(X;) can be expressed in either
of the forms (I) and (II) in Lemma Bl Suppose that there exists 3 < ig < 2L such
that (X, ) satisfies (I). Since ¢(e;, @e1) = uQu;,, (e, De2) = udy;, and ¢(eF, ) are
linearly independent elements in (X, ), vi, , ¥i, are linearly independent, and together
with Lemma J](a), we have <u2,vi20,u ®v¢0> =9Y(X,) = <u2,yfo,u %) yi0>. Again,
by Lemma 1] (u,v;,) = (u,yi,). In particular, y;, € (u,v;,). Then v(e;, @ es) =
mu? + neu @ v;, and w(efo) = au? + Bv?{) + yu @ vy, for some n1,m2, o, B,y € F with

m, 8 # 0. By ([@2), note that

e if u,v; are linearly dependent, then v(e?) = A\ju? for some \; € F\{0};

e if u, v are linearly independent, then v;, € (u,v1). For, if not, then v;,, u, vy
are linearly independent, and so 1/)(@%0 +e?) = au2+ﬁv?0 +7u@vi, +u@u; is of
rank three, a contradiction. Therefore, v1 € (u,v;,) since {u, v} is linearly
independent. Thus, ¥(e?) = ¢1(u @ v;,) + A\u? for some scalars ¢, A\; € F
with )\1 75 0.

Accordingly, we may write generally that
(4.4) Y(ed) = ¢ (u@vy,) + Mu?

for some ¢, \; € F with (¢1, A1) # 0. We apply this argument again, with [@2)) and
vy replaced by (£3) and yo, to obtain

(4.5) P(e3) = e2(u @ vi,) + Aou®

for some ¢, Ay € F with (¢2,A2) # 0. Furthermore, since w(<e%,e%,el ®€2>) has
dimension three, it follows from ([@.2), (£4) and (@3] that w, v;,, vo are linearly inde-
pendent. Then

P(e? +(€%+€g+61®€2)):B’U?O+U®’U2+(Oé+)\1+)\2)U2+(’7+§1+§2)u®vi0

0

is of rank three, a contradiction. Thus, ¢ (X;) satisfies (II) in Lemma [B1] for every
3 < i < 2. Consequently, by Lemma 4] for each 3 < i < ™}, there exists a
nonzero vector z; € My, 1(F) such that

(4.6) V(e?) =uo z.
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For n > 6, we will consider X;; = e; @ (e1,e2,¢;,¢e;) for any 3 < i < "TH and

i <j<mn+1—1i. Clearly, ©(X;;) is a linear space of bounded rank-two matrices
of SM,,,(F) containing linearly independent elements 1 (e; @ €;), ¥(e?), ¥(e1 @ e;),

Y(e2 @e;). By Lemmas Bl and 224] we obtain ¢(X;;) € u@ My, 1(F). Then for each
3<i1< ”T'H and i < j < n+ 1 — ¢, there exists a nonzero vector v;; € My, 1(F) such

that
(47) 1/}(61 ®€j) = U@Uij.

Consequently, by @2)), (£3), [@04), (E7) and the linearity of ¢, we conclude, for
n > 5, that there exists a linear mapping ¢ : ST,(F) — M., 1(F) such that

Y(A) =u2 p(A) forall Ae ST,(F),

where ¢(A) # 0 for every nonzero bounded rank-two matrix A € ST,(F). Hence, (@1
holds.

Case 1-B: (z) # (u). By (@2) and ([£3), we see that u@ves =¥ (e1 @ e2) = x QY.
It follows from Lemma 22(b) that y; = qu and x = ¢~ vy for some nonzero scalar
¢ € F, because u, x are linearly independent. Then

(4.8) Y(e1 @ ez) =su@ .
Our next claim is that
(4.9) {u,x,vs...,v,} is linearly independent.

We first show that vy € (u,z). Suppose that v1 ¢ (u,x). Since rankv(e? + ve3) < 2
for all v € IF, we have either y» € (u) or y2 € (v1) by Lemmal[2 Note that (y1) = (u)
and (y1) # (y2) implies y2 € (v1), and so y2 ¢ (u,z). Let v; = ey, for some nonzero
scalar € € F. It follows that ¥((e1 +€2)?) = eu @ y2 + 2 @ y2 + su @ x is of rank three,
a contradiction. Hence, v1 € (u,z). Similarly, we obtain y2 € (u,z). By [@2) and
@3), since 1(e?),1(e2),1(e1 @ ea) are linearly independent, we obtain

(4.10) V() =uo (rz+ %) and p(ed) =z @ (Oyu + Vo)

for some scalars 61, 62,791,902 € F with 91,92 # 0. Since ¥(e?),1(e1 @ e2),...,¢(e1 @
en) are linearly independent, it follows from ([@2)), ([@J) and (@I0) that {61z +
Y1u, ST, v3, ..., Uy} is a linearly independent set, and hence, Claim (£9) is proved.

Let 3 <4< n—1. Since rank((e; + vez) @ e;) < 2 for every v € F, it follows
from ([@9) and Lemma that either y; € (v;) or y; € (u). Since u € (y1), we
have y; € (v;). Setting wy = u, wy = x, and w; = v; for i = 3,...,n, we thus have

{wi,...,wy} is linearly independent by ([@9). In view of (£2), [@3)) and (LF), we
have

(4.11) P(er @e2) =cw; Qwe  and  YP(e1 @ ey) = wy @ W,
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and for each 3 < ¢ < n— 1, there exists a nonzero scalar (; € F such that i(e; @ e;) =
w1 Qw; and P(e2@e;) = (;wes@w;. Moreover, since 1 < rank ¢((e1+e2)@(e;+¢€;)) < 2
for every distinct pair 3 < 4,5 < n — 1, we have (; = (; for any distinct integers
3 < 1,7 <n—1. Consequently, there exists a nonzero scalar ¢ € F such that

(4.12) Yeroe)=w @w; and P(ex @e;) = C(wr @ w;

foralli=3,...,n—1.

We next claim that for each 1 < i < ”TH, there exists a nonzero scalar p; € F
such that

(4.13) p(ed) = piwy.

Recall that X; = e; @ {e1, ea,¢;) for 3 < i < "TH Then ¢(X;) is a 3-dimensional linear
space of bounded rank-two matrices of SM,(F). In view (I2), since wq, ws, w; are
linearly independent, it follows from Lemma [TI(b) that ¢(X;) is of Form (II) in
Lemma Bl Thus, ¥(&X;) C w; @ My, 1(F) by Lemma 224 For each 3 < i < ”TH,
there exists a nonzero vector z; € M., 1(F) such that ¥(e?) = w; @ z;. We shall
show that 67 = 0. Suppose not. In view of (@9, we have {w1,01ws + Y1w1,w;} and
{w1, 201w + 29 w1 +w;, w; } are linearly independent sets. Since rank 1(e3 +ve?) < 2
and rank¢(e; @ (e1 + €;) +ve?) < 2 for all y € F, it follows from (@I0), EI2) and
Lemma that

z; € (w1) or z; € (hwa + dwy),
and
z; € (w1) or z; € (201wa + 201wy + w;) .

We thus have z; € (wi). Therefore, ¥(e?), ¥(e1 @ e;) are linearly dependent, a
contradiction. Hence, 6; = 0. Thus, ¢(e?) € (w}) by @I0). Similarly, we can
show that 3 = 0 in (LI0). Consequently, Claim (£I3) holds for ¢ = 1,2. We now
consider 3 < 7 < ”T“ Since rank(e; @ (e1 + e;) + ve?) < 2 for every v € F, we
have rank(w; @ (w1 + w;) + vz; @ w;) < 2 for every v € F. If 2; ¢ (w1, w;), then,
by Lemma [£2] we have either w; € (wy) or w; € (pwi +w;). Since wy,w; are
linearly independent, we obtain p; = 0, a contradiction. Therefore, z; € (wy, w;).
Furthermore, since rank ¢)(ex @ (e2 + €;) +ve?) < 2 for all y € F, in the same manner
we can show that z; € (we,w;). Hence, z; € (w1, w;) N (wa, w;) = (w;). Accordingly,
Claim (£I3)) is proved.

Next, we consider n > 6. Let 3 <17 < ”T'H and i+ 1< j<n+1—1 Recall that
Xij = e; @ (e1, e, €4, €j). Since (X;;) is a linear space of bounded rank-two matrices
of SM,,,(F) containing linearly independent elements 1 (e; @ €;), ¥(e?), ¥(e1 @ e;),
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Y(e2 @ e;), it follows from Lemmas Bl and 4] that ¢(X;;) C w; @ My, 1(F). Then
there exists a nonzero vector z;; € M, 1(F) such that ¢(e; @ e;) = w; @ z;5. On
the other hand, ¢(e; @ (e1, €2, €;)) is a linear space of bounded rank-two matrices of
SM;(F) containing linearly independent elements ¢(e; @ e;), ¥(e1 @ e;), Y (e2 @ €;).
Since wy, ws, w; are linearly independent, it follows from Lemmas Bl EIl(b) and
24 that ¥(e; @ (e1,e2,€;)) C wj @ My, 1(F). Then ¢(e; @ e;) = w; @ y;; for some
nonzero vector y;; € My, 1(F). Therefore, w; @ z;; = ¥(e; @ ej) = w; @ y;5, and so
(25) = (w;) and (y;;) = (w;) by Lemma Z2(b). Consequently, for each 3 < i < 2EL
and i + 1 < j <n+1—14, there exists a nonzero scalar n;; € F such that

(4.14) P(e; @ ej) = nijw; @ wj.

After composing the map: A+ puy*A for A € SM,,(F), if necessary, we have
(4.15) Y(e) =w? and  Yle; @e;) = pytw @ wy

for ¢+ = 3,...,n, and for simplicity of notation, we abbreviate ul_lg to ¢ in (EI1),
pi ¢ to ¢ in @ID), py M to py in (@I3) for 2 < i < L and gy 'y to iy in (@)
for 3 < < "TH and i+ 1 < j <n+1—i. Since ranky((e; + e2)® +e}) < 2 and
rank ¥ ((e; + ex)? + e?) < 2 for any distinct integers 1 < 4,7 < 2 and 3 < k < ”T“,
it follows from (@II), @I2), @I3) and @EID) that pe = <2, ¢ = (u;'<)? and
i = (pyh)? for 3 < i < 2. Moreover, in view of (@12), (13), (E14) and @I5), we
have ¥ ((e1+e:)@ej+(e1+e:)?) = py L wi @w;+niw; Qw;j+wi+ () w?+p tw ow;
is of rank bounded above by two for every 3 < i < "TH andi < j<n+1-—1 and

hence,

prtopt 1

0=det|my (u')? Mfi = ((uy ")’ =ni;)*> = my=(u")’
0 Mij i

for every 3 < i < ”T'H and i < j <n+1—i. Also, since ¢? = (u; *<)?, we have either
(= uflg or ( = fuflg. Suppose that ( = fuflg. Then

P((er +ea+e3)? —e3) = wi + 2w + swy @ we + py twy @ wz + (—py FS)wr @ ws

is of rank three, a contradiction. So ¢ = u; *s. Consequently, by @EIT), EI2), (EI3),
[@14) and (@I5) that ¥(e?) = (cve;)? for all 1 <i < 2L and ¥(e; @ ;) = (w;) @
(ajw;) for all 1 <4 < ”TH andi < j<n+1—1, wherea; =1, ay zgandozizul_l
for i = 3,...,n. Let P € My, »(F) be the matrix defined by Pe; = a;w; for every
t=1,...,n. Evidently, P is of rank n since {ws,...,w,} is linearly independent. By

the linearity of v, we conclude that

P(A) = \PAPT  for all A € ST,(F),
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where \ = ,ufl € F is nonzero. We are done.

Case II: n = 4. Let §; = e1 @ {e1, ea,€3,e4) and Sa = ea@ (€1, €3, €3). Then ¢)(S7)
and 1(Sz) are 4-dimensional and 3-dimensional spaces of bounded rank-two matrices
of SM,(F), respectively. By Lemma ] there exist a nonzero vector u € M,, 1(F)
and linearly independent vectors vy, ve, v, v4 € My, 1(F) such that

(4.16) Y(E2)=uov; and (e @e;) =u@u; fori=234,

and ¢ (Sz) is either of Form (I) or Form (II) in Lemma Bl We claim that ¢(Sz)
is of Form (II). Suppose to the contrary that ¢(S2) is of Form (I). We argue in the
following two cases:

Case II-1: (vy) # (u). By Lemma HIl(a), we obtain ¢(S2) = (u?,v3,u @ vs).
Let ¢(e3) = piu @ va + pou® + pzvs and ¥(ex @ e3) = mu @ vy + nau? + n3v3 for
some ju;,m; € F, i = 1,2,3. Suppose that pz # 0. Note that rank(e? + e3) < 2
implies v € (u,v2). Since vy, vs,vs are linearly independent, it follows that u,ve, vs
are linearly independent. In view of [I6), we have 1)(e?) = \ju @ v + Aau? for some
scalars A1, Ao € F with Ay # 0. We set

C— 1 1f773:O,
3 tus i s # 0.

Then ¢ # 0 and (n3 + p3 # 0, and

Y(C(er +e2) @es+ (€1 +e2)?) = Cu@ s + ((n3 + p3)vi
+(Cm 4+ M+ p1 + Du@vg + ((n2 + Ag + p2)u?

is of rank three, a contradiction. Hence, uz = 0. Since 1)(ez @ e1), ¥(e3), ¥(ea @ e3)
are linearly independent, it follows that 13 # 0. By a similar argument, with 1 (e?)
replaced by 1(ez @ e3), to obtain ¥(¢’(e1 + e2) @ e3 + (e1 + e2)?) is of rank three for
¢’ € F, which is impossible.

Case II-2: (vy) = (u). By [@I6), we have 1(e; @ e2) = au? for some o € F\{0}
and vy, u, vs, v4 are linearly independent. Let 1/(Ss) = < 20220 v> for some linearly
independent vectors z,v € M., 1(F). Since ¢(e; @ e2) € ¥(Sz2), it follows that
au? = 0122 + 0202 + O3z @ v for some 01,0,,03 € F with (01,04,03) # 0. We now
show that u € (x,v). Suppose to the contrary that u ¢ (x,v). If 63 = 0, then
au? — 0122 — 6,0% = 0 implies that o = 6; = #; = 0, a contradiction. Thus, 63 # 0,
and so au? —O3x ©v = 0122 + 0202, which is an impossibility. We thus have u € (x, v).
Since x,v are linearly independent, we may assume without loss of generality that
u,v are linearly independent. Then (u,v) = (z,v), so ¢(S2) = <u2,v2,u®v> by
Lemma FTl(a). Let ¥(e3) = a1u @ v + agu? + azv? for some ay, az, a3 € F. Suppose
that az # 0. Since ¥(e? + e3) = u © v1 + a1u @ v + agu® + azv? has rank bounded
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above by two, it follows that v € (u,v1). Then (u? v, u@v) = (u?,v},u @ v1), and
therefore, 1(e3) = byu @ v1 + bau? + bzv? for some by, by, by € F with b3 # 0, because
u, v are linearly independent. Let ¢(ex@e3) = ciu@v1 + cou? + csv% for some scalars

c1,c2,c3 € F) and let
1 if C3 = 0,
B=9 _,, .
cg bz if c3 # 0.

Then 8 # 0 and Bc3 + b3 # 0, and
P(Bler + e2) D es + (e1 + €2)*) = Bu @ vs + (Bes + bs)vp
+ (Ber + b1 + Du@ vy + (Bea + by + a)u?

is of rank three, a contradiction. Then az = 0. Since ¥(e3),¥(ex @ e1),9(e2 @ e3)
are linearly independent, it follows that ¥ (es @ e3) = diu @ v + dou? + dsv? for some
dy,ds,ds € Fwith d3 # 0. Note that ¢((e;+e2)@e3) = u@vz+diu@v+dau®+dsv? has
rank bounded above by two implies v € (u,v3). So <u2, v uQ v> = <u2, v uQ v3>.
We now apply a similar argument as above, with vy replaced by vs, to obtain ¥(5’(e1+
e2)@es+(e1+e2)?) is of rank three for some 3/ € F\{0}. This leads to a contradiction.

Accordingly, ¥(Sz2) is of Form (II). Then there exists a nonzero vector z €
M, 1(IF) such that

(4.17) Y(e3)=r0y2 and Ylea@e;)=aQy; fori=1,3

for some linearly independent vectors yi,ya,ys € Mp, 1(F). We divide into two
subcases:

Case A: (x) = (u). Tt follows from ([@I6l) and ([@IT), together with the linearity
of 1, that there exists a linear mapping ¢ : STi(F) — M., 1 (F) such that

PY(A) =uo p(A) forall Ae ST(F),

where p(A) # 0 for every nonzero bounded rank-two matrix A € ST(F). So (@I
holds true.

Case B: (z) # (u). Note that x @ y1 = ¢¥(e1 @ e2) = u @ vy implies vo = ¢z and
11 = su for some nonzero scalar ¢ € F. Thus,

(4.18) P(er @ e2) = qu O .

By a similar argument as in ([@9)), we show that {u, x, v3,v4} are linearly independent.
Setting w1 = u, we = sz, wy = vz and wy = vy, we thus have {wy, wq, w3, wy} is
linearly independent. In view of (LI0), (£17) and (£IF]), we have

(4.19) Y =w, vy and Y(ey @e) =w Qw;, i =2,3,4,
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and
(4.20) V() =wy @25 and ey @ e3) = wo @ 23,
where z; = ¢ ly; for i = 2,3. We claim that
(4.21) v) € (wy,we) and 29 € (wy,ws).

We will only verify v1 € (wy,ws) as the second statement can be proved similarly.
Suppose, contrary to our claim, that v; ¢ (w,ws). Since rank(e? + ve3) < 2 for
all v € F, it follows from [@I9), @20) and Lemma 2] that zo € (w1) or z2 € (v1).
Since y1,y2 are linearly independent and wy € (y1), we conclude that zo = Avy for
some nonzero A € F. Consequently, ¥((e1 + €2)?) = w1 @ v1 + w1 @ wa + Awg @ v1 is
of rank three, a contradiction. Claim [@2]]) is proved. By (@I9) and @20,

(4.22) P(ed) = Mw? 4+ dowy @ wy  and  Y(ed) = Azws + A\qwy @ wo

for some scalars A1, Ag, A3, Ay € F with A1, A\ # 0. Moreover, since rank(e; @ es +
vea@es) < 2 for all v € F, it follows from (£19), (Z20) and Lemma 2 that z3 € (wy)
or z3 € (ws). Since y1,ys3 are linearly independent, we have z3 = {ws for some nonzero
scalar £ € F. By (@20), we have

(4.23) w(eg (%) 63) = fws @ ws.
In view of (@I9), (£20), (@22)) and ([@23]), we see that

P((ver +e2)® + (ve1 + e2) @ e3) = Y Awi + Aw3 + (VA2 + v + A)wi @ wo
+ywi @ ws + {wy @ w3

has rank bounded above by two for all v € F. It follows that

Y oA+ v+ M Y2\
0=det £ A3 ")/2>\2+"y+>\4
0 3 Y
(4.24) = —7(2X267% — (A3 — £(2 — EA1))y + 2M48)

for all v € F. Since F is a field of characteristic not two, we conclude immediately
from ([£24) that A3 = £(2 — &Nq) with €\ # 2, and Ay = — 2. Moreover, if |F| > 4,
then we can deduce from ({24)) that Ay = 0 = A4.

Let P € M, 4(F) be the matrix defined by Pe; = w; for i = 1, 3,4, and Pe; =
€ws. Clearly, P is of full rank. Denote a = &1, B = A\; and 6 = X~ !. Then

a,B # 0 and 2a — 8 = A\3¢"2 # 0. By (@I19), (£20), (@22), (£23) and the linearity
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of 1, we obtain

a1 a2 oars + 0(a1a — ass) Baiy
0 a2 (2 — B)ags aais + 0(a14 — az3)
A) =P prt
v(4) 0 0 a2 a2
0 0 0 ail

for all A = (a;j) € STa(F), where 6 is nonzero only if |F| = 3. We are done.

Case III: n = 3. Let W = e; @ (e1, e2,e3). Then (W) is a 3-dimensional linear
space of bounded rank-two matrices of SM,,(F). By Lemma [B1] (W) is either of
Form (I) or Form (II) in Lemma [3]1 Then either

(4.25) P(W) Cu@ My, 1 (F)
for some nonzero vector u € M, 1(F); or
(4.26) YW) = (v, 0%, u 0 v)

for some linearly independent vectors u,v € M, 1(F). We argue in the following two
cases:

Case III-1: 1(e3) € ¥(W). We consider the following two subcases.

If @25) holds, then Imy C u @ M, 1(F). We thus obtain a linear mapping
¢ : ST(F) — M., 1(F) such that

PY(A) =uo p(A) forall Ae SH(F),

where ¢(A) # 0 for every nonzero bounded rank-two matrix A € ST5(F). Hence, (41
holds.

If (£26]) holds, then Imvy = <u2, v u o v>. So, for each A € ST5(FF), there exists
a unique ordered triple (a4, 84,74) € F? such that ¢(A4) = aau? + fav? + yau @ v.
We define the linear mapping ¢ : ST3(F) — F3 such that

#(A) = (aa,Ba,74) forall A€ ST(F).

Note that Imy = <u2, RN TR v> and 1) preserves nonzero bounded rank-two matrices
implies ¢ is surjective and ¢(A) # 0 for every nonzero bounded rank-two matrix
A € STK(F). Let P € M, 2(F) be the matrix defined by Pe; = u and Pes = v. Then
P is of full rank and

?(A)s  P(An
#(A)2 #(A)s

where ¢(A); denotes the i-th component of ¢(A) € F3. We are done.

PY(A) =P [ ] P for all A € ST(F),
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Case I1I-2: ¥(e3) ¢ (W). Let Wy = (e3,€3,e1 @ e2). Note that ¥(W) is a
3-dimensional linear space of bounded rank-two matrices of SM,,(F). By Lemma 3]
we have either

(4.27) PW1) C 2@ Mo (F)
for some nonzero vector x € M, 1(F); or
(4.28) P = (2%, 9%,z 0 y)

for some linearly independent vectors z,y € My, 1(F). We need to consider the
following four subcases:

Case III-2-A: [E28) and [@2T) hold. Since (W) C u @ M, 1(F) contains two
linearly independent elements 1 (e?) = 2@y and ¥(e; @ ez) = 2@ ys for some y1,ys €
M 1(F), it follows from Lemma 24 that (x) = (u). Thus, Imy C u@ M,, 1(F), and
hence, (@I) holds true.

Case III-2-B: [@20) and ({28) hold. By (£26) and [28]), we see that
a1u’ + asv® + asu @ v = w(e%) =bix® + by’ + b3z 0y
is of rank one or rank two for some nonzero elements (a;), (b;) € F?, and
g u? + cov® + cau@v = Y(er @eg) = diz® +doy® +dsz @y
is of rank one or rank two for some nonzero elements (c;), (d;) € F2. Therefore,
u- (arut +azv™) + v (vt +azgut) = - (bt +bzyT) +y - (boyT + bza™),
u-(crut +esv™) +v- (vt +esut) =2 (dizt +day™) +y - (doy™ +dza™).

Since 1 (e?), ¥(e1 © ez) are linearly independent, it follows that, in each case, we
obtain (u,v) = (z,y). By Lemma Edl(a), (u?,v?,u@v) = (22,y%, 20 y), and so
P(e3) € (W), a contradiction.

Case I1I-2-C: ([E28) and [@28) hold. Let 1(e3) = u@ 21, ¥(e1 @ e2) = u® 22 and
Y(e1 @ eg) = u © z3 for some linearly independent vectors z1, 22, 23 € My, 1(F). By

E23), we get

w® 21 = a2’ + axy® +azz Oy,

U2y =b1a® +byy? + bz Oy
for some nonzero elements (a;), (b;) € F3. Thus,

(4.29) w-2 +zut =2 (et +azyt) Fy - (ayt +azat),
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(4.30) u-zf +zout =z (bt +byT) +y - (bayT + b3xT).

We consider the following four subcases:

Subcase II1-2-C-1: rank)(e?) = rank¢(e; @ ez) = 1. Then (z1) = (u) = (22).
This contradicts the fact that z1, zo are linearly independent.

Subcase I1I-2-C-2: rank(e?) = rankt(e; @ e2) = 2. Then {u, 2} is linearly
independent for ¢ = 1,2. It follows from (@29) and {30) that (u,z1) = (x,y) =
(u, z2). Since rankp(e1 @eq) = 2 and {z1, 22} is linearly independent, zo = pru+ 21
for some nonzero scalars pq, s € F. We thus have {z1,u, z3} is linearly independent
and ¥(e; @ e2) = mu? + meu @ 21, with 7 = 2u; and 72 = p2 nonzero. Since
<:E2,y2,:£ ®y> = <u2,zf,u %) zl>, we have 1(e2) = A\ju? + \au @ 21 + A32? for some
(\i) € F? with A3 # 0. Let P € Ms,,(F) be the matrix defined by Pe; = u,
Pey = z; and Pes = z3. Then P is of full rank, and v¥(e?) = P(e; @ es)PT,
Pler @ e2) = P(mef + me1 @ e2)PF, Yer @ e3) = Pler @ e3)PT and (e3) =
P(A1e? + Xae1 @ ez + Aze3)PH. By the linearity of 1, we obtain

a1 M2ai2 + a3 + A2a22 Mmaiz + A1age
Y(A)=P| 0 A3G22 NoG12 + ar3 + Agags | PT
0 0 ail

for all A = (a;5) € ST(F). We are done.

Subcase II1-2-C-3: rank(e?) = 1 and rank ¢)(e; @ e2) = 2. Then (21) = (u), and
so ¥(e?) = nu? for some nonzero scalar n € F. Note that {u, z2, 23} is linearly inde-
pendent. By [@30), we have (u, z2) = (z,y), and so <u2,z§,u® 22> = <x2,y2,x @ y>
by Lemma ETl(a). Thus, ¥(e2) = A\u? + Xou @ 23 + X322 for some ()\;) € F? with
Az # 0. Let P € M3, (F) be the matrix defined by Pey = u, Pea = 23 and Pes = z3.
Then P is of full rank and

a1 G12 + A2age  Maiz + Aiag
”(/}(A) =P 0 )\3@22 a2 + )\gagg P+
0 0 ail

for all A = (a;5) € ST(F). We are done.

Subcase I1I-2-C-4: rank ¢(e?) = 2 and rank(e; @ e2) = 1. Then (2) = (u) and
h(e1 @ez) = nu? for some nonzero scalar n € F. So {z1,u, 23} is linearly independent.
By ([@23)), we conclude that <u2,z%,u Q 21> = <x2,y2,x %) y> Thus, ¥(e3) = \u? +
Aou @ z1 + A3z} for some (\;) € F? with A3 # 0. Let P € M3,,,(F) be the matrix
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defined by Pe; = u, Pes = z1 and Peg = z3. Then P is of full rank and

a1 G13+ Agage  Maiz + Aiag
’(ﬁ(A) =P 0 A3Q29 ai13 + Aaasoo rt
0 0 ail

for all A = (a;j) € ST3(F). We are done.

Case I1I-2-D: [@26]) and [@27) hold. Let 7 : STE(F) — ST(F) be the bijective
linear mapping defined by

az2 A12 ai3
T(A) =10 an am for all A = (a;;) € STH(F).
0 0 a2

It is easily seen that 7 is a bounded rank-two linear preserver such that 7(W) = Wy

and 7(W1) = W. It follows from ([@26) and (£27) that
(W or)W) =yp(W1) C2@ My (F) and (¢ or)W1) = (W) = (u*, 0>, uv).

We then infer by similar arguments as in Subcase II1-2-C and conclude that v takes
one of the following forms: there exists a full rank matrix P € Mg ,,,(IF) such that

a2z M2ai2 + a1z + A2a11 maiz + Aiain
Y(A)=P | 0 Aza11 Noa12 + a1z + Aeayr | P
0 0 a2

for all A = (a;;) € STH(F), where A1, X2, Az, m1,m2 € F with Az, n1,72 # 0; or

aze  a12 + A2a11  Maiz + Aiain
Y(A)=P| 0 Aza11 arz + Aoayy | PT
0 0 a2

for all A = (a;;) € ST(F), where A1, A2, A3, n € F with A3, n # 0; or

az2 @13+ 2011 Maiz + Aiain
’(ﬁ(A) =P 0 A3a11 ai3 + Aaai prt
0 0 a22

for all A = (a;;) € ST(F), where A1, A2, A3, € F with A3, #0. O

By Theorem 3] Lemma 23](a) and (b) (i), and Lemma 2.6, we obtain a clas-
sification of bounded rank-two linear preservers between per-symmetric triangular
matrix spaces over a field of characteristic not two.

COROLLARY 4.4. Let F be a field of characteristic not two and m,n be integers
such that m,n > 3. Then v : ST,(F) = STn(F) is a bounded rank-two linear preserver
if and only if m > n and ¢ is of one of the following forms:
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(i)  There exist a nonzero vector u € Uy, n, and a linear mapping ¢ : STo(F) — Uy m,
with 1 <p<m+1—q< m, such that
P(A) =up(A) for all A € ST,(F),

where @(A) # 0 for every nonzero bounded rank-two matriz A € ST,(F).
(ii) There exist a full rank matric P € M., ,(F) and a nonzero A € F such that

P(A) = \PAP"  for all A € ST,(F),

where Pe; € Up, m\Up,—1,m for i = 1,...,n such that 1 < p; < mT'H for
every 1 < i< "TH, and p; <m+1—p; foreveryl <i<j<n+1—i. In
particular, P € T, (F) when m = n.
(iii) When n =4, in addition to (i) and (ii), ¥ also takes the form
ai1 a1z oars + 0(a1a — ass) Baiy
W(A) =P 0 ag (2c0 — B)azs aarz + 0(ais — azs) pt
0 0 a2 a2
0 0 0 ail

for all A = (ai;) € ST(F), where o, 3,0 € F are scalars such that o, B are
nonzero with B # 2a, and 0 is nonzero only if |F| = 3, and P € M, 4(F)
is a full rank matriz in which Pe; € Uy, ym for 1 < i< 4 with 1 < p; < mTH
forevery1 <1 <2, and p; <m+1—p;j foreveryl <i<j<b—i. In
particular, P € Ty(F) when m = 4.

(iv) When n = 3, in addition to (i) and (ii), ¥ also takes one of the following forms:
(a) There exist a surjective linear mapping ¢ : ST(F) — F3 and a full rank

matriz P € My, o(F) such that

¢(A)s  ¢(Ah
P(A)2 ¢(A)s

where Peq, Pea € Uy for some integer 1 < p < mTH, ¢(A); is the
i-th component of p(A) € F3, and ¢p(A) # 0 for every nonzero bounded
rank-two matric A € ST(F).

(b) There exist scalars A1, A2, A3 € F with A3 # 0 such that either

Y(A) =P { } Pt for all A € ST(F),

Gpp  M2012 + 413 + A20gq Ma12 + Magq
Y(A)=P | 0 A30qq Moa12 + a1z + Aaagq | PT
0 0 Qpp

for all A = (ai;) € SK(F), where ni,n2 € F are nonzero and {p,q} =
{1,2}; or

Qpp  O1s + A2Ggq  Ma1: + AGgq
’lp(A) =P 0 )\3aqq as + )\Qaqq pt
0 0 Qpp
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for all A = (ai;) € SKB(F), where n € F is nonzero and {p,q} = {s,t} =
{1,2}. Here, P € M, 3(F) is a full rank matriz such that Pei, Pey €
Upm with 1 < p < mTH and Pes € Ugm with 1 <g<m+1—-p. In
particular, P € T3(F) when m = 3.

We end this section by giving an example of rank-one linear preserver / rank-one
non-increasing linear mapping and some examples of rank-two non-increasing linear
mappings on per-symmetric triangular matrices.

EXAMPLE 4.5. Let F be a field and m, n be integers > 2. Let p := L"THJ, where
|-] is the floor function. Let ¢ : ST(F) — SM,,(F) be the linear mapping defined by

P(A) = AP [d)(gll) ;0(541?2)1] PT  for every A = ﬁl)l jﬂ € ST.(F)

with 41 € Tpn—p (F) and Ay € SM,(F), where A € F\{0}, P € M,, »(F) is of
full rank, and ¢ : Tpn—p(F) = Mypnp(F) and ¢ : SML(F) - SMp(F) are linear
mappings. Here 7, ,—p(F) = T,(F) when n —p = p, and

Tpn—p(F) = {m € My n—p(F) ‘ Te 7;_1(F)} whenn—p=p— 1.

It is easily verified that

e 1) is a rank-one linear preserver whenever ¢ is a rank-one linear preserver on
SM,(F), and

e 9 is rank-one non-increasing whenever ¢ is a rank-one non-increasing linear
mapping on SM,(F).

By the structural results of rank-one linear preservers and rank-one non-increasing
linear mappings on symmetric matrices (see a complete result under a more general
setting in [8], [12]), the structure of ¢ can be established immediately.

EXAMPLE 4.6. Let F be a field and m,n be integers > 2. Let ¢ : ST,(F) —
SM;,(F) be the linear mapping defined by

$(A) = APAP

for every A € ST,(F), where A € F and P € M,, ,(F). Clearly, ¢ is rank-two
non-increasing.

EXAMPLE 4.7. Let F be a field and n be an integer > 2. Let ¢ : ST,(F) —
SM,,(F) be the linear mapping defined by

P(A) = diag (@11, ..., ann)



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 27, pp. 619-651, August 2014

650 W.L. Chooi, K.H. Kwa, M.H. Lim, and Z.C. Ng

for every A = (a;;) € ST,(F). It is immediate to see that rank)(A) < 2 whenever
rank A < 2.

EXAMPLE 4.8. Let F be a field and n be an integer > 2. Let ¢ : ST,(F) —
SM,(F) be the linear mapping defined by

AMA 0 e 0 0
0 AoAgy - 0 0
Y(A) = : : : :
0 0 <o AgAog 0
0 0 e 0 A A1
for every A = (Aij) € STo(F) with Aj; € My, n, (F) for 1 <i < j < k. Here \; € F
with Agy1-s = A for ¢ = 1,...,k, and ny + --- + nx = n with ngy1-; = n; for
i=1,...,k. It is easily verified that is rank-two non-increasing.

ExXAMPLE 4.9. Let F be a field. We define the linear mapping ¢ : ST5(F) —
SM5(F) such that

a1 0 0 0 0
a2 az a3 azs O
P(A)=10 0 azg3 a3 O
0 0 0 a2 0

0 0 0 a2 aii

for every A = (ai;) € ST5(F). A direct verification shows that ¢ satisfies rank )(A) <
2 whenever rank A < 2.

EXAMPLE 4.10. Let F be a field and ¢ : ST5(F) — SM5(F) be the linear mapping
defined by

1 a1z 0 0 0
a2 0 0 0
azz azz 0 0

a

=

0 a3 az a2
0 0 0 ail

o O O O

for every A = (ai;) € ST5(F). Then ¢ satisfies rank1)(A) < 2 whenever rank A < 2.
Nevertheless, we note that ¢ is not rank-one non-increasing. For example, ¢(Fa3 +
Eoy + Es3 + E34) = F39 + E33 + Ey3 is of rank two.

Examples [L.0HA4.10 demonstrate that the structure of rank-two non-increasing
linear mappings on per-symmetric triangular matrices is complicated. This shows
that condition (L)) is a relevant assumption in our study.
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