LINEAR SPACES AND PRESERVERS OF BOUNDED RANK-TWO PER-SYMMETRIC TRIANGULAR MATRICES*

W.L. CHOOI^{\dagger}, K.H. KWA ${ }^{\dagger}$, M.H. LIM ${ }^{\dagger}$, AND Z.C. NG ‡

Abstract

Let \mathbb{F} be a field and m, n be integers $m, n \geqslant 3$. Let $\mathcal{S M}_{n}(\mathbb{F})$ and $\mathcal{S T}_{n}(\mathbb{F})$ denote the linear space of $n \times n$ per-symmetric matrices over \mathbb{F} and the linear space of $n \times n$ per-symmetric triangular matrices over \mathbb{F}, respectively. In this note, the structure of spaces of bounded rank-two matrices of $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ is determined. Using this structural result, a classification of bounded rank-two linear preservers $\psi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{S} \mathcal{M}_{m}(\mathbb{F})$, with \mathbb{F} of characteristic not two, is obtained. As a corollary, a complete description of bounded rank-two linear preservers between per-symmetric triangular matrix spaces over a field of characteristic not two is addressed.

Key words. Per-symmetric triangular matrices, Rank, Spaces of bounded rank-two matrices, Bounded rank-two linear preservers.

AMS subject classifications. 15A03, 15A04, 15A86.

1. Introduction. A linear mapping between matrix spaces is said to be rank- k non-increasing (respectively, a rank- k preserver) if it sends rank less than or equal to k matrices (respectively, if it sends rank k matrices) to matrices of the same type. Motivated by the studies of rank-one non-increasing linear mappings and rank-two non-increasing linear mappings on symmetric matrices [2, 5, 10, 11, 13, and rank-one non-increasing linear mappings on triangular matrices 3, 4, we investigate the structure of bounded rank-two linear preservers ψ on per-symmetric triangular matrices satisfying the condition

$$
\begin{equation*}
1 \leqslant \operatorname{rank} \psi(A) \leqslant 2 \quad \text { whenever } \quad 1 \leqslant \operatorname{rank} A \leqslant 2 \tag{1.1}
\end{equation*}
$$

where $\operatorname{rank} A$ denotes the rank of the matrix A.
It is a known fact that the structure of rank preservers is one of the basic results and useful in the study of linear preserver problems [9, 16. Many linear preservers problems quite often depend on or can be solved with the help of such mappings. For instance, Minc [15] deduced from rank-one linear preservers the classical theorem

[^0]of Frobenius [6] concerning determinant linear preservers. Watkins 17] classified commutativity linear preservers by using the structure of rank-one linear preservers. In [14], rank- k non-increasing linear mappings were used by Loewy and Pierce to verify the John-Pierce conjecture [7] for certain balanced singular inertia classes. Beasley [1] showed that rank-additivity preserving linear mappings are rank- k non-increasing. For works concerning rank preservers on various matrix spaces, we refer the reader to [16, Chapter 2] and [18, Chapter 2].

Let \mathbb{F} be a field and m, n be positive integers. Let $\mathcal{M}_{m, n}(\mathbb{F})$ denote the linear space of $m \times n$ matrices over \mathbb{F}. We abbreviate $\mathcal{M}_{n, n}(\mathbb{F})$ to $\mathcal{M}_{n}(\mathbb{F})$ and $\mathcal{M}_{1, n}(\mathbb{F})$ to \mathbb{F}^{n}. Given $A \in \mathcal{M}_{m, n}(\mathbb{F})$, let $A^{+}:=J_{n} A^{T} J_{m} \in \mathcal{M}_{n, m}(\mathbb{F})$, where A^{T} stands for the transpose of A and J_{n} is the element of $\mathcal{M}_{n}(\mathbb{F})$ with ones on the minor diagonal and zeros elsewhere. A matrix $A \in \mathcal{M}_{n}(\mathbb{F})$ is called per-symmetric if it is symmetric around the minor diagonal, i.e., $A^{+}=A$. We denote by $\mathcal{S M}_{n}(\mathbb{F})$ the linear subspace of $\mathcal{M}_{n}(\mathbb{F})$ consisting of per-symmetric matrices, and $\mathcal{S} \mathcal{T}_{n}(\mathbb{F}):=\mathcal{S} \mathcal{M}_{n}(\mathbb{F}) \cap \mathcal{T}_{n}(\mathbb{F})$. Here $\mathcal{T}_{n}(\mathbb{F})$ stands for the linear space of $n \times n$ upper triangular matrices over \mathbb{F}. We shall call $\mathcal{S M}_{n}(\mathbb{F})$ and $\mathcal{S T}_{n}(\mathbb{F})$ the per-symmetric matrix space and the per-symmetric triangular matrix space, respectively.

The study of rank- k non-increasing linear mappings led naturally to the investigation of linear spaces of bounded rank k (i.e., linear subspaces consisting of matrices of rank at most k) and k-spaces (i.e., linear subspaces consisting of the zero matrix and matrices of rank k). In this note, we first give a classification of linear spaces of bounded rank-two per-symmetric matrices of $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ over an arbitrary field \mathbb{F}. As a corollary, a description of 2 -spaces of $\mathcal{S T}_{n}(\mathbb{F})$ is obtained. We next deduce from the structural result of spaces of bounded rank-two per-symmetric triangular matrices a characterization of bounded rank-two linear preservers from $\mathcal{S T}_{n}(\mathbb{F})$ into $\mathcal{S M}_{m}(\mathbb{F})$, with $m, n \geqslant 3$ and \mathbb{F} of characteristic not two. As an immediate consequence, a complete description of bounded rank-two linear preservers between per-symmetric triangular matrix spaces over a field of characteristic not two is addressed.

As a side remark, the structure of rank-one non-increasing linear mappings on triangular matrices is much more complicated than the one of those on symmetric matrices. Some examples of rank-one non-increasing linear mappings and rank-two non-increasing linear mappings on per-symmetric triangular matrices are given at the end of this note to indicate the aptness of condition (1.1) in arriving at our results.

In the sequel, we write $\left\{f_{1}, \ldots, f_{m}\right\}$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ for the standard bases of $\mathcal{M}_{m, 1}(\mathbb{F})$ and $\mathcal{M}_{n, 1}(\mathbb{F})$, respectively, and let $E_{i j}:=f_{i} \cdot e_{j}^{T}$ be the matrix unit in $\mathcal{M}_{m, n}(\mathbb{F})$ with one as the (i, j) entry and zero elsewhere. We use $\left\langle u_{1}, \ldots, u_{r}\right\rangle$ designate the linear span of the vectors u_{1}, \ldots, u_{r}.
2. Preliminaries. Let \mathbb{F} be a field and n be an integer such that $n \geqslant 2$. For each $\alpha \in \mathbb{F}$ and each pair of integers i, j satisfying $1 \leqslant i, j \leqslant n$ and $j \neq n+1-i$, we set

$$
\begin{equation*}
Z_{i j}^{\alpha}:=E_{i j}+E_{i j}^{+}+\alpha E_{i, n+1-i} \in \mathcal{M}_{n}(\mathbb{F}) \tag{2.1}
\end{equation*}
$$

and write $Z_{i j}=Z_{i j}^{0}$ for short. It is obvious that $Z_{i j}^{\alpha}$ is a per-symmetric triangular matrix for every $1 \leqslant i \leqslant j \leqslant n+1-i$ and $j \neq n+1-i$.

We begin with a result on the decomposition of per-symmetric triangular matrices.
Lemma 2.1. Let \mathbb{F} be a field and n be an integer such that $n \geqslant 2$. A nonzero matrix $A \in \mathcal{S T}_{n}(\mathbb{F})$ is of rank k if and only if there exist an integer $0 \leqslant h \leqslant \frac{k}{2}$, scalars $\alpha_{1}, \ldots, \alpha_{h} \in \mathbb{F}$, nonzero scalars $\beta_{2 h+1}, \ldots, \beta_{k} \in \mathbb{F}$, and an invertible matrix $P \in \mathcal{T}_{n}(\mathbb{F})$ such that

$$
A=P\left(\sum_{i=1}^{h} Z_{s_{i} t_{i}}^{\alpha_{i}}+\sum_{i=2 h+1}^{k} \beta_{i} E_{p_{i}, n+1-p_{i}}\right) P^{+}
$$

where $\left\{s_{1}, \ldots, s_{h}, n+1-t_{1}, \ldots, n+1-t_{h}, p_{2 h+1}, \ldots, p_{k}\right\}$ and $\left\{t_{1}, \ldots, t_{h}, n+1-\right.$ $\left.s_{1}, \ldots, n+1-s_{h}, n+1-p_{2 h+1}, \ldots, n+1-p_{k}\right\}$ are two sets of k distinct positive integers such that $1 \leqslant s_{i} \leqslant t_{i} \leqslant n+1-s_{i}$ and $t_{i} \neq n+1-s_{i}$ for $i=1, \ldots, h$, and $1 \leqslant p_{i} \leqslant \frac{n+1}{2}$ for $i=2 h+1, \ldots, k$; and $\left(\alpha_{1}, \ldots, \alpha_{h}\right) \neq 0$ only if \mathbb{F} has characteristic two.

Proof. The proof of sufficiency is immediate. We now consider necessity.
Let $A=\left(a_{i j}\right) \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ be a nonzero rank k matrix. We denote by $A_{(i)}$ and $A^{(j)}$ the i-th row and the j-th column of the matrix A, respectively. Let $A^{\left(j_{0}\right)}$ be the first nonzero column from the left of A, and let $a_{i_{0} j_{0}}$ be the first nonzero entry from the bottom of the column $A^{\left(j_{0}\right)}$. Then $a_{i j_{0}}=0$ for every $i_{0}+1 \leqslant i \leqslant n$, and $a_{i j}=0$ for every $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant j_{0}-1$, and also $1 \leqslant i_{0} \leqslant j_{0} \leqslant n+1-i_{0}$ since $A \in \mathcal{S T}_{n}(\mathbb{F})$. We divide our proof into the following two cases:

Case I: $j_{0}=n+1-i_{0}$. For each $1 \leqslant s \leqslant i_{0}-1$, we apply the following elementary row and column operations on A :

$$
\begin{equation*}
A_{(s)} \rightarrow A_{(s)}-a_{s j_{0}} a_{i_{0} j_{0}}^{-1} A_{\left(i_{0}\right)} \text { and } A^{(n+1-s)} \rightarrow A^{(n+1-s)}-a_{i_{0}, n+1-s} a_{i_{0} j_{0}}^{-1} A^{\left(j_{0}\right)} . \tag{2.2}
\end{equation*}
$$

For each $1 \leqslant s \leqslant i_{0}-1$, there exists the elementary matrix $I_{n}-c_{s} E_{s i_{0}} \in \mathcal{T}_{n}(\mathbb{F})$ corresponding to the row operation $A_{(s)} \rightarrow A_{(s)}-c_{s} A_{\left(i_{0}\right)}$, where $c_{s}=a_{s j_{0}} a_{i_{0} j_{0}}^{-1} \in \mathbb{F}$. Since $A^{+}=A$, we have $a_{i_{0}, n+1-s}=a_{s j_{0}}$ for every $1 \leqslant s \leqslant i_{0}-1$, and so there exists an invertible matrix $P_{1} \in \mathcal{T}_{n}(\mathbb{F})$ such that

$$
\begin{equation*}
P_{1} A P_{1}^{+}=a_{i_{0} j_{0}} E_{i_{0} j_{0}}+B \tag{2.3}
\end{equation*}
$$

for some matrix $B=\left(b_{i j}\right) \in \mathcal{S T}_{n}(\mathbb{F})$ such that $b_{i j_{0}}=0$ for every $1 \leqslant i \leqslant n, b_{i_{0} j}=0$ for every $1 \leqslant j \leqslant n$, and $b_{i j}=0$ for every $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant j_{0}-1$.

Case II: $j_{0} \neq n+1-i_{0}$. Without loss of generality, we may assume $a_{i_{0} j_{0}}=1=$ $a_{n+1-j_{0}, n+1-i_{0}}$. For each $1 \leqslant s \leqslant i_{0}-1$, we apply the following elementary row and column operations on A :

$$
A_{(s)} \rightarrow A_{(s)}-a_{s j_{0}} A_{\left(i_{0}\right)} \quad \text { and } \quad A^{(n+1-s)} \rightarrow A^{(n+1-s)}-a_{n+1-j_{0}, n+1-s} A^{\left(n+1-i_{0}\right)},
$$

and it is followed by the elementary row and column operations on A :

$$
A_{(t)} \rightarrow A_{(t)}-a_{t, n+1-i_{0}} A_{\left(n+1-j_{0}\right)} \quad \text { and } \quad A^{(n+1-t)} \rightarrow A^{(n+1-t)}-a_{i_{0}, n+1-t} A^{\left(j_{0}\right)}
$$

for every $1 \leqslant t \leqslant n-j_{0}$. We note that, for each $1 \leqslant s \leqslant i_{0}-1$ (respectively, for each $1 \leqslant t \leqslant n-j_{0}$), there exists the elementary matrix $I_{n}-a_{s j_{0}} E_{s i_{0}}$ (respectively, $\left.I_{n}-a_{t, n+1-i_{0}} E_{t, n+1-j_{0}}\right)$ in $\mathcal{T}_{n}(\mathbb{F})$ corresponding to the row operation $A_{(s)} \rightarrow A_{(s)}-$ $a_{s j_{0}} A_{\left(i_{0}\right)}$ (respectively, $\left.A_{(t)} \rightarrow A_{(t)}-a_{t, n+1-i_{0}} A_{\left(n+1-j_{0}\right)}\right)$. Since $a_{n+1-j_{0}, n+1-s}=a_{s j_{0}}$ for every $1 \leqslant s \leqslant i_{0}-1$, and $a_{i_{0}, n+1-t}=a_{t, n+1-i_{0}}$ for every $1 \leqslant t \leqslant n-j_{0}$, there exists an invertible matrix $P_{1} \in \mathcal{T}_{n}(\mathbb{F})$ such that

$$
\begin{equation*}
P_{1} A P_{1}^{+}=Z_{i_{0} j_{0}}^{\alpha_{1}}+B \tag{2.4}
\end{equation*}
$$

for some scalar $\alpha_{1} \in \mathbb{F}$ and matrix $B=\left(b_{i j}\right) \in \mathcal{S T}_{n}(\mathbb{F})$ such that $b_{i j_{0}}=0$ for every $1 \leqslant i \leqslant n, b_{i_{0} j}=0$ for $1 \leqslant j \leqslant n$, and $b_{i j}=0$ for every $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant j_{0}-1$.

In view of (2.3) and (2.4), if $B=0$, then we are done. Suppose that $B \neq 0$. Let $b_{i_{1} j_{1}}$ be the first nonzero entry from the bottom of the first nonzero column of B counting from the left of the matrix B. Evidently, $j_{1}>j_{0}, i_{1} \neq i_{0}$ and $1 \leqslant i_{1} \leqslant$ $j_{1} \leqslant n+1-i_{1}$. Since $b_{i j_{0}}=0$ for all $1 \leqslant i \leqslant n, b_{i_{0} j}=0$ for every $1 \leqslant j \leqslant n$, and $b_{i j}=0$ for every $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant j_{0}-1$, by applying suitable elementary row and column operations similar to (2.2) when $j_{1}=n+1-i_{1}$ (respectively, similar to (2.4) when $\left.j_{1} \neq n+1-i_{1}\right)$, there exists an invertible matrix $P_{2} \in \mathcal{T}_{n}(\mathbb{F})$ such that

$$
P_{2} B P_{2}^{+}=a_{i_{1} j_{1}} E_{i_{1} j_{1}}+C
$$

for some matrix $C \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$, and $P_{2} E_{i_{0} j_{0}} P_{2}^{+}=E_{i_{0} j_{0}}$ (respectively,

$$
P_{2} B P_{2}^{+}=Z_{i_{1} j_{1}}^{\alpha_{2}}+C
$$

for some scalar $\alpha_{2} \in \mathbb{F}$ and matrix $C \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$, and $P_{2} Z_{i_{0} j_{0}}^{\alpha_{1}} P_{2}^{+}=Z_{i_{0} j_{0}}^{\alpha_{1}}$). If $C=0$, then we are done. Suppose that $C \neq 0$. Since A is of rank k, by repeating a similar argument on C, there exist an integer $0 \leqslant h \leqslant \frac{k}{2}$, scalars $\alpha_{1}, \ldots, \alpha_{h}, \beta_{2 h+1}, \ldots, \beta_{k} \in$ \mathbb{F}, and an invertible matrix $Q \in \mathcal{T}_{n}(\mathbb{F})$ such that

$$
\begin{equation*}
Q A Q^{+}=\sum_{i=1}^{h} Z_{s_{i} t_{i}}^{\alpha_{i}}+\sum_{i=2 h+1}^{k} \beta_{i} E_{p_{i}, n+1-p_{i}} \tag{2.5}
\end{equation*}
$$

where $\left\{s_{1}, \ldots, s_{h}, n+1-t_{1}, \ldots, n+1-t_{h}, p_{2 h+1}, \ldots, p_{k}\right\}$ and $\left\{t_{1}, \ldots, t_{h}, n+1-\right.$ $\left.s_{1}, \ldots, n+1-s_{h}, n+1-p_{2 h+1}, \ldots, n+1-p_{k}\right\}$ are two sets of k distinct positive integers such that $1 \leqslant s_{i} \leqslant t_{i} \leqslant n+1-s_{i}$ and $t_{i} \neq n+1-s_{i}$ for $i=1, \ldots, h$, and $1 \leqslant p_{i} \leqslant \frac{n+1}{2}$ for $i=2 h+1, \ldots, k$

We denote $D=Q A Q^{+}$. If \mathbb{F} is of characteristic not two, then, for each $1 \leqslant i \leqslant h$, we further perform the following elementary row and column operations on D :

$$
D_{\left(s_{i}\right)} \rightarrow D_{\left(s_{i}\right)}-\frac{\alpha_{i}}{2} D_{\left(n+1-t_{i}\right)} \quad \text { and } \quad D^{\left(n+1-s_{i}\right)} \rightarrow D^{\left(n+1-s_{i}\right)}-\frac{\alpha_{i}}{2} D^{\left(t_{i}\right)}
$$

to annihilate α_{i} in $Z_{s_{i} t_{i}}^{\alpha_{i}}$ as described in (2.5). Since $s_{i}<n+1-t_{i}$ for every $1 \leqslant i \leqslant h$, there exists an invertible $P \in \mathcal{T}_{n}(\mathbb{F})$ such that

$$
P A P^{+}=\sum_{i=1}^{h} Z_{s_{i} t_{i}}+\sum_{i=2 h+1}^{k} \beta_{i} E_{p_{i}, n+1-p_{i}} . \square
$$

As a corollary of Lemma 2.1 we notice that if $A \in \mathcal{S T}_{n}(\mathbb{F})$ is of rank bounded by two, then there exists an invertible matrix $P \in \mathcal{T}_{n}(\mathbb{F})$ such that either

$$
A=P\left(\alpha E_{s, n+1-s}+\beta E_{t, n+1-t}\right) P^{+}
$$

for some $\alpha, \beta \in \mathbb{F}$ and some integers $1 \leqslant s<t \leqslant \frac{n+1}{2}$, or

$$
A=P Z_{s t}^{\lambda} P^{+}
$$

for some integers $1 \leqslant s \leqslant t \leqslant n+1-s$ with $t \neq n+1-s$, and some scalar $\lambda \in \mathbb{F}$ with $\lambda \neq 0$ only if char $\mathbb{F}=2$.

Inspired by this observation, we define

$$
\begin{equation*}
u \oslash v:=u \cdot v^{+}+v \cdot u^{+} \quad \text { and } \quad u^{2}:=u \cdot u^{+} \tag{2.6}
\end{equation*}
$$

for every $u, v \in \mathcal{M}_{n, 1}(\mathbb{F})$, where $u \cdot v^{+}$denotes the usual matrix product of $u \in$ $\mathcal{M}_{n, 1}(\mathbb{F})$ and $v^{+} \in \mathbb{F}^{n}$. It can easily be verified that $(u, v) \mapsto u \oslash v$ is a symmetric bilinear map from $\mathcal{M}_{n, 1}(\mathbb{F}) \times \mathcal{M}_{n, 1}(\mathbb{F})$ into $\mathcal{M}_{n}(\mathbb{F})$. We also see that

$$
e_{i} \oslash e_{j}=E_{i, n+1-j}+E_{i, n+1-j}^{+} \quad \text { and } \quad e_{i}^{2}=E_{i, n+1-i}
$$

for all integers $1 \leqslant i, j \leqslant n$. In view of (2.1), we have

$$
Z_{i j}^{\alpha}=e_{i} \oslash e_{n+1-j}+\alpha e_{i}^{2}
$$

for every $\alpha \in \mathbb{F}$ and $1 \leqslant i, j \leqslant n$ with $j \neq n+1-i$. Note that $\left\{e_{i} \oslash e_{j} \mid 1 \leqslant i<j \leqslant n\right\} \cup$ $\left\{e_{i}^{2} \mid 1 \leqslant i \leqslant n\right\}$ and $\left\{e_{i} \oslash e_{j} \mid 1 \leqslant i<j \leqslant n+1-i\right\} \cup\left\{e_{i}^{2} \left\lvert\, 1 \leqslant i \leqslant \frac{n+1}{2}\right.\right\}$ are the standard bases of $\mathcal{S M}_{n}(\mathbb{F})$ and $\mathcal{S T}_{n}(\mathbb{F})$, respectively.

It follows immediately from (2.6) that the following elementary properties hold and their straightforward proofs are omitted. Let $u, v \in \mathcal{M}_{n, 1}(\mathbb{F}), a, b, c \in \mathbb{F}$ and $P \in \mathcal{M}_{n}(\mathbb{F})$. We have
$(\mathbf{P} 1)(u \oslash v)^{+}=u \oslash v$ and $\left(u^{2}\right)^{+}=u^{2}$,
(P2) $u^{2}=0 \Leftrightarrow u=0$,
(P3) $u \oslash v=0 \Leftrightarrow$ either $u=0$ or $v=0$ when $\operatorname{char} \mathbb{F} \neq 2$; and $u \oslash v=0 \Leftrightarrow u, v$ are linearly dependent when char $\mathbb{F}=2$,
(P4) $P(u \oslash v) P^{+}=(P u) \oslash(P v)$ and $P\left(u^{2}\right) P^{+}=(P u)^{2}$, and
(P5) $\operatorname{rank}\left(a(u \oslash v)+b u^{2}+c v^{2}\right) \leqslant 2$; and $\operatorname{rank}\left(a(u \oslash v)+b u^{2}+c v^{2}\right)=2 \Leftrightarrow u, v$ are linearly independent and $a^{2} \neq b c$.

Lemma 2.2. Let $u, v, x, y \in \mathcal{M}_{n, 1}(\mathbb{F})$ and $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{F}$.
(a) If $a_{1} u \oslash v+b_{1} u^{2}+c_{1} v^{2}=a_{2} x \oslash y+b_{2} x^{2}+c_{2} y^{2} \neq 0$ with $a_{i}^{2} \neq b_{i} c_{i}$ for $i=1,2$, then $\langle u, v\rangle=\langle x, y\rangle$.
(b) If \mathbb{F} has characteristic not two, then $u \oslash v=x \oslash y \neq 0$ if and only if there exists a nonzero $a \in \mathbb{F}$ such that either $u=a x$ and $v=a^{-1} y$, or $u=a y$ and $v=a^{-1} x$.

Proof. (a) By our hypothesis, together with (2.6), we obtain
$(2.7) u \cdot\left(a_{1} v^{+}+b_{1} u^{+}\right)+v \cdot\left(a_{1} u^{+}+c_{1} v^{+}\right)=x \cdot\left(a_{2} y^{+}+b_{2} x^{+}\right)+y \cdot\left(a_{2} x^{+}+c_{2} y^{+}\right)$.
Since $a_{i}^{2} \neq b_{i} c_{i}$ for $i=1,2$, we have u, v are linearly independent if and only if x, y are linearly independent. Thus, $\langle u, v\rangle=\langle x, y\rangle$ when u, v are linearly independent. If u, v are linearly dependent, assuming $u, x \neq 0$, then $v=\lambda_{1} u$ and $y=\lambda_{2} x$ for some scalars $\lambda_{1}, \lambda_{2} \in \mathbb{F}$. By (2.7), we obtain $\left(2 a_{1} \lambda_{1}+b_{1}+\lambda_{1}^{2} c_{1}\right) u^{2}=\left(2 a_{2} \lambda_{2}+b_{2}+\lambda_{2}^{2} c_{2}\right) x^{2} \neq 0$, and so $\langle u\rangle=\langle x\rangle$. We are done.
(b) The proof of sufficiency is straightforward. We consider necessity. First note that u, v, x, y are nonzero and $\langle u, v\rangle=\langle x, y\rangle$ by (a). If u, v are linearly dependent, then $\langle u\rangle=\langle v\rangle=\langle x\rangle=\langle y\rangle$. Let $u=a x$ and $v=b y$ for some nonzero scalars $a, b \in \mathbb{F}$. Then $x \oslash y=u \oslash v=a b(x \oslash y)$ implies that $b=a^{-1}$, as desired. Suppose now that u, v are linearly independent. Then x, y are linearly independent and either $\langle x\rangle \neq\langle v\rangle$ or $\langle x\rangle \neq\langle u\rangle$. We consider $\langle x\rangle \neq\langle v\rangle$ as the second case can be verified similarly. Then $x=a u+b v$ and $y=c u+d v$ for some $a, b, c, d \in \mathbb{F}$ with $a \neq 0$. Then $u \oslash v=x \oslash y=$ $(a d+b c) u \oslash v+2 a c u^{2}+2 b d v^{2}$ leads to $(a d+b c-1) u \oslash v+2 a c u^{2}+2 b d v^{2}=0$. Since $u \oslash v, u^{2}$ and v^{2} are linearly independent, we get $a d+b c=1$ and $a c=0=b d$. Since $a \neq 0$, we have $c=0$ implies that $a d=1$ and $b=0$. So $x=a u$ and $y=a^{-1} v$. $\mathbf{\square}$

For each integer $1 \leqslant i \leqslant n$, we denote

$$
\mathcal{U}_{i, n}:=\left\{\left(u_{1}, \ldots, u_{i}, 0, \ldots, 0\right)^{T} \in \mathcal{M}_{n, 1}(\mathbb{F}) \mid u_{1}, \ldots, u_{i} \in \mathbb{F}\right\}
$$

and $\mathcal{U}_{0, n}:=\{0\} \subset \mathcal{M}_{n, 1}(\mathbb{F})$. When n is clear from the context, $\mathcal{U}_{i, n}$ is abbreviated to \mathcal{U}_{i}.

Lemma 2.3. Let $u, v \in \mathcal{M}_{n, 1}(\mathbb{F})$. Then the following assertions hold.
(a) $u^{2} \in \mathcal{S T}_{n}(\mathbb{F}) \backslash\{0\}$ if and only if $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ for some $1 \leqslant p \leqslant \frac{n+1}{2}$.
(b) $u \oslash v \in \mathcal{S T}_{n}(\mathbb{F}) \backslash\{0\}$ if and only if either
(i) there exist integers $1 \leqslant p \leqslant n+1-q$ such that $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ and $v \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$, or
(ii) there exists an integer $\frac{n+1}{2}<q \leqslant n$ such that $u, v \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ in which $v=\alpha u+z$ for some $\alpha \in \mathbb{F} \backslash\{0\}$ and $z \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ with $1 \leqslant p \leqslant n+1-q$, and this case holds only if \mathbb{F} has characteristic two.

Proof. (a) This is an immediate consequence of (2.6).
(b) Sufficiency is clear. We consider necessity. Since $u \oslash v \neq 0$, we argue in two cases:

Case A: If $u \oslash v$ is of rank one, then, by Lemma [2.1, $u \oslash v=\alpha x^{2}$ for some $\alpha \in \mathbb{F} \backslash\{0\}$ and $x \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$. Then char $\mathbb{F} \neq 2$ and u, v are nonzero linearly dependent vectors such that $\langle u\rangle=\langle x\rangle=\langle v\rangle$. So $u, v \in \mathcal{U}_{p}$ and statement (i) holds true.

Case B: If $u \oslash v$ is of rank two, then, by Lemma 2.1, we consider two subcases:
Case $B-1: u \oslash v=\alpha x^{2}+\beta y^{2}$ for some $\alpha, \beta \in \mathbb{F} \backslash\{0\}$ and linearly independent vectors $x, y \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$. By Lemma [2.2(a), we have $\langle u, v\rangle=\langle x, y\rangle$. Then $u, v \in \mathcal{U}_{p}$ and statement (i) holds true.

Case B-2: $u \oslash v=x \oslash y+\lambda x^{2}$ for some $\lambda \in \mathbb{F}$ and linearly independent vectors $x \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}, y \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ with $1 \leqslant p \leqslant n+1-q \leqslant n+1-p$ and $p \neq q$. By Lemma 2.2(a), we have $\langle u, v\rangle=\langle x, y\rangle$. Then

$$
\begin{equation*}
u=a x+b y \quad \text { and } \quad v=c x+d y \tag{2.8}
\end{equation*}
$$

for some $a, b, c, d \in \mathbb{F}$. We thus have $u \oslash v=(2 a c) x^{2}+(2 b d) y^{2}+(a d+b c) x \oslash y$, and hence,

$$
\left(2 a c-\lambda^{2}\right) x^{2}+(2 b d) y^{2}+(a d+b c-1) x \oslash y=0
$$

Since $x^{2}, y^{2}, x \oslash y$ are linearly independent, we have $2 b d=0$. We first consider char $\mathbb{F} \neq 2$. Then $b d=0$ implies that either $b=0$ or $d=0$. It follows from (2.8) that either $u \in \mathcal{U}_{p}$ or $v \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$, and so statement (i) holds true. Next, if char $\mathbb{F}=2$, then $u \oslash v=(a d+b c) x \oslash y$. If $q \leqslant \frac{n+1}{2}, b=0$, or $d=0$, then, by (2.8), statement (i) holds. If $q>\frac{n+1}{2}$ and $b, d \neq 0$, then $1 \leqslant p<\frac{n+1}{2}$, and by (2.8), we have $u, v \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ and $y=b^{-1}(u-a x)$. So

$$
v=c x+d y=c x+b^{-1} d(u-a x)=\alpha u+z
$$

where $\alpha=b^{-1} d \in \mathbb{F}$ and $z=b^{-1}(a d+b c) x \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$. It is clear that $\alpha \neq 0$ and u, z are linearly independent vectors. Thus, statement (ii) holds.

Let $u \in \mathcal{M}_{n, 1}(\mathbb{F})$ and \mathcal{V} be a subset of $\mathcal{M}_{n, 1}(\mathbb{F})$. We denote

$$
u \oslash \mathcal{V}:=\{u \oslash v: v \in \mathcal{V}\}
$$

It is immediate that $u \oslash \mathcal{V}$ is a linear subspace of $\mathcal{S M}_{n}(\mathbb{F})$ when \mathcal{V} is a linear subspace.
Lemma 2.4. Let $x \in \mathcal{M}_{n, 1}(\mathbb{F})$ be nonzero. If $x \oslash \mathcal{M}_{n, 1}(\mathbb{F})$ contains two linearly independent elements $u \oslash v+\alpha u^{2}, u \oslash w+\beta u^{2}$ for some $u, v, w \in \mathcal{M}_{n, 1}(\mathbb{F})$ and $\alpha, \beta \in \mathbb{F}$, then $\langle u\rangle=\langle x\rangle$.

Proof. Denote $A=u \oslash v+\alpha u^{2}$ and $B=u \oslash w+\beta u^{2}$. Clearly, u, x are nonzero since A, B are linearly independent. It follows from Lemma 2.2(a) that $x \in\langle u, v\rangle$ and $x \in\langle u, w\rangle$. The result follows immediately when u, w are linearly dependent. Consider now u, w are linearly independent. Suppose that $v \notin\langle u, w\rangle$. Then $x \in$ $\langle u, v\rangle \cap\langle u, w\rangle=\langle u\rangle$ because u, v, w are linearly independent. We next consider $v \in\langle u, w\rangle$. Then $A=a(u \oslash w)+b u^{2}$ for some scalars $a, b \in \mathbb{F}$. Since A, B are linearly independent, it follows that $0 \neq A-a B \in x \oslash \mathcal{M}_{n, 1}(\mathbb{F})$, and thus, $u^{2} \in x \oslash \mathcal{M}_{n, 1}(\mathbb{F})$. Then $u^{2}=x \oslash y$ for some $y \in \mathcal{M}_{n, 1}(\mathbb{F})$. Since u^{2} is of rank one, we have x, y are linearly dependent. If char $\mathbb{F}=2$, then $x \oslash y=0$ by (P3), and so $u^{2}=0$, an impossibility. We thus have char $\mathbb{F} \neq 2$ and $u^{2}=\lambda x^{2}$ for some nonzero $\lambda \in \mathbb{F}$. Therefore, $\langle u\rangle=\langle x\rangle$, as required.

Let $u, v, w \in \mathcal{M}_{n, 1}(\mathbb{F})$. One sees immediately that u, v, w are linearly independent implies $u \oslash v, v \oslash w, w \oslash u$ are linearly independent. The converse is true if the characteristic of \mathbb{F} is two. It can also be checked that if u, v, w are linearly independent and \mathbb{F} has characteristic two, then each nonzero element in $\langle u \oslash v, v \oslash w, w \oslash u\rangle$ has rank two. By this observation, we next obtain a result that describes the uniqueness of $\langle u \oslash v, v \oslash w, w \oslash u\rangle$.

Lemma 2.5. Let \mathbb{F} be a field of characteristic two and $u, v, w, x, y, z \in \mathcal{M}_{n, 1}(\mathbb{F})$ be vectors such that u, v, w are linearly independent. Then $\langle u \oslash v, v \oslash w, w \oslash u\rangle=$ $\langle x \oslash y, y \oslash z, z \oslash x\rangle$ if and only if $\langle u, v, w\rangle=\langle x, y, z\rangle$.

Proof. We first claim that if $a, b \in \mathcal{M}_{n, 1}(\mathbb{F})$ are linearly independent vectors, then

$$
\begin{equation*}
a \oslash b \in\langle u \oslash v, v \oslash w, w \oslash u\rangle \quad \Rightarrow \quad a, b \in\langle u, v, w\rangle \tag{2.9}
\end{equation*}
$$

Note that $a \oslash b=\alpha u \oslash v+\beta v \oslash w+\gamma w \oslash u$ for some $\alpha, \beta, \gamma \in \mathbb{F}$ with $(\alpha, \beta, \gamma) \neq 0$. We consider only for the case $\alpha \neq 0$ as the other cases can be proved similarly. Then $a \oslash b=\left(u+\beta \alpha^{-1} w\right) \oslash(\alpha v+\gamma w)$ implies that $\langle a, b\rangle=\left\langle u+\beta \alpha^{-1} w, \alpha v+\gamma w\right\rangle$ by Lemma 2.2(a). We thus have $a, b \in\left\langle u+\beta \alpha^{-1} w, \alpha v+\gamma w\right\rangle \subseteq\langle u, v, w\rangle$, as claimed.

If $\langle x \oslash y, y \oslash z, z \oslash x\rangle=\langle u \oslash v, v \oslash w, w \oslash u\rangle$, then x, y, z are linearly independent. By (2.9), we have $x, y, z \in\langle u, v, w\rangle$, and so $\langle z, y, z\rangle=\langle u, v, w\rangle$. Conversely, if $\langle x, y, z\rangle=\langle u, v, w\rangle$, then $x \oslash y, y \oslash z, z \oslash x$ are linearly independent vectors contained
in $\langle u \oslash v, v \oslash w, w \oslash u\rangle . \square$
Lemma 2.6. Let \mathbb{F} be a field, m and n be integers such that $m \geqslant n \geqslant 2$, and $P \in \mathcal{M}_{m, n}(\mathbb{F})$ be a full rank matrix. Then $P A P^{+} \in \mathcal{S T}_{m}(\mathbb{F})$ for every $A \in \mathcal{S T}_{n}(\mathbb{F})$ if and only if $P e_{i} \in \mathcal{U}_{p_{i}, m} \backslash \mathcal{U}_{p_{i}-1, m}$ for $i=1, \ldots, n$ such that $1 \leqslant p_{i} \leqslant \frac{m+1}{2}$ for every $1 \leqslant i \leqslant \frac{n+1}{2}$, and $p_{i} \leqslant m+1-p_{j}$ for every $1 \leqslant i<j \leqslant n+1-i$. In particular, $P \in \mathcal{T}_{n}(\mathbb{F})$ when $m=n$.

Proof. Denote $u_{i}=P e_{i}$ for $i=1, \ldots, n$. So u_{1}, \ldots, u_{n} are linearly independent. Let $P e_{i} \in \mathcal{U}_{p_{i}, m} \backslash \mathcal{U}_{p_{i}-1, m}$ for $i=1, \ldots, n$. Recall that $\left\{e_{i}^{2} \left\lvert\, 1 \leqslant i \leqslant \frac{n+1}{2}\right.\right\} \cup\left\{e_{i} \oslash e_{j} \mid 1 \leqslant\right.$ $i<j \leqslant n+1-i\}$ is a basis of $\mathcal{S T}_{n}(\mathbb{F})$. For each $1 \leqslant i \leqslant \frac{n+1}{2}$, by (P4) and Lemma 2.3(a), we have $P\left(e_{i}^{2}\right) P^{+}=u_{i}^{2} \in \mathcal{S} \mathcal{T}_{m}(\mathbb{F})$ since $p_{i} \leqslant \frac{m+1}{2}$. Again, by (P4) and Lemma 2.3(b), $P\left(e_{i} \oslash e_{j}\right) P^{+}=u_{i} \oslash u_{j} \in \mathcal{S T}_{m}(\mathbb{F})$ for every $1 \leqslant i<j \leqslant n+1-i$. This proves sufficiency. For necessity, we argue in the following two cases.

Case I: $m>n$. In view of Lemma 2.3(a), $u_{i}^{2}=P\left(e_{i}^{2}\right) P^{+} \in \mathcal{S T}_{m}(\mathbb{F})$ for $1 \leqslant i \leqslant$ $\frac{n+1}{2}$ implies that $1 \leqslant p_{i} \leqslant \frac{m+1}{2}$ for every $1 \leqslant i \leqslant \frac{n+1}{2}$. On the other hand, by Lemma 2.3(b), $u_{i} \oslash u_{j}=P\left(e_{i} \oslash e_{j}\right) P^{+} \in \mathcal{S T}_{m}(\mathbb{F})$ and $p_{i} \leqslant \frac{m+1}{2}$ for $1 \leqslant i<j \leqslant n+1-i$ leads to $p_{i} \leqslant m+1-p_{j}$ for every $1 \leqslant i<j \leqslant n+1-i$. This establishes the desired conclusion.

Case II: $m=n$. We shall show that $p_{i}=i$ for $i=1, \ldots, n$ by induction on i. To begin with, note that the linear independence of u_{1}, \ldots, u_{n} implies that $p_{i_{0}}=n$ for some $1 \leqslant i_{0} \leqslant n$. By the fact that $u_{1}^{2}, u_{1} \oslash u_{i_{0}} \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$, we conclude that $p_{1}=1$. Suppose that the inductive hypothesis holds, i.e., $p_{j}=j$ for $j=1, \ldots, k$ for some $k<n$. We wish to claim that $p_{k+1}=k+1$. Since u_{1}, \ldots, u_{k+1} are linearly independent, together with our induction hypothesis, we have $k+1 \leqslant p_{k+1} \leqslant n$. Since u_{1}, \ldots, u_{n-k} are linearly independent, there exists an integer $1 \leqslant i_{1} \leqslant n-k$ such that $n-k \leqslant p_{i 1} \leqslant n$. Note that $u_{k+1} \oslash u_{1}, \ldots, u_{k+1} \oslash u_{n-k} \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$, and also $u_{k+1}^{2} \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ provided that $k+1 \leqslant n-k$. We consider two possibilities.

- Say $i_{1}=k+1$. Then $p_{i_{1}}=p_{k+1}$ and $k+1=i_{1} \leqslant n-k$. We thus have $u_{k+1}^{2} \in \mathcal{S T}_{n}(\mathbb{F})$. Hence, $k+1 \leqslant p_{k+1} \leqslant \frac{n+1}{2}$ and $n-k \leqslant p_{i_{1}} \leqslant \frac{n+1}{2}$. So, $k \geqslant \frac{n-1}{2}$ and thus $k=\frac{n-1}{2}$, since $k+1 \leqslant n-k$. Hence, $k+1=\frac{n+1}{2}$. Therefore, $p_{k+1}=k+1$.
- Say $i_{1} \neq k+1$. Since $i_{1} \leqslant n-k$, we have $u_{k+1} \oslash u_{i_{1}} \in \mathcal{S T}_{n}(\mathbb{F})$. Then $k+1 \leqslant \frac{n+1}{2}$ or $i_{i} \leqslant \frac{n+1}{2}$. To see this, if $k+1 \leqslant \frac{n+1}{2}$, then we are done. Suppose that $k+1>\frac{n+1}{2}$. Then $i_{1} \leqslant n-k$ implies $k+1 \leqslant n+1-i_{1}$, and so $n+1-i_{1}>\frac{n+1}{2}$. We thus have $i_{1}<\frac{n+1}{2}$, as desired. In consequence, $p_{k+1} \leqslant \frac{m+1}{2}$ or $p_{i_{1}} \leqslant \frac{m+1}{2}$. By Lemma 2.3(b), we have $p_{k+1} \leqslant n+1-p_{i_{1}}$. Then since $p_{i_{1}} \geqslant n-k$, we have $n-k \leqslant n+1-p_{k+1}$, and so $p_{k+1} \leqslant k+1$. Together with $p_{k+1} \geqslant k+1$, we conclude that $p_{k+1}=k+1$.

By induction, we conclude that $P e_{i} \in \mathcal{U}_{i, n} \backslash \mathcal{U}_{i-1, n}$ for $i=1, \ldots, n$. It follows that $P \in \mathcal{T}_{n}(\mathbb{F})$.
3. Linear spaces of bounded rank-two matrices. We recall that a linear subspace of a matrix space is a linear space of bounded rank-two matrices provided each matrix in it has rank bounded above by two. In [10], Lim classified linear spaces of bounded rank-two symmetric matrices over an infinite field of characteristic not two. Indeed, by a slight modification in the last paragraph of the proof of [10, Theorem 3, p. 49], the result holds for any field of characteristic not two. More recently, [5] Theorem 2.6] completes the work on characterization of spaces of bounded rank-two symmetric matrices over a field of characteristic two.

In this section, using the structural results of [10, Theorem 3] and [5, Theorem 2.6], we classify spaces of bounded rank-two per-symmetric triangular matrices over an arbitrary field. By treating the symmetricity on the minor diagonal, we can now rephrase [10, Theorem 3] and [5, Theorem 2.6] as follows.

Lemma 3.1. Let \mathbb{F} be a field and n be an integer such that $n \geqslant 2$. Let \mathcal{S} be a linear subspace of $\mathcal{S M}_{n}(\mathbb{F})$. Then \mathcal{S} is a linear space of bounded rank-two matrices if and only if one of the following holds:
(I) $\mathcal{S} \subseteq\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$ for some linearly independent vectors $u, v \in \mathcal{M}_{n, 1}(\mathbb{F})$.
(II) $\mathcal{S} \subseteq u \oslash \mathcal{M}_{n, 1}(\mathbb{F})$ for some nonzero $u \in \mathcal{M}_{n, 1}(\mathbb{F})$.
(III) $\mathcal{S}=u \oslash \mathcal{V}+\left\langle u^{2}\right\rangle$ for some nonzero $u \in \mathcal{M}_{n, 1}(\mathbb{F})$ and some linear subspace \mathcal{V} of $\mathcal{M}_{n, 1}(\mathbb{F}) ;$ and \mathcal{S} is of this form only if $\operatorname{char} \mathbb{F}=2$. Here, + denotes the sum of linear subspaces of $\mathcal{S M}_{n}(\mathbb{F})$.
(IV) $\mathcal{S}=\left\langle u \oslash v_{1}+\lambda_{1} u^{2}, \ldots, u \oslash v_{k}+\lambda_{k} u^{2}\right\rangle$ for some linearly independent vectors u, v_{1}, \ldots, v_{k} in $\mathcal{M}_{n, 1}(\mathbb{F})$ and some $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ with $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \neq 0 ;$ and \mathcal{S} is of this form only if char $\mathbb{F}=2$.
(V) $\mathcal{S}=\langle u \oslash v, u \oslash w, v \oslash w\rangle$ for some linearly independent vectors u, v, w in $\mathcal{M}_{n, 1}(\mathbb{F}) ;$ and \mathcal{S} is of this form only if char $\mathbb{F}=2$.
(VI) $\mathcal{S} \subseteq\left\langle u^{2}+v^{2}, u^{2}+w^{2},(u+v) \oslash(u+w)\right\rangle$ for some linearly independent vectors u, v, w in $\mathcal{M}_{n, 1}(\mathbb{F}) ;$ and \mathcal{S} is of this form only if $|\mathbb{F}|=2$.

Let \mathbb{F} be a field of characteristic not two. As a side remark, we notice from (2.6) that $x \oslash y+\alpha x^{2}=x \oslash\left(y+\frac{\alpha}{2} x\right)$ for every $x, y \in \mathcal{M}_{n, 1}(\mathbb{F})$ and $\alpha \in \mathbb{F}$, and thus, any linear space of bounded rank-two of Form (III) or (IV) in Lemma 3.1 can be simplified to Form (I) or (II) in Lemma 3.1. On the other hand, for any linearly independent vectors $u, v, w \in \mathcal{M}_{n, 1}(\mathbb{F}),\langle u \oslash v, u \oslash w, v \oslash w\rangle$ contains rank three matrices. By a direct verification, $\operatorname{rank}(u \oslash v+u \oslash w+v \oslash w)=3$ since

$$
\operatorname{det}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=-2 \neq 0
$$

In consequence, Form (V) in Lemma 3.1 is not a linear space of bounded rank-two when char $\mathbb{F} \neq 2$.

Lemma 3.2. Let \mathbb{F} be a field of characteristic two. Let $\alpha \in \mathbb{F}$ be nonzero and $u, v \in \mathcal{M}_{n, 1}(\mathbb{F})$ be linearly independent vectors. Then the following assertions hold.
(a) $u \oslash v+\alpha u^{2} \in \mathcal{S T}_{n}(\mathbb{F})$ if and only if $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ and $v \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$.
(b) $u^{2}+v^{2} \in \mathcal{S T}_{n}(\mathbb{F})$ if and only if $u+v \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ and $u, v \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$.

Proof. (a) Since char $\mathbb{F}=2$, the minor diagonal of $u \oslash v$ is zero. Then $u \oslash v+\alpha u^{2} \in$ $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ with $\alpha \neq 0$ if and only if $u^{2}, u \oslash v \in \mathcal{S T}_{n}(\mathbb{F})$ if and only if $u \in \mathcal{U}_{p}$ for some integer $1 \leqslant p \leqslant \frac{n+1}{2}$, and $v \in \mathcal{U}_{q}$ for some integer $1 \leqslant q \leqslant n+1-p$ by Lemma 2.3.
(b) By noting $u^{2}+v^{2}=(u+v) \oslash v+(u+v)^{2}$ and $(u+v) \oslash v=(u+v) \oslash u$, the conclusion follows immediately from part (a).

We are now in a position to provide a characterization of spaces of bounded rank-two per-symmetric triangular matrices over an arbitrary field.

Theorem 3.3. Let \mathbb{F} be a field and n be an integer such that $n \geqslant 2$. Let \mathcal{S} be a linear subspace of $\mathcal{S}_{n}(\mathbb{F})$. Then \mathcal{S} is a linear space of bounded rank-two matrices if and only if one of the following holds:
(a) $\mathcal{S} \subseteq\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$ for some linearly independent vectors $u, v \in \mathcal{U}_{p}$ with $1 \leqslant$ $p \leqslant \frac{n+1}{2}$.
(b) $\mathcal{S}=u \oslash \mathcal{V}$ for some nonzero $u \in \mathcal{U}_{p}$ and some linear subspace \mathcal{V} of \mathcal{U}_{q} with $1 \leqslant p \leqslant n+1-q \leqslant n$.
(c) $\mathcal{S}=u \oslash \mathcal{V}+\left\langle u^{2}\right\rangle$ for some nonzero $u \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$ and some linear subspace \mathcal{V} of \mathcal{U}_{q} with $1 \leqslant q \leqslant n+1-p \leqslant n$; and \mathcal{S} is of this form only if $\operatorname{char} \mathbb{F}=2$.
(d) $\mathcal{S}=\left\langle u \oslash v_{1}+\lambda_{1} u^{2}, \ldots, u \oslash v_{k}+\lambda_{k} u^{2}\right\rangle$ for some scalars $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ with $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \neq 0$, and some linearly independent vectors u, v_{1}, \ldots, v_{k} such that $u \in \mathcal{U}_{p}, v_{1}, \ldots, v_{k} \in \mathcal{U}_{q}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p \leqslant n$; and \mathcal{S} is of this form only if $\operatorname{char} \mathbb{F}=2$.
(e) $\mathcal{S}=\langle u \oslash v, u \oslash w, v \oslash w\rangle$ for some linearly independent vectors $u \in \mathcal{U}_{p}, v \in \mathcal{U}_{q}$ and $w \in \mathcal{U}_{r}$ such that $1 \leqslant p, q \leqslant n+1-r \leqslant n$ and $p \leqslant n+1-q$; and \mathcal{S} is of this form only if char $\mathbb{F}=2$.
(f) There exist linearly independent vectors $u, v, w \in \mathcal{M}_{n, 1}(\mathbb{F})$ such that

- $\mathcal{S}=\left\langle u^{2}+v^{2}, u^{2}+w^{2},(u+v) \oslash(u+w)\right\rangle$, or $\mathcal{S}=\left\langle u^{2}+v^{2}, u^{2}+w^{2}\right\rangle$, or $\mathcal{S}=\left\langle x^{2}+y^{2},(x+z) \oslash y+(x+z)^{2}\right\rangle$ with $\{x, y, z\}=\{u, v, w\}$, where $u+v, u+w \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$, or
- $\mathcal{S}=\left\langle x^{2}+y^{2},(u+v) \oslash(u+w)\right\rangle$ for a pair of distinct vectors $x, y \in$ $\{u, v, w\}$ with $x+y \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$;
and \mathcal{S} is of this form only if $|\mathbb{F}|=2$.
Proof. If \mathcal{S} satisfies one of the statements (a) - (f) in Theorem 3.3, then \mathcal{S} is a linear space of bounded rank-two matrices of $\mathcal{S M}_{n}(\mathbb{F})$. Moreover, by Lemmas 2.3 and 3.2, we have $\mathcal{S} \subseteq \mathcal{S T}_{n}(\mathbb{F})$. This proves sufficiency.

We now consider necessity. Suppose that $\mathcal{S} \neq\{0\}$. Since \mathcal{S} is a linear space of bounded rank-two matrices of $\mathcal{S M}_{n}(\mathbb{F})$, we see that \mathcal{S} satisfies one of the statements (I) - (VI) as described in Lemma 3.1. We use the notation that have been employed in Lemma 3.1 and divide our argument in the following cases.

Case I : Suppose that \mathcal{S} satisfies (I) in Lemma 3.1. Let $u \in \mathcal{U}_{s} \backslash \mathcal{U}_{s-1}$ and $v \in$ $\mathcal{U}_{t} \backslash \mathcal{U}_{t-1}$ for some integers $1 \leqslant s, t \leqslant n$. We divide our argument into the following three subcases:

- Case I- i : If $1 \leqslant s, t \leqslant \frac{n+1}{2}$, then $u, v \in \mathcal{U}_{p}$ with $p=\max \{s, t\}$. So \mathcal{S} satisfies statement (a).
- Case I-ii: If $1 \leqslant s \leqslant n+1-t$ and $\frac{n+1}{2}<t \leqslant n$, then $u^{2}, u \oslash v \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ and $v^{2} \notin \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$. If \mathcal{S} has no rank two matrices, then $\mathcal{S}=\left\langle u^{2}\right\rangle$ and it satisfies statement (a). Suppose that \mathcal{S} has a rank two matrix. Then $\mathcal{S} \subseteq\left\langle u^{2}, u \oslash v\right\rangle$ and it is of one of the following forms:
- $\mathcal{S}=\langle u \oslash v\rangle=u \oslash\langle v\rangle$ and it satisfies statement (b);
- $\mathcal{S}=\left\langle u \oslash v+a u^{2}\right\rangle$ with $a \in \mathbb{F} \backslash\{0\}$. When char $\mathbb{F}=2, \mathcal{S}$ satisfies statement (d); and when char $\mathbb{F} \neq 2$, we get $\mathcal{S}=u \oslash\left\langle v+\frac{a}{2} u\right\rangle$ and it satisfies statement (b);
- $\mathcal{S}=\left\langle u^{2}, u \oslash v\right\rangle$. When char $\mathbb{F}=2$, we obtain $\mathcal{S}=u \oslash\langle v\rangle+\left\langle u^{2}\right\rangle$ and it satisfies statement (c); when char $\mathbb{F} \neq 2$, we see that $\mathcal{S}=u \oslash\left\langle v, 2^{-1} u\right\rangle$ and it satisfies statement (b).
- Case I-iii: Suppose that $\frac{n+1}{2}<s, t \leqslant n$. If \mathcal{S} contains no rank two matrices, then $\operatorname{dim} \mathcal{S}=1$. By Lemma [2.1, we have $\mathcal{S}=\left\langle x^{2}\right\rangle$ for some nonzero vector $x \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$. Thus, \mathcal{S} satisfies statement (a). Suppose now that \mathcal{S} has a rank two matrix, say A. Then $A=a u^{2}+b v^{2}+c u \oslash v$ for some $a, b, c \in \mathbb{F}$ with $c^{2}-a b \neq 0$ by (P5). On the other hand, by Lemma 2.1, there exist linearly independent vectors x, y such that either $A=\alpha x^{2}+\beta y^{2}$ for some $\alpha, \beta \in \mathbb{F} \backslash\{0\}$ and $x, y \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$; or $A=x \oslash y+\alpha x^{2}$ for some $\alpha \in \mathbb{F} \backslash\{0\}$ and some $x \in \mathcal{U}_{p}$ and $y \in \mathcal{U}_{q}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$. Then

$$
a u^{2}+b v^{2}+c u \oslash v=\alpha x^{2}+\beta y^{2} \quad \text { or } \quad a u^{2}+b v^{2}+c u \oslash v=x \oslash y+\alpha x^{2} .
$$

In both cases, $\langle x, y\rangle=\langle u, v\rangle$ by Lemma 2.2(a). Thus, $\left\langle x^{2}, y^{2}, x \oslash y\right\rangle=$
$\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$, and so $\mathcal{S} \subseteq\left\langle x^{2}, y^{2}, x \oslash y\right\rangle$. The result follows by a similar argument as in Cases I-i and I-ii.

Case II: If \mathcal{S} satisfies (II) in Lemma 3.1, then for each nonzero $A \in \mathcal{S}$, there exists a nonzero $v_{A} \in \mathcal{M}_{n, 1}(\mathbb{F})$ such that $A=u \oslash v_{A}$. Since $A \in \mathcal{S T}_{n}(\mathbb{F})$, it follows from Lemma 2.3 that
(i) $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ and $v_{A} \in \mathcal{U}_{r_{A}} \backslash \mathcal{U}_{r_{A}-1}$ for some integers $1 \leqslant p \leqslant n+1-r_{A}$, or
(ii) $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ and $v_{A}=\alpha_{A} u+z_{A} \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ for some $\alpha_{A} \in \mathbb{F} \backslash\{0\}$ and $z_{A} \in \mathcal{U}_{r_{A}} \backslash \mathcal{U}_{r_{A}-1}$, where $1 \leqslant r_{A} \leqslant n+1-p<\frac{n+1}{2}$ and u, z_{A} are linearly independent, and in addition, this case holds only if $\operatorname{char} \mathbb{F}=2$.

Notice that if (ii) holds, then char $\mathbb{F}=2$ and A can be rewritten as

$$
A=u \oslash\left(\alpha_{A} u+z_{A}\right)=u \oslash z_{A} .
$$

Consequently, in view of (i) and (ii), for each $A \in \mathcal{S}$, there exists $v_{A} \in \mathcal{U}_{r_{A}} \backslash \mathcal{U}_{r_{A}-1}$ with $1 \leqslant r_{A} \leqslant n+1-p$ such that $A=u \oslash v_{A}$. Accordingly, there exists a linear subspace \mathcal{V} of \mathcal{U}_{q} with $1 \leqslant q \leqslant n+1-p$ such that $\mathcal{S}=u \oslash \mathcal{V}$. Thus, \mathcal{S} satisfies (b).

Case III: If \mathcal{S} satisfies (III) in Lemma 3.1, then $u^{2}, u \oslash v \in \mathcal{S T}_{n}(\mathbb{F})$ for every $v \in \mathcal{V}$. It follows from Lemma 2.3 that $u \in \mathcal{U}_{p}$ for some $1 \leqslant p \leqslant \frac{n+1}{2}$, and for each $v \in \mathcal{V}$, there exists an integer $1 \leqslant r_{v} \leqslant n+1-p$ such that $v \in \mathcal{U}_{r_{v}}$. Consequently, \mathcal{V} is a subspace of \mathcal{U}_{q} for some integer $1 \leqslant q \leqslant n+1-p \leqslant n$. Hence, \mathcal{S} satisfies (c).

Case IV: If \mathcal{S} satisfies (IV) in Lemma 3.1] then $u \oslash v_{i}+\lambda_{i} u^{2} \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ for every $i=1, \ldots, k$. Since u, v_{1}, \ldots, v_{k} are linearly independent and $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \neq 0$, the result follows directly from Lemma 3.2(a) and \mathcal{S} satisfies (d).

Case V : If \mathcal{S} satisfies (V) of Lemma 3.1, then $u \oslash v, u \oslash w, v \oslash w \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$. In view of Lemma 2.3, each pair of elements of $\{u, v, w\}$ satisfies either (b)(i) or (b)(ii) of Lemma 2.3. If all pairs of elements of $\{u, v, w\}$ satisfy (b)(i) of Lemma 2.3, then \mathcal{S} is readily seen to satisfy (e). Suppose not. We shall show that $\{u, v, w\}$ can be replaced by some other $\{x, y, z\}$ such that $\mathcal{S}=\langle x \oslash y, x \oslash z, y \oslash z\rangle$ satisfies (e). With no loss of generality, say $\{u, v\}$ satisfies (b)(ii) of Lemma 2.3. Then $u \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ and $v=\alpha u+y \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$, where $y \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$, for some $\alpha \in \mathbb{F} \backslash\{0\}$ and integers p, q such that $1 \leqslant p \leqslant n+1-q<\frac{n+1}{2}$. Note that $\langle u, y, w\rangle=\langle u, v, w\rangle$, from which, together with Lemma 2.5, follows that $\mathcal{S}=\langle u \oslash y, u \oslash w, y \oslash w\rangle$. If $\{u, w\}$ satisfies (b)(i) of Lemma 2.3, we are done by setting $x=u$ and $z=w$. Otherwise, say $\{u, w\}$ satisfies (b)(ii) of Lemma 2.3. Then $u \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ and $w=\beta u+z \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$, where $z \in \mathcal{U}_{r} \backslash \mathcal{U}_{r-1}$, for some $\beta \in \mathbb{F} \backslash\{0\}$ and an integer r such that $1 \leqslant r \leqslant n+1-q<\frac{n+1}{2}$. As before, we get that $\langle u, y, z\rangle=\langle u, y, w\rangle$, from which follows that $\mathcal{S}=\langle u \oslash y, u \oslash z, y \oslash z\rangle$ satisfies (e). Setting $u=x$, we are done.

Case VI: Suppose \mathcal{S} satisfies (VI) in Lemma 3.1. Note that

$$
\begin{aligned}
\left\langle u^{2}+v^{2},\right. & \left.u^{2}+w^{2},(u+v) \oslash(u+w)\right\rangle \\
= & \left\{0, u^{2}+v^{2}, u^{2}+w^{2}, v^{2}+w^{2},(u+v) \oslash(u+w),(u+v) \oslash w+(u+v)^{2},\right. \\
& \left.(u+w) \oslash v+(u+w)^{2},(v+w) \oslash u+(v+w)^{2}\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
u^{2}+v^{2}+(u+v) \oslash(u+w) & =(u+v) \oslash w+(u+v)^{2} \\
u^{2}+w^{2}+(u+v) \oslash(u+w) & =(u+w) \oslash v+(u+w)^{2} \\
v^{2}+w^{2}+(u+v) \oslash(u+w) & =(v+w) \oslash u+(v+w)^{2}
\end{aligned}
$$

and each nonzero matrix in \mathcal{S} is of rank two. We argue in the following three cases:

- If $\operatorname{dim} \mathcal{S}=1$, then $\mathcal{S}=\langle A\rangle$ for some nonzero per-symmetric upper triangular matrix $A \in\left\langle u^{2}+v^{2}, u^{2}+w^{2},(u+v) \oslash(u+w)\right\rangle$. By Lemma 2.1 there exist linearly independent vectors x, y such that either (i) $A=\alpha x^{2}+\beta y^{2}$ with $x, y \in$ \mathcal{U}_{p} for some integer $1 \leqslant p \leqslant \frac{n+1}{2}$ and $\alpha, \beta \in \mathbb{F} \backslash\{0\}$; or (ii) $A=x \oslash y+\gamma x^{2}$ with $x \in \mathcal{U}_{p}$ and $y \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$, and $\gamma \in \mathbb{F}$. Then \mathcal{S} satisfies (a) when (i) holds, \mathcal{S} satisfies (b) when (ii) holds with $\gamma=0$, or \mathcal{S} satisfies (d) when (ii) holds with $\gamma \neq 0$.
- If $\operatorname{dim} \mathcal{S}=3$, then $\mathcal{S}=\left\langle u^{2}+v^{2}, u^{2}+w^{2},(u+v) \oslash(u+w)\right\rangle$. Since $u^{2}+v^{2}$ and $u^{2}+w^{2}$ are in $\mathcal{S T}_{n}(\mathbb{F})$, Lemma 3.2(b) implies that $u+v \in \mathcal{U}_{p_{1}} \backslash \mathcal{U}_{p_{1}-1}$, $u+w \in \mathcal{U}_{p_{2}} \backslash \mathcal{U}_{p_{2}-1}, u, v \in \mathcal{U}_{q_{1}} \backslash \mathcal{U}_{q_{1}-1}$, and $u, w \in \mathcal{U}_{q_{2}} \backslash \mathcal{U}_{q_{2}-1}$ for some integers $p_{1}, p_{2}, q_{1}, q_{2}$ such that $1 \leqslant p_{i} \leqslant \frac{n+1}{2}$ and $1 \leqslant q_{i} \leqslant n+1-p_{i}$ for $i=1,2$. Since $u \in\left(\mathcal{U}_{q_{1}} \backslash \mathcal{U}_{q_{1}-1}\right) \cap\left(\mathcal{U}_{q_{2}} \backslash \mathcal{U}_{q_{2}-1}\right)$, it is necessary that $q_{1}=q_{2}=q$ for a common q. Setting $p=\max \left\{p_{1}, p_{2}\right\}$, we note that \mathcal{S} satisfies (f).
- If $\operatorname{dim} \mathcal{S}=2$, then one of the following holds:
- $\mathcal{S}=\left\{0, u^{2}+v^{2}, u^{2}+w^{2}, v^{2}+w^{2}\right\}=\left\langle u^{2}+v^{2}, u^{2}+w^{2}\right\rangle$, where $u+$ $v, u+w \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$;
- $\mathcal{S}=\left\{0, u^{2}+v^{2},(u+w) \oslash v+(u+w)^{2},(v+w) \oslash u+(v+w)^{2}\right\}=$ $\left\langle u^{2}+v^{2},(u+w) \oslash v+(u+w)^{2}\right\rangle$, where $u+v, u+w \in \mathcal{U}_{p}$ and $u, v, w \in$ \mathcal{U}_{q} for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$;
- $\mathcal{S}=\left\{0, u^{2}+w^{2},(v+w) \oslash u+(v+w)^{2},(u+v) \oslash w+(u+v)^{2}\right\}=$ $\left\langle u^{2}+w^{2},(u+v) \oslash w+(u+v)^{2}\right\rangle$, where $u+v, u+w \in \mathcal{U}_{p}$ and $u, v, w \in$ \mathcal{U}_{q} for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$;
- $\mathcal{S}=\left\{0, v^{2}+w^{2},(u+v) \oslash w+(u+v)^{2},(u+w) \oslash v+(u+w)^{2}\right\}=$ $\left\langle v^{2}+w^{2},(v+u) \oslash w+(v+u)^{2}\right\rangle$, where $v+w, v+u \in \mathcal{U}_{p}$ and $u, v, w \in$ \mathcal{U}_{q} for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$;
- $\mathcal{S}=\left\{0, u^{2}+v^{2},(u+v) \oslash(u+w),(u+v) \oslash w+(u+v)^{2}\right\}=\left\langle u^{2}+v^{2}\right.$, $(u+v) \oslash(u+w)\rangle$, where $u+v \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p ;$
$1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$;
- $\mathcal{S}=\left\{0, v^{2}+w^{2},(u+v) \oslash(u+w),(v+w) \oslash u+(v+w)^{2}\right\}=\left\langle v^{2}+w^{2}\right.$,
$(u+v) \oslash(u+w)\rangle$, where $v+w \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers
$1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$.

Hence, \mathcal{S} satisfies (f).
We now continue our investigation of 2 -spaces of $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$. We first study some examples of 2 -spaces of $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$.

Example 3.4. Let \mathbb{F} be a field and n be an integer such that $n \geqslant 2$. Recall that $\left\{e_{1}, \ldots, e_{n}\right\}$ denotes the standard basis of $\mathcal{M}_{n, 1}(\mathbb{F})$.
(a) Let $n \geqslant 2$. Then $\left\langle e_{1} \oslash e_{2}+\alpha e_{1}^{2}\right\rangle$ is a 1-dimensional 2-space of $\mathcal{S T}_{n}(\mathbb{F})$ for any $\alpha \in \mathbb{F}$.
(b) Let $n \geqslant 3$ and $\alpha, \beta, \gamma \in \mathbb{F}$ be such that $\gamma^{2} \neq \alpha \beta$. Then $\left\langle\alpha e_{1}^{2}+\beta e_{2}^{2}+\gamma e_{1} \oslash e_{2}\right\rangle$ is a 1 -dimensional 2 -space of $\mathcal{S T}_{n}(\mathbb{F})$.
(c) Let $n \geqslant 3$ and $\mathbb{F}=\mathbb{R}$. Then $\left\langle e_{1} \oslash e_{2}, e_{1} \oslash e_{2}+e_{1}^{2}-e_{2}^{2}\right\rangle$ is a 2-dimensional 2 -space of $\mathcal{S} T_{n}(\mathbb{R})$. Let $A=a\left(e_{1} \oslash e_{2}\right)+b\left(e_{1} \oslash e_{2}+e_{1}^{2}-e_{2}^{2}\right) \in\left\langle e_{1} \oslash e_{2}\right.$, $\left.e_{1} \oslash e_{2}+e_{1}^{2}-e_{2}^{2}\right\rangle$ for some $a, b \in \mathbb{R}$ with $(a, b) \neq 0$. We see that A is of rank two since

$$
\operatorname{det}\left[\begin{array}{cc}
a+b & b \\
-b & a+b
\end{array}\right]=(a+b)^{2}+b^{2} \neq 0
$$

(d) Let \mathbb{F} be a field with four elements. Then char $\mathbb{F}=2$ and the multiplicative group of \mathbb{F} is cyclic. We set $\mathbb{F}=\left\{0,1, \alpha, \alpha^{2}\right\}$, where α is a primitive element of \mathbb{F}. We see that $\left\langle e_{1} \oslash e_{2}+e_{1}^{2}, e_{1} \oslash e_{2}+\alpha e_{2}^{2}\right\rangle$ is a 2 -dimensional 2-space of $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$. To proof this, let $A=\lambda_{1}\left(e_{1} \oslash e_{2}+e_{1}^{2}\right)+\lambda_{2}\left(e_{1} \oslash e_{2}+\alpha e_{2}^{2}\right) \in$ $\left\langle e_{1} \oslash e_{2}+e_{1}^{2}, e_{1} \oslash e_{2}+\alpha e_{2}^{2}\right\rangle$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{F}$ with $\left(\lambda_{1}, \lambda_{2}\right) \neq 0$. By a direct verification, we have

$$
\operatorname{det}\left[\begin{array}{cc}
\lambda_{1}+\lambda_{2} & \lambda_{1} \\
\lambda_{2} \alpha & \lambda_{1}+\lambda_{2}
\end{array}\right]=\lambda_{1}^{2}+\lambda_{2}^{2}+\alpha \lambda_{1} \lambda_{2} \neq 0
$$

Hence, A is of rank two.
Example 3.5. Let \mathbb{F} be a field of characteristic two. Let $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}, v \in$ $\mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ and $w \in \mathcal{U}_{r} \backslash \mathcal{U}_{r-1}$ be linearly independent vectors such that $1 \leqslant p, q \leqslant$ $n+1-r$ and $p \leqslant n+1-q$. Then $u \oslash v, u \oslash w, v \oslash w$ are linearly independent elements in $\mathcal{S}_{n}(\mathbb{F})$ and each nonzero element in $\langle u \oslash v, u \oslash w, v \oslash w\rangle$ has rank two. Thus, $\langle u \oslash v, u \oslash w, v \oslash w\rangle$ is a 3 -dimensional 2 -space of $\mathcal{S T}_{n}(\mathbb{F})$. Note also that each element in $\langle u \oslash v, u \oslash w, v \oslash w\rangle$ has a zero minor diagonal.

Example 3.6. Let \mathbb{F} be a field of characteristic two. Let $u \in \mathcal{U}_{p} \backslash \mathcal{U}_{p-1}$ and
$v_{1}, \ldots, v_{k} \in \mathcal{U}_{q} \backslash \mathcal{U}_{q-1}$ be linearly independent vectors such that $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$, and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ be such that $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \neq 0$. It is easily checked that $u \oslash v_{1}+\lambda_{1} u^{2}, \ldots, u \oslash v_{k}+\lambda_{k} u^{2}$ are linearly independent. Let $A \in$ $\left\langle u \oslash v_{1}+\lambda_{1} u^{2}, \ldots, u \oslash v_{k}+\lambda_{k} u^{2}\right\rangle$ be nonzero. Then there exist $\beta_{1}, \ldots, \beta_{k} \in \mathbb{F}$ not all of which are zero such that

$$
\begin{aligned}
A & =\beta_{1}\left(u \oslash v_{1}+\lambda_{1} u^{2}\right)+\cdots+\beta_{k}\left(u \oslash v_{k}+\lambda_{k} u^{2}\right) \\
& =u \oslash\left(\beta_{1} v_{1}+\cdots+\beta_{k} v_{k}\right)+\left(\beta_{1} \lambda_{1}+\cdots+\beta_{k} \lambda_{k}\right) u^{2} .
\end{aligned}
$$

Since u, v_{1}, \ldots, v_{k} are linearly independent and $\left(\beta_{1}, \ldots, \beta_{k}\right) \neq 0$, we get $\beta_{1} v_{1}+\cdots+$ $\beta_{k} v_{k}, u$ are linearly independent, and so $\operatorname{rank} A=2$. Then $\left\langle u \oslash v_{1}+\lambda_{1} u^{2}, \ldots\right.$, $\left.u \oslash v_{k}+\lambda_{k} u^{2}\right\rangle$ is a k-dimensional 2 -space of $\mathcal{S} \mathcal{T}_{n}(\mathbb{F})$.

As an immediate consequence of Theorem 3.3, we obtain a complete description of 2 -spaces of $\mathcal{S T}_{n}(\mathbb{F})$ over an arbitrary field \mathbb{F}.

Corollary 3.7. Let \mathbb{F} be a field and n be an integer such that $n \geqslant 2$. Then \mathcal{S} is a 2-space of $\mathcal{S T}_{n}(\mathbb{F})$ if and only if one of the following holds:
(a) $\mathcal{S}=\left\langle a_{i} u \oslash v+b_{i} u^{2}+c_{i} v^{2} \mid i=1,2\right\rangle$ for some linearly independent vectors $u, v \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$, and some fixed scalars $a_{i}, b_{i}, c_{i} \in \mathbb{F}$ for $i=1,2$ such that

$$
\left(\lambda_{1} a_{1}+\lambda_{2} a_{2}\right)^{2} \neq\left(\lambda_{1} b_{1}+\lambda_{2} b_{2}\right)\left(\lambda_{1} c_{1}+\lambda_{2} c_{2}\right)
$$

for every $\lambda_{1}, \lambda_{2} \in \mathbb{F}$ with $\left(\lambda_{1}, \lambda_{2}\right) \neq 0$.
(b) $\mathcal{S}=u \oslash \mathcal{V}$ for some nonzero vector $u \in \mathcal{U}_{p}$ and some subspace \mathcal{V} of \mathcal{U}_{q} with $1 \leqslant p \leqslant n+1-q \leqslant n$, and $\mathcal{V} \cap\langle u\rangle=\{0\}$ when $\operatorname{char} \mathbb{F} \neq 2$.
(c) $\mathcal{S}=\left\langle u \oslash v_{1}+\lambda_{1} u^{2}, \ldots, u \oslash v_{k}+\lambda_{k} u^{2}\right\rangle$ for some scalars $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$ with $\left(\lambda_{1}, \ldots, \lambda_{k}\right) \neq 0$, and some linearly independent vectors u, v_{1}, \ldots, v_{k} such that $u \in \mathcal{U}_{p}$ with $1 \leqslant p \leqslant \frac{n+1}{2}$ and $v_{1}, \ldots, v_{k} \in \mathcal{U}_{q}$ with $1 \leqslant q \leqslant n+1-p$; and \mathcal{S} is of this form only if char $\mathbb{F}=2$.
(d) $\mathcal{S}=\langle u \oslash v, u \oslash w, v \oslash w\rangle$ for some linearly independent vectors $u \in \mathcal{U}_{p}, v \in \mathcal{U}_{q}$ and $w \in \mathcal{U}_{r}$ such that $1 \leqslant p, q \leqslant n+1-r \leqslant n$ and $p \leqslant n+1-q$; and \mathcal{S} is of this form only if char $\mathbb{F}=2$.
(e) There exist linearly independent vectors $u, v, w \in \mathcal{M}_{n, 1}(\mathbb{F})$ such that

- $\mathcal{S}=\left\langle u^{2}+v^{2}, u^{2}+w^{2},(u+v) \oslash(u+w)\right\rangle$, or $\mathcal{S}=\left\langle u^{2}+v^{2}, u^{2}+w^{2}\right\rangle$, or $\mathcal{S}=\left\langle x^{2}+y^{2},(x+z) \oslash y+(x+z)^{2}\right\rangle$ with $\{x, y, z\}=\{u, v, w\}$, where $u+v, u+w \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$; or
- $\mathcal{S}=\left\langle x^{2}+y^{2},(u+v) \oslash(u+w)\right\rangle$ for a pair of distinct vectors $x, y \in$ $\{u, v, w\}$ with $x+y \in \mathcal{U}_{p}$ and $u, v, w \in \mathcal{U}_{q}$ for some integers $1 \leqslant p \leqslant \frac{n+1}{2}$ and $1 \leqslant q \leqslant n+1-p$,
and \mathcal{S} is of this form only if $|\mathbb{F}|=2$.

4. Bounded rank-two linear preservers. In this section, we characterize bounded rank-two linear preservers $\psi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{S M}_{m}(\mathbb{F})$, with $m, n \geqslant 3$ and char $\mathbb{F} \neq 2$. We then obtain a classification of bounded rank-two linear preservers between per-symmetric triangular matrix spaces over a field of characteristic not two.

We start with the following lemma whose proof is straightforward and omitted.
Lemma 4.1. Let \mathbb{F} be a field and $u, v, x, y, z \in \mathcal{M}_{n, 1}(\mathbb{F})$. Then the following statements hold.
(a) If x, y are linearly independent, then the following are equivalent.
(i) $a x^{2}+b y^{2}+c x \oslash y \in\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$ for some $a, b, c \in \mathbb{F}$ with $a b \neq c^{2}$.
(ii) $\langle x, y\rangle=\langle u, v\rangle$.
(iii) $\left\langle x^{2}, y^{2}, x \oslash y\right\rangle=\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$.
(b) If y, z are linearly independent and $x \oslash y, x \oslash z \in\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$, then $x \in\langle y, z\rangle$.

Lemma 4.2. Let \mathbb{F} be a field of characteristic not two and n be an integer such that $n \geqslant 2$. Let $A=u \oslash v$ and $B=w \oslash z$ be nonzero matrices for some $u, v, w, z \in \mathcal{M}_{n, 1}(\mathbb{F})$ such that u, v, w are linearly independent. If $\operatorname{rank}(A+\lambda B) \leqslant 2$ for all $\lambda \in \mathbb{F}$, then either $z \in\langle u\rangle$ or $z \in\langle v\rangle$.

Proof. Since u, v, w are linearly independent and $\operatorname{rank}(A+B) \leqslant 2$, we have $z \in\langle u, v, w\rangle$. Let $z=a u+b v+c w$ for some $a, b, c \in \mathbb{F}$. Since $A+\lambda B=2 \lambda c w^{2}+u \oslash$ $v+\lambda a(u \oslash w)+\lambda b(w \oslash v)$ has rank bounded above by two, it follows that

$$
0=\operatorname{det}\left[\begin{array}{ccc}
1 & \lambda a & 0 \\
\lambda b & 2 \lambda c & \lambda a \\
0 & \lambda b & 1
\end{array}\right]=-2 a b \lambda^{2}+2 c \lambda \quad \text { for every } \lambda \in \mathbb{F}
$$

Since $|\mathbb{F}| \geqslant 3$, we obtain $c=0$ and $a b=0$.
Theorem 4.3. Let \mathbb{F} be a field of characteristic not two and m, n be integers such that $m, n \geqslant 3$. Then $\psi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{S M}_{m}(\mathbb{F})$ is a bounded rank-two linear preserver if and only if $m \geqslant n$ and ψ is of one of the following forms:
(i) There exist a nonzero vector $u \in \mathcal{M}_{m, 1}(\mathbb{F})$ and a linear mapping $\varphi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow$ $\mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\begin{equation*}
\psi(A)=u \oslash \varphi(A) \quad \text { for all } A \in \mathcal{S T}_{n}(\mathbb{F}) \tag{4.1}
\end{equation*}
$$

where $\varphi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{n}(\mathbb{F})$.
(ii) There exist a full rank matrix $P \in \mathcal{M}_{m, n}(\mathbb{F})$ and a nonzero $\lambda \in \mathbb{F}$ such that

$$
\psi(A)=\lambda P A P^{+} \quad \text { for all } A \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})
$$

(iii) When $n=4$, in addition to (i) and (ii), ψ also takes the form

$$
\psi(A)=P\left[\begin{array}{cccc}
a_{11} & a_{12} & \alpha a_{13}+\theta\left(a_{14}-a_{23}\right) & \beta a_{14} \\
0 & a_{22} & (2 \alpha-\beta) a_{23} & \alpha a_{13}+\theta\left(a_{14}-a_{23}\right) \\
0 & 0 & a_{22} & a_{12} \\
0 & 0 & 0 & a_{11}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{4}(\mathbb{F})$, where $P \in \mathcal{M}_{m, 4}(\mathbb{F})$ is a full rank matrix, $\alpha, \beta \in \mathbb{F}$ are nonzero with $\beta \neq 2 \alpha$, and $\theta \in \mathbb{F}$ is nonzero only if $|\mathbb{F}|=3$.
(iv) When $n=3$, in addition to (i) and (ii), ψ also takes one of the following forms:
(a) There exist a surjective linear mapping $\phi: \mathcal{S T}_{3}(\mathbb{F}) \rightarrow \mathbb{F}^{3}$ and a full rank matrix $P \in \mathcal{M}_{m, 2}(\mathbb{F})$ such that

$$
\psi(A)=P\left[\begin{array}{ll}
\phi(A)_{3} & \phi(A)_{1} \\
\phi(A)_{2} & \phi(A)_{3}
\end{array}\right] P^{+} \quad \text { for all } A \in \mathcal{S T}_{3}(\mathbb{F})
$$

where $\phi(A)_{i}$ denotes the i-th component of $\phi(A) \in \mathbb{F}^{3}$ and $\phi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{3}(\mathbb{F})$.
(b) There exist a full rank matrix $P \in \mathcal{M}_{m, 3}(\mathbb{F})$ and $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{F}$ with $\lambda_{3} \neq 0$ such that either

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{p p} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{q q} & \eta_{1} a_{12}+\lambda_{1} a_{q q} \\
0 & \lambda_{3} a_{q q} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{q q} \\
0 & 0 & a_{p p}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$, where $\eta_{1}, \eta_{2} \in \mathbb{F}$ are nonzero and $\{p, q\}=$ $\{1,2\}$, or

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{p p} & a_{1 s}+\lambda_{2} a_{q q} & \eta a_{1 t}+\lambda_{1} a_{q q} \\
0 & \lambda_{3} a_{q q} & a_{1 s}+\lambda_{2} a_{q q} \\
0 & 0 & a_{p p}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$, where $\eta \in \mathbb{F}$ is nonzero and $\{p, q\}=\{s, t\}=$ $\{1,2\}$.

Proof. Sufficiency is clear. We now consider necessity. Let $\mathcal{X}_{1}=e_{1} \oslash\left\langle e_{1}, \ldots, e_{n}\right\rangle$ and $\mathcal{X}_{2}=e_{2} \oslash\left\langle e_{1}, \ldots, e_{n-1}\right\rangle$. By Lemma 3.1 and Theorem 3.3, together with the assumption of ψ, we see that $\psi\left(\mathcal{X}_{1}\right)$ and $\psi\left(\mathcal{X}_{2}\right)$ are spaces of bounded rank-two matrices of $\mathcal{S M}_{m}(\mathbb{F})$ containing linearly independent sets $\left\{\psi\left(e_{1} \oslash e_{1}\right), \ldots, \psi\left(e_{1} \oslash e_{n}\right)\right\}$ and $\left\{\psi\left(e_{2} \oslash e_{1}\right), \ldots, \psi\left(e_{2} \oslash e_{n-1}\right)\right\}$, respectively. Thus, $m \geqslant n$. We now divide our proof into three main cases:

Case I: $n \geqslant 5$. By Lemma 3.1, we have

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=u \oslash v_{1} \quad \text { and } \quad \psi\left(e_{1} \oslash e_{i}\right)=u \oslash v_{i} \quad \text { for } i=2, \ldots, n \tag{4.2}
\end{equation*}
$$

for some nonzero vector $u \in \mathcal{M}_{m, 1}(\mathbb{F})$ and linearly independent vectors $v_{1}, \ldots, v_{n} \in$ $\mathcal{M}_{m, 1}(\mathbb{F})$, and

$$
\begin{equation*}
\psi\left(e_{2}^{2}\right)=x \oslash y_{2} \quad \text { and } \quad \psi\left(e_{2} \oslash e_{i}\right)=x \oslash y_{i} \text { for } i=1,3,4, \ldots, n-1 \tag{4.3}
\end{equation*}
$$

for some nonzero vector $x \in \mathcal{M}_{m, 1}(\mathbb{F})$ and linearly independent vectors $y_{1}, \ldots, y_{n-1} \in$ $\mathcal{M}_{m, 1}(\mathbb{F})$. We consider the following two subcases:

Case 1-A: $\langle x\rangle=\langle u\rangle$. There is no loss of generality in assuming $x=u$. For each $3 \leqslant i \leqslant \frac{n+1}{2}$, let $\mathcal{X}_{i}=e_{i} \oslash\left\langle e_{1}, e_{2}, e_{i}\right\rangle$. Clearly, $\psi\left(\mathcal{X}_{i}\right)$ is a 3 -dimensional linear space of bounded rank-two matrices of $\mathcal{S} \mathcal{M}_{m}(\mathbb{F})$. Then each $\psi\left(\mathcal{X}_{i}\right)$ can be expressed in either of the forms (I) and (II) in Lemma 3.1. Suppose that there exists $3 \leqslant i_{0} \leqslant \frac{n+1}{2}$ such that $\psi\left(\mathcal{X}_{i_{0}}\right)$ satisfies (I). Since $\psi\left(e_{i_{0}} \oslash e_{1}\right)=u \oslash v_{i_{0}}, \psi\left(e_{i_{0}} \oslash e_{2}\right)=u \oslash y_{i_{0}}$ and $\psi\left(e_{i_{0}}^{2}\right)$ are linearly independent elements in $\psi\left(\mathcal{X}_{i_{0}}\right), v_{i_{0}}, y_{i_{0}}$ are linearly independent, and together with Lemma 4.1(a), we have $\left\langle u^{2}, v_{i_{0}}^{2}, u \oslash v_{i_{0}}\right\rangle=\psi\left(\mathcal{X}_{i_{0}}\right)=\left\langle u^{2}, y_{i_{0}}^{2}, u \oslash y_{i_{0}}\right\rangle$. Again, by Lemma 4.1. $\left\langle u, v_{i_{0}}\right\rangle=\left\langle u, y_{i_{0}}\right\rangle$. In particular, $y_{i_{0}} \in\left\langle u, v_{i_{0}}\right\rangle$. Then $\psi\left(e_{i_{0}} \oslash e_{2}\right)=$ $\eta_{1} u^{2}+\eta_{2} u \oslash v_{i_{0}}$ and $\psi\left(e_{i_{0}}^{2}\right)=\alpha u^{2}+\beta v_{i_{0}}^{2}+\gamma u \oslash v_{i_{0}}$ for some $\eta_{1}, \eta_{2}, \alpha, \beta, \gamma \in \mathbb{F}$ with $\eta_{1}, \beta \neq 0$. By (4.2), note that

- if u, v_{1} are linearly dependent, then $\psi\left(e_{1}^{2}\right)=\lambda_{1} u^{2}$ for some $\lambda_{1} \in \mathbb{F} \backslash\{0\} ;$
- if u, v_{1} are linearly independent, then $v_{i_{0}} \in\left\langle u, v_{1}\right\rangle$. For, if not, then $v_{i_{0}}, u, v_{1}$ are linearly independent, and so $\psi\left(e_{i_{0}}^{2}+e_{1}^{2}\right)=\alpha u^{2}+\beta v_{i_{0}}^{2}+\gamma u \oslash v_{i_{0}}+u \oslash v_{1}$ is of rank three, a contradiction. Therefore, $v_{1} \in\left\langle u, v_{i_{0}}\right\rangle$ since $\left\{u, v_{i_{0}}\right\}$ is linearly independent. Thus, $\psi\left(e_{1}^{2}\right)=\varsigma_{1}\left(u \oslash v_{i_{0}}\right)+\lambda_{1} u^{2}$ for some scalars $\varsigma_{1}, \lambda_{1} \in \mathbb{F}$ with $\lambda_{1} \neq 0$.

Accordingly, we may write generally that

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=\varsigma_{1}\left(u \oslash v_{i_{0}}\right)+\lambda_{1} u^{2} \tag{4.4}
\end{equation*}
$$

for some $\varsigma_{1}, \lambda_{1} \in \mathbb{F}$ with $\left(\varsigma_{1}, \lambda_{1}\right) \neq 0$. We apply this argument again, with (4.2) and v_{1} replaced by (4.3) and y_{2}, to obtain

$$
\begin{equation*}
\psi\left(e_{2}^{2}\right)=\varsigma_{2}\left(u \oslash v_{i_{0}}\right)+\lambda_{2} u^{2} \tag{4.5}
\end{equation*}
$$

for some $\varsigma_{2}, \lambda_{2} \in \mathbb{F}$ with $\left(\varsigma_{2}, \lambda_{2}\right) \neq 0$. Furthermore, since $\psi\left(\left\langle e_{1}^{2}, e_{2}^{2}, e_{1} \oslash e_{2}\right\rangle\right)$ has dimension three, it follows from (4.2), (4.4) and (4.5) that $u, v_{i_{0}}, v_{2}$ are linearly independent. Then
$\psi\left(e_{i_{0}}^{2}+\left(e_{1}^{2}+e_{2}^{2}+e_{1} \oslash e_{2}\right)\right)=\beta v_{i_{0}}^{2}+u \oslash v_{2}+\left(\alpha+\lambda_{1}+\lambda_{2}\right) u^{2}+\left(\gamma+\varsigma_{1}+\varsigma_{2}\right) u \oslash v_{i_{0}}$ is of rank three, a contradiction. Thus, $\psi\left(\mathcal{X}_{i}\right)$ satisfies (II) in Lemma 3.1 for every $3 \leqslant i \leqslant \frac{n+1}{2}$. Consequently, by Lemma [2.4 for each $3 \leqslant i \leqslant \frac{n+1}{2}$, there exists a nonzero vector $z_{i} \in \mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\begin{equation*}
\psi\left(e_{i}^{2}\right)=u \oslash z_{i} \tag{4.6}
\end{equation*}
$$

For $n \geqslant 6$, we will consider $\mathcal{X}_{i j}=e_{i} \oslash\left\langle e_{1}, e_{2}, e_{i}, e_{j}\right\rangle$ for any $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i<j \leqslant n+1-i$. Clearly, $\psi\left(\mathcal{X}_{i j}\right)$ is a linear space of bounded rank-two matrices of $\mathcal{S M}_{m}(\mathbb{F})$ containing linearly independent elements $\psi\left(e_{i} \oslash e_{j}\right), \psi\left(e_{i}^{2}\right), \psi\left(e_{1} \oslash e_{i}\right)$, $\psi\left(e_{2} \oslash e_{i}\right)$. By Lemmas 3.1 and 2.4, we obtain $\psi\left(\mathcal{X}_{i j}\right) \subseteq u \oslash \mathcal{M}_{m, 1}(\mathbb{F})$. Then for each $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i<j \leqslant n+1-i$, there exists a nonzero vector $v_{i j} \in \mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\begin{equation*}
\psi\left(e_{i} \oslash e_{j}\right)=u \oslash v_{i j} \tag{4.7}
\end{equation*}
$$

Consequently, by (4.2), (4.3), (4.6), (4.7) and the linearity of ψ, we conclude, for $n \geqslant 5$, that there exists a linear mapping $\varphi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\psi(A)=u \oslash \varphi(A) \quad \text { for all } A \in \mathcal{S T}_{n}(\mathbb{F})
$$

where $\varphi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{n}(\mathbb{F})$. Hence, 4.1) holds.

Case 1-B: $\langle x\rangle \neq\langle u\rangle$. By (4.2) and (4.3), we see that $u \oslash v_{2}=\psi\left(e_{1} \oslash e_{2}\right)=x \oslash y_{1}$. It follows from Lemma 2.2(b) that $y_{1}=\varsigma u$ and $x=\varsigma^{-1} v_{2}$ for some nonzero scalar $\varsigma \in \mathbb{F}$, because u, x are linearly independent. Then

$$
\begin{equation*}
\psi\left(e_{1} \oslash e_{2}\right)=\varsigma u \oslash x \tag{4.8}
\end{equation*}
$$

Our next claim is that

$$
\begin{equation*}
\left\{u, x, v_{3} \ldots, v_{n}\right\} \text { is linearly independent. } \tag{4.9}
\end{equation*}
$$

We first show that $v_{1} \in\langle u, x\rangle$. Suppose that $v_{1} \notin\langle u, x\rangle$. Since $\operatorname{rank} \psi\left(e_{1}^{2}+\gamma e_{2}^{2}\right) \leqslant 2$ for all $\gamma \in \mathbb{F}$, we have either $y_{2} \in\langle u\rangle$ or $y_{2} \in\left\langle v_{1}\right\rangle$ by Lemma4.2, Note that $\left\langle y_{1}\right\rangle=\langle u\rangle$ and $\left\langle y_{1}\right\rangle \neq\left\langle y_{2}\right\rangle$ implies $y_{2} \in\left\langle v_{1}\right\rangle$, and so $y_{2} \notin\langle u, x\rangle$. Let $v_{1}=\epsilon y_{2}$ for some nonzero scalar $\epsilon \in \mathbb{F}$. It follows that $\psi\left(\left(e_{1}+e_{2}\right)^{2}\right)=\epsilon u \oslash y_{2}+x \oslash y_{2}+\varsigma u \oslash x$ is of rank three, a contradiction. Hence, $v_{1} \in\langle u, x\rangle$. Similarly, we obtain $y_{2} \in\langle u, x\rangle$. By (4.2) and (4.3), since $\psi\left(e_{1}^{2}\right), \psi\left(e_{2}^{2}\right), \psi\left(e_{1} \oslash e_{2}\right)$ are linearly independent, we obtain

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=u \oslash\left(\theta_{1} x+\vartheta_{1} u\right) \quad \text { and } \quad \psi\left(e_{2}^{2}\right)=x \oslash\left(\theta_{2} u+\vartheta_{2} x\right) \tag{4.10}
\end{equation*}
$$

for some scalars $\theta_{1}, \theta_{2}, \vartheta_{1}, \vartheta_{2} \in \mathbb{F}$ with $\vartheta_{1}, \vartheta_{2} \neq 0$. Since $\psi\left(e_{1}^{2}\right), \psi\left(e_{1} \oslash e_{2}\right), \ldots, \psi\left(e_{1} \oslash\right.$ e_{n}) are linearly independent, it follows from (4.2), (4.8) and (4.10) that $\left\{\theta_{1} x+\right.$ $\left.\vartheta_{1} u, \varsigma x, v_{3}, \ldots, v_{n}\right\}$ is a linearly independent set, and hence, Claim (4.9) is proved.

Let $3 \leqslant i \leqslant n-1$. Since $\operatorname{rank} \psi\left(\left(e_{1}+\gamma e_{2}\right) \oslash e_{i}\right) \leqslant 2$ for every $\gamma \in \mathbb{F}$, it follows from (4.9) and Lemma 4.2 that either $y_{i} \in\left\langle v_{i}\right\rangle$ or $y_{i} \in\langle u\rangle$. Since $u \in\left\langle y_{1}\right\rangle$, we have $y_{i} \in\left\langle v_{i}\right\rangle$. Setting $w_{1}=u, w_{2}=x$, and $w_{i}=v_{i}$ for $i=3, \ldots, n$, we thus have $\left\{w_{1}, \ldots, w_{n}\right\}$ is linearly independent by (4.9). In view of (4.2), (4.3) and (4.8), we have

$$
\begin{equation*}
\psi\left(e_{1} \oslash e_{2}\right)=\varsigma w_{1} \oslash w_{2} \quad \text { and } \quad \psi\left(e_{1} \oslash e_{n}\right)=w_{1} \oslash w_{n} \tag{4.11}
\end{equation*}
$$

and for each $3 \leqslant i \leqslant n-1$, there exists a nonzero scalar $\zeta_{i} \in \mathbb{F}$ such that $\psi\left(e_{1} \oslash e_{i}\right)=$ $w_{1} \oslash w_{i}$ and $\psi\left(e_{2} \oslash e_{i}\right)=\zeta_{i} w_{2} \oslash w_{i}$. Moreover, since $1 \leqslant \operatorname{rank} \psi\left(\left(e_{1}+e_{2}\right) \oslash\left(e_{i}+e_{j}\right)\right) \leqslant 2$ for every distinct pair $3 \leqslant i, j \leqslant n-1$, we have $\zeta_{i}=\zeta_{j}$ for any distinct integers $3 \leqslant i, j \leqslant n-1$. Consequently, there exists a nonzero scalar $\zeta \in \mathbb{F}$ such that

$$
\begin{equation*}
\psi\left(e_{1} \oslash e_{i}\right)=w_{1} \oslash w_{i} \quad \text { and } \quad \psi\left(e_{2} \oslash e_{i}\right)=\zeta w_{2} \oslash w_{i} \tag{4.12}
\end{equation*}
$$

for all $i=3, \ldots, n-1$.
We next claim that for each $1 \leqslant i \leqslant \frac{n+1}{2}$, there exists a nonzero scalar $\mu_{i} \in \mathbb{F}$ such that

$$
\begin{equation*}
\psi\left(e_{i}^{2}\right)=\mu_{i} w_{i}^{2} \tag{4.13}
\end{equation*}
$$

Recall that $\mathcal{X}_{i}=e_{i} \oslash\left\langle e_{1}, e_{2}, e_{i}\right\rangle$ for $3 \leqslant i \leqslant \frac{n+1}{2}$. Then $\psi\left(\mathcal{X}_{i}\right)$ is a 3-dimensional linear space of bounded rank-two matrices of $\mathcal{S M}_{m}(\mathbb{F})$. In view (4.12), since w_{1}, w_{2}, w_{i} are linearly independent, it follows from Lemma 4.1(b) that $\psi\left(\mathcal{X}_{i}\right)$ is of Form (II) in Lemma 3.1. Thus, $\psi\left(\mathcal{X}_{i}\right) \subseteq w_{i} \oslash \mathcal{M}_{m, 1}(\mathbb{F})$ by Lemma 2.4. For each $3 \leqslant i \leqslant \frac{n+1}{2}$, there exists a nonzero vector $z_{i} \in \mathcal{M}_{m, 1}(\mathbb{F})$ such that $\psi\left(e_{i}^{2}\right)=w_{i} \oslash z_{i}$. We shall show that $\theta_{1}=0$. Suppose not. In view of (4.9), we have $\left\{w_{1}, \theta_{1} w_{2}+\vartheta_{1} w_{1}, w_{i}\right\}$ and $\left\{w_{1}, 2 \theta_{1} w_{2}+2 \vartheta_{1} w_{1}+w_{i}, w_{i}\right\}$ are linearly independent sets. Since $\operatorname{rank} \psi\left(e_{1}^{2}+\gamma e_{i}^{2}\right) \leqslant 2$ and $\operatorname{rank} \psi\left(e_{1} \oslash\left(e_{1}+e_{i}\right)+\gamma e_{i}^{2}\right) \leqslant 2$ for all $\gamma \in \mathbb{F}$, it follows from (4.10), (4.12) and Lemma 4.2 that

$$
z_{i} \in\left\langle w_{1}\right\rangle \quad \text { or } \quad z_{i} \in\left\langle\theta_{1} w_{2}+\vartheta_{1} w_{1}\right\rangle,
$$

and

$$
z_{i} \in\left\langle w_{1}\right\rangle \quad \text { or } \quad z_{i} \in\left\langle 2 \theta_{1} w_{2}+2 \vartheta_{1} w_{1}+w_{i}\right\rangle .
$$

We thus have $z_{i} \in\left\langle w_{1}\right\rangle$. Therefore, $\psi\left(e_{i}^{2}\right), \psi\left(e_{1} \oslash e_{i}\right)$ are linearly dependent, a contradiction. Hence, $\theta_{1}=0$. Thus, $\psi\left(e_{1}^{2}\right) \in\left\langle w_{1}^{2}\right\rangle$ by (4.10). Similarly, we can show that $\theta_{2}=0$ in (4.10). Consequently, Claim (4.13) holds for $i=1,2$. We now consider $3 \leqslant i \leqslant \frac{n+1}{2}$. Since $\operatorname{rank} \psi\left(e_{1} \oslash\left(e_{1}+e_{i}\right)+\gamma e_{i}^{2}\right) \leqslant 2$ for every $\gamma \in \mathbb{F}$, we have $\operatorname{rank}\left(w_{1} \oslash\left(\mu_{1} w_{1}+w_{i}\right)+\gamma z_{i} \oslash w_{i}\right) \leqslant 2$ for every $\gamma \in \mathbb{F}$. If $z_{i} \notin\left\langle w_{1}, w_{i}\right\rangle$, then, by Lemma 4.2 we have either $w_{i} \in\left\langle w_{1}\right\rangle$ or $w_{i} \in\left\langle\mu_{1} w_{1}+w_{i}\right\rangle$. Since w_{1}, w_{i} are linearly independent, we obtain $\mu_{1}=0$, a contradiction. Therefore, $z_{i} \in\left\langle w_{1}, w_{i}\right\rangle$. Furthermore, since $\operatorname{rank} \psi\left(e_{2} \oslash\left(e_{2}+e_{i}\right)+\gamma e_{i}^{2}\right) \leqslant 2$ for all $\gamma \in \mathbb{F}$, in the same manner we can show that $z_{i} \in\left\langle w_{2}, w_{i}\right\rangle$. Hence, $z_{i} \in\left\langle w_{1}, w_{i}\right\rangle \cap\left\langle w_{2}, w_{i}\right\rangle=\left\langle w_{i}\right\rangle$. Accordingly, Claim (4.13) is proved.

Next, we consider $n \geqslant 6$. Let $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i+1 \leqslant j \leqslant n+1-i$. Recall that $\mathcal{X}_{i j}=e_{i} \oslash\left\langle e_{1}, e_{2}, e_{i}, e_{j}\right\rangle$. Since $\psi\left(\mathcal{X}_{i j}\right)$ is a linear space of bounded rank-two matrices of $\mathcal{S} \mathcal{M}_{m}(\mathbb{F})$ containing linearly independent elements $\psi\left(e_{i} \oslash e_{j}\right), \psi\left(e_{i}^{2}\right), \psi\left(e_{1} \oslash e_{i}\right)$,
$\psi\left(e_{2} \oslash e_{i}\right)$, it follows from Lemmas 3.1 and 2.4 that $\psi\left(\mathcal{X}_{i j}\right) \subseteq w_{i} \oslash \mathcal{M}_{m, 1}(\mathbb{F})$. Then there exists a nonzero vector $z_{i j} \in \mathcal{M}_{m, 1}(\mathbb{F})$ such that $\psi\left(e_{i} \oslash e_{j}\right)=w_{i} \oslash z_{i j}$. On the other hand, $\psi\left(e_{j} \oslash\left\langle e_{1}, e_{2}, e_{i}\right\rangle\right)$ is a linear space of bounded rank-two matrices of $\mathcal{S M}_{m}(\mathbb{F})$ containing linearly independent elements $\psi\left(e_{i} \oslash e_{j}\right), \psi\left(e_{1} \oslash e_{j}\right), \psi\left(e_{2} \oslash e_{j}\right)$. Since w_{1}, w_{2}, w_{j} are linearly independent, it follows from Lemmas 3.1, 4.1(b) and 2.4 that $\psi\left(e_{j} \oslash\left\langle e_{1}, e_{2}, e_{i}\right\rangle\right) \subseteq w_{j} \oslash \mathcal{M}_{m, 1}(\mathbb{F})$. Then $\psi\left(e_{i} \oslash e_{j}\right)=w_{j} \oslash y_{i j}$ for some nonzero vector $y_{i j} \in \mathcal{M}_{m, 1}(\mathbb{F})$. Therefore, $w_{i} \oslash z_{i j}=\psi\left(e_{i} \oslash e_{j}\right)=w_{j} \oslash y_{i j}$, and so $\left\langle z_{i j}\right\rangle=\left\langle w_{j}\right\rangle$ and $\left\langle y_{i j}\right\rangle=\left\langle w_{i}\right\rangle$ by Lemma 2.2(b). Consequently, for each $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i+1 \leqslant j \leqslant n+1-i$, there exists a nonzero scalar $\eta_{i j} \in \mathbb{F}$ such that

$$
\begin{equation*}
\psi\left(e_{i} \oslash e_{j}\right)=\eta_{i j} w_{i} \oslash w_{j} \tag{4.14}
\end{equation*}
$$

After composing the map: $A \mapsto \mu_{1}^{-1} A$ for $A \in \mathcal{S M}_{m}(\mathbb{F})$, if necessary, we have

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=w_{1}^{2} \quad \text { and } \quad \psi\left(e_{1} \oslash e_{i}\right)=\mu_{1}^{-1} w_{1} \oslash w_{i} \tag{4.15}
\end{equation*}
$$

for $i=3, \ldots, n$, and for simplicity of notation, we abbreviate $\mu_{1}^{-1} \varsigma$ to ς in (4.11), $\mu_{1}^{-1} \zeta$ to ζ in (4.12), $\mu_{1}^{-1} \mu_{i}$ to μ_{i} in (4.13) for $2 \leqslant i \leqslant \frac{n+1}{2}$, and $\mu_{1}^{-1} \eta_{i j}$ to $\eta_{i j}$ in (4.14) for $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i+1 \leqslant j \leqslant n+1-i$. Since $\operatorname{rank} \psi\left(\left(e_{1}+e_{2}\right)^{2}+e_{k}^{2}\right) \leqslant 2$ and $\operatorname{rank} \psi\left(\left(e_{i}+e_{k}\right)^{2}+e_{j}^{2}\right) \leqslant 2$ for any distinct integers $1 \leqslant i, j \leqslant 2$ and $3 \leqslant k \leqslant \frac{n+1}{2}$, it follows from (4.11), (4.12), (4.13) and (4.15) that $\mu_{2}=\varsigma^{2}, \zeta^{2}=\left(\mu_{1}^{-1} \varsigma\right)^{2}$ and $\mu_{i}=\left(\mu_{1}^{-1}\right)^{2}$ for $3 \leqslant i \leqslant \frac{n+1}{2}$. Moreover, in view of (4.12), (4.13), (4.14) and (4.15), we have $\psi\left(\left(e_{1}+e_{i}\right) \oslash e_{j}+\left(e_{1}+e_{i}\right)^{2}\right)=\mu_{1}^{-1} w_{1} \oslash w_{j}+\eta_{i j} w_{i} \oslash w_{j}+w_{1}^{2}+\left(\mu_{1}^{-1}\right)^{2} w_{i}^{2}+\mu_{1}^{-1} w_{1} \oslash w_{i}$ is of rank bounded above by two for every $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i<j \leqslant n+1-i$, and hence,

$$
0=\operatorname{det}\left[\begin{array}{ccc}
\mu_{1}^{-1} & \mu_{1}^{-1} & 1 \\
\eta_{i j} & \left(\mu_{1}^{-1}\right)^{2} & \mu_{1}^{-1} \\
0 & \eta_{i j} & \mu_{1}^{-1}
\end{array}\right]=\left(\left(\mu_{1}^{-1}\right)^{2}-\eta_{i j}\right)^{2} \quad \Rightarrow \quad \eta_{i j}=\left(\mu_{1}^{-1}\right)^{2}
$$

for every $3 \leqslant i \leqslant \frac{n+1}{2}$ and $i<j \leqslant n+1-i$. Also, since $\zeta^{2}=\left(\mu_{1}^{-1} \varsigma\right)^{2}$, we have either $\zeta=\mu_{1}^{-1} \varsigma$ or $\zeta=-\mu_{1}^{-1} \varsigma$. Suppose that $\zeta=-\mu_{1}^{-1} \varsigma$. Then

$$
\psi\left(\left(e_{1}+e_{2}+e_{3}\right)^{2}-e_{3}^{2}\right)=w_{1}^{2}+\varsigma^{2} w_{2}^{2}+\varsigma w_{1} \oslash w_{2}+\mu_{1}^{-1} w_{1} \oslash w_{3}+\left(-\mu_{1}^{-1} \varsigma\right) w_{2} \oslash w_{3}
$$

is of rank three, a contradiction. So $\zeta=\mu_{1}^{-1} \varsigma$. Consequently, by 4.11), (4.12), (4.13), (4.14) and (4.15) that $\psi\left(e_{i}^{2}\right)=\left(\alpha_{i} e_{i}\right)^{2}$ for all $1 \leqslant i \leqslant \frac{n+1}{2}$, and $\psi\left(e_{i} \oslash e_{j}\right)=\left(\alpha_{i} w_{i}\right) \oslash$ $\left(\alpha_{j} w_{j}\right)$ for all $1 \leqslant i \leqslant \frac{n+1}{2}$ and $i<j \leqslant n+1-i$, where $\alpha_{1}=1, \alpha_{2}=\varsigma$ and $\alpha_{i}=\mu_{1}^{-1}$ for $i=3, \ldots, n$. Let $P \in \mathcal{M}_{m, n}(\mathbb{F})$ be the matrix defined by $P e_{i}=\alpha_{i} w_{i}$ for every $i=1, \ldots, n$. Evidently, P is of rank n since $\left\{w_{1}, \ldots, w_{n}\right\}$ is linearly independent. By the linearity of ψ, we conclude that

$$
\psi(A)=\lambda P A P^{+} \quad \text { for all } A \in \mathcal{S T}_{n}(\mathbb{F})
$$

where $\lambda=\mu_{1}^{-1} \in \mathbb{F}$ is nonzero. We are done.
Case II: $n=4$. Let $\mathcal{S}_{1}=e_{1} \oslash\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$ and $\mathcal{S}_{2}=e_{2} \oslash\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Then $\psi\left(\mathcal{S}_{1}\right)$ and $\psi\left(\mathcal{S}_{2}\right)$ are 4 -dimensional and 3 -dimensional spaces of bounded rank-two matrices of $\mathcal{S M}_{m}(\mathbb{F})$, respectively. By Lemma 3.1, there exist a nonzero vector $u \in \mathcal{M}_{m, 1}(\mathbb{F})$ and linearly independent vectors $v_{1}, v_{2}, v_{3}, v_{4} \in \mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=u \oslash v_{1} \quad \text { and } \quad \psi\left(e_{1} \oslash e_{i}\right)=u \oslash v_{i} \quad \text { for } i=2,3,4 \tag{4.16}
\end{equation*}
$$

and $\psi\left(\mathcal{S}_{2}\right)$ is either of Form (I) or Form (II) in Lemma 3.1 We claim that $\psi\left(\mathcal{S}_{2}\right)$ is of Form (II). Suppose to the contrary that $\psi\left(\mathcal{S}_{2}\right)$ is of Form (I). We argue in the following two cases:

Case II-1: $\left\langle v_{2}\right\rangle \neq\langle u\rangle$. By Lemma 4.1(a), we obtain $\psi\left(\mathcal{S}_{2}\right)=\left\langle u^{2}, v_{2}^{2}, u \oslash v_{2}\right\rangle$. Let $\psi\left(e_{2}^{2}\right)=\mu_{1} u \oslash v_{2}+\mu_{2} u^{2}+\mu_{3} v_{2}^{2}$ and $\psi\left(e_{2} \oslash e_{3}\right)=\eta_{1} u \oslash v_{2}+\eta_{2} u^{2}+\eta_{3} v_{2}^{2}$ for some $\mu_{i}, \eta_{i} \in \mathbb{F}, i=1,2,3$. Suppose that $\mu_{3} \neq 0$. Note that $\operatorname{rank} \psi\left(e_{1}^{2}+e_{2}^{2}\right) \leqslant 2$ implies $v_{1} \in\left\langle u, v_{2}\right\rangle$. Since v_{1}, v_{2}, v_{3} are linearly independent, it follows that u, v_{2}, v_{3} are linearly independent. In view of (4.16), we have $\psi\left(e_{1}^{2}\right)=\lambda_{1} u \oslash v_{2}+\lambda_{2} u^{2}$ for some scalars $\lambda_{1}, \lambda_{2} \in \mathbb{F}$ with $\lambda_{2} \neq 0$. We set

$$
\zeta= \begin{cases}1 & \text { if } \eta_{3}=0 \\ \eta_{3}^{-1} \mu_{3} & \text { if } \eta_{3} \neq 0\end{cases}
$$

Then $\zeta \neq 0$ and $\zeta \eta_{3}+\mu_{3} \neq 0$, and

$$
\begin{aligned}
\psi\left(\zeta\left(e_{1}+e_{2}\right) \oslash e_{3}+\left(e_{1}+e_{2}\right)^{2}\right)= & \zeta u \oslash v_{3}+\left(\zeta \eta_{3}+\mu_{3}\right) v_{2}^{2} \\
& +\left(\zeta \eta_{1}+\lambda_{1}+\mu_{1}+1\right) u \oslash v_{2}+\left(\zeta \eta_{2}+\lambda_{2}+\mu_{2}\right) u^{2}
\end{aligned}
$$

is of rank three, a contradiction. Hence, $\mu_{3}=0$. Since $\psi\left(e_{2} \oslash e_{1}\right), \psi\left(e_{2}^{2}\right), \psi\left(e_{2} \oslash e_{3}\right)$ are linearly independent, it follows that $\eta_{3} \neq 0$. By a similar argument, with $\psi\left(e_{1}^{2}\right)$ replaced by $\psi\left(e_{2} \oslash e_{3}\right)$, to obtain $\psi\left(\zeta^{\prime}\left(e_{1}+e_{2}\right) \oslash e_{3}+\left(e_{1}+e_{2}\right)^{2}\right)$ is of rank three for $\zeta^{\prime} \in \mathbb{F}$, which is impossible.

Case II-2: $\left\langle v_{2}\right\rangle=\langle u\rangle$. By (4.16), we have $\psi\left(e_{1} \oslash e_{2}\right)=\alpha u^{2}$ for some $\alpha \in \mathbb{F} \backslash\{0\}$ and v_{1}, u, v_{3}, v_{4} are linearly independent. Let $\psi\left(\mathcal{S}_{2}\right)=\left\langle x^{2}, v^{2}, x \oslash v\right\rangle$ for some linearly independent vectors $x, v \in \mathcal{M}_{m, 1}(\mathbb{F})$. Since $\psi\left(e_{1} \oslash e_{2}\right) \in \psi\left(\mathcal{S}_{2}\right)$, it follows that $\alpha u^{2}=\theta_{1} x^{2}+\theta_{2} v^{2}+\theta_{3} x \oslash v$ for some $\theta_{1}, \theta_{2}, \theta_{3} \in \mathbb{F}$ with $\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \neq 0$. We now show that $u \in\langle x, v\rangle$. Suppose to the contrary that $u \notin\langle x, v\rangle$. If $\theta_{3}=0$, then $\alpha u^{2}-\theta_{1} x^{2}-\theta_{2} v^{2}=0$ implies that $\alpha=\theta_{1}=\theta_{2}=0$, a contradiction. Thus, $\theta_{3} \neq 0$, and so $\alpha u^{2}-\theta_{3} x \oslash v=\theta_{1} x^{2}+\theta_{2} v^{2}$, which is an impossibility. We thus have $u \in\langle x, v\rangle$. Since x, v are linearly independent, we may assume without loss of generality that u, v are linearly independent. Then $\langle u, v\rangle=\langle x, v\rangle$, so $\psi\left(\mathcal{S}_{2}\right)=\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$ by Lemma4.1(a). Let $\psi\left(e_{2}^{2}\right)=a_{1} u \oslash v+a_{2} u^{2}+a_{3} v^{2}$ for some $a_{1}, a_{2}, a_{3} \in \mathbb{F}$. Suppose that $a_{3} \neq 0$. Since $\psi\left(e_{1}^{2}+e_{2}^{2}\right)=u \oslash v_{1}+a_{1} u \oslash v+a_{2} u^{2}+a_{3} v^{2}$ has rank bounded
above by two, it follows that $v \in\left\langle u, v_{1}\right\rangle$. Then $\left\langle u^{2}, v^{2}, u \oslash v\right\rangle=\left\langle u^{2}, v_{1}^{2}, u \oslash v_{1}\right\rangle$, and therefore, $\psi\left(e_{2}^{2}\right)=b_{1} u \oslash v_{1}+b_{2} u^{2}+b_{3} v_{1}^{2}$ for some $b_{1}, b_{2}, b_{3} \in \mathbb{F}$ with $b_{3} \neq 0$, because u, v are linearly independent. Let $\psi\left(e_{2} \oslash e_{3}\right)=c_{1} u \oslash v_{1}+c_{2} u^{2}+c_{3} v_{1}^{2}$ for some scalars $c_{1}, c_{2}, c_{3} \in \mathbb{F}$, and let

$$
\beta= \begin{cases}1 & \text { if } c_{3}=0 \\ c_{3}^{-1} b_{3} & \text { if } c_{3} \neq 0\end{cases}
$$

Then $\beta \neq 0$ and $\beta c_{3}+b_{3} \neq 0$, and

$$
\begin{aligned}
\psi\left(\beta\left(e_{1}+e_{2}\right) \oslash e_{3}+\left(e_{1}+e_{2}\right)^{2}\right)= & \beta u \oslash v_{3}+\left(\beta c_{3}+b_{3}\right) v_{1}^{2} \\
& +\left(\beta c_{1}+b_{1}+1\right) u \oslash v_{1}+\left(\beta c_{2}+b_{2}+\alpha\right) u^{2}
\end{aligned}
$$

is of rank three, a contradiction. Then $a_{3}=0$. Since $\psi\left(e_{2}^{2}\right), \psi\left(e_{2} \oslash e_{1}\right), \psi\left(e_{2} \oslash e_{3}\right)$ are linearly independent, it follows that $\psi\left(e_{2} \oslash e_{3}\right)=d_{1} u \oslash v+d_{2} u^{2}+d_{3} v^{2}$ for some $d_{1}, d_{2}, d_{3} \in \mathbb{F}$ with $d_{3} \neq 0$. Note that $\psi\left(\left(e_{1}+e_{2}\right) \oslash e_{3}\right)=u \oslash v_{3}+d_{1} u \oslash v+d_{2} u^{2}+d_{3} v^{2}$ has rank bounded above by two implies $v \in\left\langle u, v_{3}\right\rangle$. So $\left\langle u^{2}, v^{2}, u \oslash v\right\rangle=\left\langle u^{2}, v_{3}^{2}, u \oslash v_{3}\right\rangle$. We now apply a similar argument as above, with v_{1} replaced by v_{3}, to obtain $\psi\left(\beta^{\prime}\left(e_{1}+\right.\right.$ $\left.\left.e_{2}\right) \oslash e_{3}+\left(e_{1}+e_{2}\right)^{2}\right)$ is of rank three for some $\beta^{\prime} \in \mathbb{F} \backslash\{0\}$. This leads to a contradiction.

Accordingly, $\psi\left(\mathcal{S}_{2}\right)$ is of Form (II). Then there exists a nonzero vector $x \in$ $\mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\begin{equation*}
\psi\left(e_{2}^{2}\right)=x \oslash y_{2} \quad \text { and } \quad \psi\left(e_{2} \oslash e_{i}\right)=x \oslash y_{i} \quad \text { for } i=1,3 \tag{4.17}
\end{equation*}
$$

for some linearly independent vectors $y_{1}, y_{2}, y_{3} \in \mathcal{M}_{m, 1}(\mathbb{F})$. We divide into two subcases:

Case $A:\langle x\rangle=\langle u\rangle$. It follows from (4.16) and (4.17), together with the linearity of ψ, that there exists a linear mapping $\varphi: \mathcal{S}_{4}(\mathbb{F}) \rightarrow \mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\psi(A)=u \oslash \varphi(A) \quad \text { for all } A \in \mathcal{S T}_{4}(\mathbb{F})
$$

where $\varphi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S} \mathcal{T}_{4}(\mathbb{F})$. So 4.1) holds true.

Case B: $\langle x\rangle \neq\langle u\rangle$. Note that $x \oslash y_{1}=\psi\left(e_{1} \oslash e_{2}\right)=u \oslash v_{2}$ implies $v_{2}=\varsigma x$ and $y_{1}=\varsigma u$ for some nonzero scalar $\varsigma \in \mathbb{F}$. Thus,

$$
\begin{equation*}
\psi\left(e_{1} \oslash e_{2}\right)=\varsigma u \oslash x . \tag{4.18}
\end{equation*}
$$

By a similar argument as in (4.9), we show that $\left\{u, x, v_{3}, v_{4}\right\}$ are linearly independent. Setting $w_{1}=u, w_{2}=\varsigma x, w_{3}=v_{3}$ and $w_{4}=v_{4}$, we thus have $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ is linearly independent. In view of (4.16), (4.17) and (4.18), we have

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=w_{1} \oslash v_{1} \quad \text { and } \quad \psi\left(e_{1} \oslash e_{i}\right)=w_{1} \oslash w_{i}, i=2,3,4 \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi\left(e_{2}^{2}\right)=w_{2} \oslash z_{2} \quad \text { and } \quad \psi\left(e_{2} \oslash e_{3}\right)=w_{2} \oslash z_{3} \tag{4.20}
\end{equation*}
$$

where $z_{i}=\varsigma^{-1} y_{i}$ for $i=2,3$. We claim that

$$
\begin{equation*}
v_{1} \in\left\langle w_{1}, w_{2}\right\rangle \quad \text { and } \quad z_{2} \in\left\langle w_{1}, w_{2}\right\rangle \tag{4.21}
\end{equation*}
$$

We will only verify $v_{1} \in\left\langle w_{1}, w_{2}\right\rangle$ as the second statement can be proved similarly. Suppose, contrary to our claim, that $v_{1} \notin\left\langle w_{1}, w_{2}\right\rangle$. Since rank $\psi\left(e_{1}^{2}+\gamma e_{2}^{2}\right) \leqslant 2$ for all $\gamma \in \mathbb{F}$, it follows from (4.19), (4.20) and Lemma 4.2 that $z_{2} \in\left\langle w_{1}\right\rangle$ or $z_{2} \in\left\langle v_{1}\right\rangle$. Since y_{1}, y_{2} are linearly independent and $w_{1} \in\left\langle y_{1}\right\rangle$, we conclude that $z_{2}=\lambda v_{1}$ for some nonzero $\lambda \in \mathbb{F}$. Consequently, $\psi\left(\left(e_{1}+e_{2}\right)^{2}\right)=w_{1} \oslash v_{1}+w_{1} \oslash w_{2}+\lambda w_{2} \oslash v_{1}$ is of rank three, a contradiction. Claim (4.21) is proved. By (4.19) and (4.20),

$$
\begin{equation*}
\psi\left(e_{1}^{2}\right)=\lambda_{1} w_{1}^{2}+\lambda_{2} w_{1} \oslash w_{2} \quad \text { and } \quad \psi\left(e_{2}^{2}\right)=\lambda_{3} w_{2}^{2}+\lambda_{4} w_{1} \oslash w_{2} \tag{4.22}
\end{equation*}
$$

for some scalars $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in \mathbb{F}$ with $\lambda_{1}, \lambda_{3} \neq 0$. Moreover, since rank $\psi\left(e_{1} \oslash e_{3}+\right.$ $\left.\gamma e_{2} \oslash e_{3}\right) \leqslant 2$ for all $\gamma \in \mathbb{F}$, it follows from (4.19), (4.20) and Lemma4.2 that $z_{3} \in\left\langle w_{1}\right\rangle$ or $z_{3} \in\left\langle w_{3}\right\rangle$. Since y_{1}, y_{3} are linearly independent, we have $z_{3}=\xi w_{3}$ for some nonzero scalar $\xi \in \mathbb{F}$. By (4.20), we have

$$
\begin{equation*}
\psi\left(e_{2} \oslash e_{3}\right)=\xi w_{2} \oslash w_{3} \tag{4.23}
\end{equation*}
$$

In view of (4.19), (4.20), (4.22) and (4.23), we see that

$$
\begin{aligned}
\psi\left(\left(\gamma e_{1}+e_{2}\right)^{2}+\left(\gamma e_{1}+e_{2}\right) \oslash e_{3}\right)= & \gamma^{2} \lambda_{1} w_{1}^{2}+\lambda_{3} w_{2}^{2}+\left(\gamma^{2} \lambda_{2}+\gamma+\lambda_{4}\right) w_{1} \oslash w_{2} \\
& +\gamma w_{1} \oslash w_{3}+\xi w_{2} \oslash w_{3}
\end{aligned}
$$

has rank bounded above by two for all $\gamma \in \mathbb{F}$. It follows that

$$
\begin{align*}
0 & =\operatorname{det}\left[\begin{array}{ccc}
\gamma & \gamma^{2} \lambda_{2}+\gamma+\lambda_{4} & \gamma^{2} \lambda_{1} \\
\xi & \lambda_{3} & \gamma^{2} \lambda_{2}+\gamma+\lambda_{4} \\
0 & \xi & \gamma
\end{array}\right] \\
& =-\gamma\left(2 \lambda_{2} \xi \gamma^{2}-\left(\lambda_{3}-\xi\left(2-\xi \lambda_{1}\right)\right) \gamma+2 \lambda_{4} \xi\right) \tag{4.24}
\end{align*}
$$

for all $\gamma \in \mathbb{F}$. Since \mathbb{F} is a field of characteristic not two, we conclude immediately from (4.24) that $\lambda_{3}=\xi\left(2-\xi \lambda_{1}\right)$ with $\xi \lambda_{1} \neq 2$, and $\lambda_{4}=-\lambda_{2}$. Moreover, if $|\mathbb{F}| \geqslant 4$, then we can deduce from (4.24) that $\lambda_{2}=0=\lambda_{4}$.

Let $P \in \mathcal{M}_{m, 4}(\mathbb{F})$ be the matrix defined by $P e_{i}=w_{i}$ for $i=1,3,4$, and $P e_{2}=$ ξw_{2}. Clearly, P is of full rank. Denote $\alpha=\xi^{-1}, \beta=\lambda_{1}$ and $\theta=\lambda_{2} \xi^{-1}$. Then $\alpha, \beta \neq 0$ and $2 \alpha-\beta=\lambda_{3} \xi^{-2} \neq 0$. By (4.19), (4.20), (4.22), (4.23) and the linearity
of ψ, we obtain

$$
\psi(A)=P\left[\begin{array}{cccc}
a_{11} & a_{12} & \alpha a_{13}+\theta\left(a_{14}-a_{23}\right) & \beta a_{14} \\
0 & a_{22} & (2 \alpha-\beta) a_{23} & \alpha a_{13}+\theta\left(a_{14}-a_{23}\right) \\
0 & 0 & a_{22} & a_{12} \\
0 & 0 & 0 & a_{11}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S} \mathcal{T}_{4}(\mathbb{F})$, where θ is nonzero only if $|\mathbb{F}|=3$. We are done.
Case III: $n=3$. Let $\mathcal{W}=e_{1} \oslash\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Then $\psi(\mathcal{W})$ is a 3-dimensional linear space of bounded rank-two matrices of $\mathcal{S M}_{m}(\mathbb{F})$. By Lemma 3.1 $\psi(\mathcal{W})$ is either of Form (I) or Form (II) in Lemma 3.1 Then either

$$
\begin{equation*}
\psi(\mathcal{W}) \subseteq u \oslash \mathcal{M}_{m, 1}(\mathbb{F}) \tag{4.25}
\end{equation*}
$$

for some nonzero vector $u \in \mathcal{M}_{m, 1}(\mathbb{F})$; or

$$
\begin{equation*}
\psi(\mathcal{W})=\left\langle u^{2}, v^{2}, u \oslash v\right\rangle \tag{4.26}
\end{equation*}
$$

for some linearly independent vectors $u, v \in \mathcal{M}_{m, 1}(\mathbb{F})$. We argue in the following two cases:

Case III-1: $\psi\left(e_{2}^{2}\right) \in \psi(\mathcal{W})$. We consider the following two subcases.
If (4.25) holds, then $\operatorname{Im} \psi \subseteq u \oslash \mathcal{M}_{m, 1}(\mathbb{F})$. We thus obtain a linear mapping $\varphi: \mathcal{S T}_{3}(\mathbb{F}) \rightarrow \mathcal{M}_{m, 1}(\mathbb{F})$ such that

$$
\psi(A)=u \oslash \varphi(A) \quad \text { for all } A \in \mathcal{S T}_{3}(\mathbb{F})
$$

where $\varphi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{3}(\mathbb{F})$. Hence, (4.1) holds.

If (4.26) holds, then $\operatorname{Im} \psi=\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$. So, for each $A \in \mathcal{S T}_{3}(\mathbb{F})$, there exists a unique ordered triple $\left(\alpha_{A}, \beta_{A}, \gamma_{A}\right) \in \mathbb{F}^{3}$ such that $\psi(A)=\alpha_{A} u^{2}+\beta_{A} v^{2}+\gamma_{A} u \oslash v$. We define the linear mapping $\phi: \mathcal{S T}_{3}(\mathbb{F}) \rightarrow \mathbb{F}^{3}$ such that

$$
\phi(A)=\left(\alpha_{A}, \beta_{A}, \gamma_{A}\right) \quad \text { for all } A \in \mathcal{S T}_{3}(\mathbb{F})
$$

Note that $\operatorname{Im} \psi=\left\langle u^{2}, v^{2}, u \oslash v\right\rangle$ and ψ preserves nonzero bounded rank-two matrices implies ϕ is surjective and $\phi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{3}(\mathbb{F})$. Let $P \in \mathcal{M}_{m, 2}(\mathbb{F})$ be the matrix defined by $P e_{1}=u$ and $P e_{2}=v$. Then P is of full rank and

$$
\psi(A)=P\left[\begin{array}{ll}
\phi(A)_{3} & \phi(A)_{1} \\
\phi(A)_{2} & \phi(A)_{3}
\end{array}\right] P^{+} \quad \text { for all } A \in \mathcal{S T}_{3}(\mathbb{F})
$$

where $\phi(A)_{i}$ denotes the i-th component of $\phi(A) \in \mathbb{F}^{3}$. We are done.

Linear Spaces and Preservers of Bounded Rank-Two Per-Symmetric Triangular Matrices 645
Case III-2: $\psi\left(e_{2}^{2}\right) \notin \psi(\mathcal{W})$. Let $\mathcal{W}_{1}=\left\langle e_{1}^{2}, e_{2}^{2}, e_{1} \oslash e_{2}\right\rangle$. Note that $\psi\left(\mathcal{W}_{1}\right)$ is a 3-dimensional linear space of bounded rank-two matrices of $\mathcal{S} \mathcal{M}_{m}(\mathbb{F})$. By Lemma 3.1, we have either

$$
\begin{equation*}
\psi\left(\mathcal{W}_{1}\right) \subseteq x \oslash \mathcal{M}_{m, 1}(\mathbb{F}) \tag{4.27}
\end{equation*}
$$

for some nonzero vector $x \in \mathcal{M}_{m, 1}(\mathbb{F})$; or

$$
\begin{equation*}
\psi\left(\mathcal{W}_{1}\right)=\left\langle x^{2}, y^{2}, x \oslash y\right\rangle \tag{4.28}
\end{equation*}
$$

for some linearly independent vectors $x, y \in \mathcal{M}_{m, 1}(\mathbb{F})$. We need to consider the following four subcases:

Case III-2-A: (4.25) and (4.27) hold. Since $\psi(\mathcal{W}) \subseteq u \oslash \mathcal{M}_{m, 1}(\mathbb{F})$ contains two linearly independent elements $\psi\left(e_{1}^{2}\right)=x \oslash y_{1}$ and $\psi\left(e_{1} \oslash e_{2}\right)=x \oslash y_{2}$ for some $y_{1}, y_{2} \in$ $\mathcal{M}_{m, 1}(\mathbb{F})$, it follows from Lemma 2.4 that $\langle x\rangle=\langle u\rangle$. Thus, $\operatorname{Im} \psi \subseteq u \oslash \mathcal{M}_{m, 1}(\mathbb{F})$, and hence, (4.1) holds true.

Case III-2-B: (4.26) and (4.28) hold. By (4.26) and (4.28), we see that

$$
a_{1} u^{2}+a_{2} v^{2}+a_{3} u \oslash v=\psi\left(e_{1}^{2}\right)=b_{1} x^{2}+b_{2} y^{2}+b_{3} x \oslash y
$$

is of rank one or rank two for some nonzero elements $\left(a_{i}\right),\left(b_{i}\right) \in \mathbb{F}^{3}$, and

$$
c_{1} u^{2}+c_{2} v^{2}+c_{3} u \oslash v=\psi\left(e_{1} \oslash e_{2}\right)=d_{1} x^{2}+d_{2} y^{2}+d_{3} x \oslash y
$$

is of rank one or rank two for some nonzero elements $\left(c_{i}\right),\left(d_{i}\right) \in \mathbb{F}^{3}$. Therefore,

$$
\begin{aligned}
& u \cdot\left(a_{1} u^{+}+a_{3} v^{+}\right)+v \cdot\left(a_{2} v^{+}+a_{3} u^{+}\right)=x \cdot\left(b_{1} x^{+}+b_{3} y^{+}\right)+y \cdot\left(b_{2} y^{+}+b_{3} x^{+}\right), \\
& u \cdot\left(c_{1} u^{+}+c_{3} v^{+}\right)+v \cdot\left(c_{2} v^{+}+c_{3} u^{+}\right)=x \cdot\left(d_{1} x^{+}+d_{3} y^{+}\right)+y \cdot\left(d_{2} y^{+}+d_{3} x^{+}\right) .
\end{aligned}
$$

Since $\psi\left(e_{1}^{2}\right), \psi\left(e_{1} \oslash e_{2}\right)$ are linearly independent, it follows that, in each case, we obtain $\langle u, v\rangle=\langle x, y\rangle$. By Lemma 4.1(a), $\left\langle u^{2}, v^{2}, u \oslash v\right\rangle=\left\langle x^{2}, y^{2}, x \oslash y\right\rangle$, and so $\psi\left(e_{2}^{2}\right) \in \psi(\mathcal{W})$, a contradiction.

Case III-2-C: (4.25) and (4.28) hold. Let $\psi\left(e_{1}^{2}\right)=u \oslash z_{1}, \psi\left(e_{1} \oslash e_{2}\right)=u \oslash z_{2}$ and $\psi\left(e_{1} \oslash e_{3}\right)=u \oslash z_{3}$ for some linearly independent vectors $z_{1}, z_{2}, z_{3} \in \mathcal{M}_{m, 1}(\mathbb{F})$. By (4.28), we get

$$
\begin{gathered}
u \oslash z_{1}=a_{1} x^{2}+a_{2} y^{2}+a_{3} x \oslash y \\
u \oslash z_{2}=b_{1} x^{2}+b_{2} y^{2}+b_{3} x \oslash y
\end{gathered}
$$

for some nonzero elements $\left(a_{i}\right),\left(b_{i}\right) \in \mathbb{F}^{3}$. Thus,

$$
\begin{equation*}
u \cdot z_{1}^{+}+z_{1} \cdot u^{+}=x \cdot\left(a_{1} x^{+}+a_{3} y^{+}\right)+y \cdot\left(a_{2} y^{+}+a_{3} x^{+}\right) \tag{4.29}
\end{equation*}
$$

$$
\begin{equation*}
u \cdot z_{2}^{+}+z_{2} \cdot u^{+}=x \cdot\left(b_{1} x^{+}+b_{3} y^{+}\right)+y \cdot\left(b_{2} y^{+}+b_{3} x^{+}\right) \tag{4.30}
\end{equation*}
$$

We consider the following four subcases:
Subcase III-2-C-1: $\operatorname{rank} \psi\left(e_{1}^{2}\right)=\operatorname{rank} \psi\left(e_{1} \oslash e_{2}\right)=1$. Then $\left\langle z_{1}\right\rangle=\langle u\rangle=\left\langle z_{2}\right\rangle$. This contradicts the fact that z_{1}, z_{2} are linearly independent.

Subcase III-2-C-2: $\operatorname{rank} \psi\left(e_{1}^{2}\right)=\operatorname{rank} \psi\left(e_{1} \oslash e_{2}\right)=2$. Then $\left\{u, z_{i}\right\}$ is linearly independent for $i=1,2$. It follows from (4.29) and (4.30) that $\left\langle u, z_{1}\right\rangle=\langle x, y\rangle=$ $\left\langle u, z_{2}\right\rangle$. Since rank $\psi\left(e_{1} \oslash e_{2}\right)=2$ and $\left\{z_{1}, z_{2}\right\}$ is linearly independent, $z_{2}=\mu_{1} u+\mu_{2} z_{1}$ for some nonzero scalars $\mu_{1}, \mu_{2} \in \mathbb{F}$. We thus have $\left\{z_{1}, u, z_{3}\right\}$ is linearly independent and $\psi\left(e_{1} \oslash e_{2}\right)=\eta_{1} u^{2}+\eta_{2} u \oslash z_{1}$, with $\eta_{1}=2 \mu_{1}$ and $\eta_{2}=\mu_{2}$ nonzero. Since $\left\langle x^{2}, y^{2}, x \oslash y\right\rangle=\left\langle u^{2}, z_{1}^{2}, u \oslash z_{1}\right\rangle$, we have $\psi\left(e_{2}^{2}\right)=\lambda_{1} u^{2}+\lambda_{2} u \oslash z_{1}+\lambda_{3} z_{1}^{2}$ for some $\left(\lambda_{i}\right) \in \mathbb{F}^{3}$ with $\lambda_{3} \neq 0$. Let $P \in \mathcal{M}_{3, m}(\mathbb{F})$ be the matrix defined by $P e_{1}=u$, $P e_{2}=z_{1}$ and $P e_{3}=z_{3}$. Then P is of full rank, and $\psi\left(e_{1}^{2}\right)=P\left(e_{1} \oslash e_{2}\right) P^{+}$, $\psi\left(e_{1} \oslash e_{2}\right)=P\left(\eta_{1} e_{1}^{2}+\eta_{2} e_{1} \oslash e_{2}\right) P^{+}, \psi\left(e_{1} \oslash e_{3}\right)=P\left(e_{1} \oslash e_{3}\right) P^{+}$and $\psi\left(e_{2}^{2}\right)=$ $P\left(\lambda_{1} e_{1}^{2}+\lambda_{2} e_{1} \oslash e_{2}+\lambda_{3} e_{2}^{2}\right) P^{+}$. By the linearity of ψ, we obtain

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{11} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{22} & \eta_{1} a_{12}+\lambda_{1} a_{22} \\
0 & \lambda_{3} a_{22} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{22} \\
0 & 0 & a_{11}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$. We are done.
Subcase III-2-C-3: $\operatorname{rank} \psi\left(e_{1}^{2}\right)=1$ and rank $\psi\left(e_{1} \oslash e_{2}\right)=2$. Then $\left\langle z_{1}\right\rangle=\langle u\rangle$, and so $\psi\left(e_{1}^{2}\right)=\eta u^{2}$ for some nonzero scalar $\eta \in \mathbb{F}$. Note that $\left\{u, z_{2}, z_{3}\right\}$ is linearly independent. By (4.30), we have $\left\langle u, z_{2}\right\rangle=\langle x, y\rangle$, and so $\left\langle u^{2}, z_{2}^{2}, u \oslash z_{2}\right\rangle=\left\langle x^{2}, y^{2}, x \oslash y\right\rangle$ by Lemma 4.1(a). Thus, $\psi\left(e_{2}^{2}\right)=\lambda_{1} u^{2}+\lambda_{2} u \oslash z_{2}+\lambda_{3} z_{2}^{2}$ for some $\left(\lambda_{i}\right) \in \mathbb{F}^{3}$ with $\lambda_{3} \neq 0$. Let $P \in \mathcal{M}_{3, m}(\mathbb{F})$ be the matrix defined by $P e_{1}=u, P e_{2}=z_{2}$ and $P e_{3}=z_{3}$. Then P is of full rank and

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{11} & a_{12}+\lambda_{2} a_{22} & \eta a_{13}+\lambda_{1} a_{22} \\
0 & \lambda_{3} a_{22} & a_{12}+\lambda_{2} a_{22} \\
0 & 0 & a_{11}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$. We are done.
Subcase III-2-C-4: $\operatorname{rank} \psi\left(e_{1}^{2}\right)=2$ and $\operatorname{rank} \psi\left(e_{1} \oslash e_{2}\right)=1$. Then $\left\langle z_{2}\right\rangle=\langle u\rangle$ and $\psi\left(e_{1} \oslash e_{2}\right)=\eta u^{2}$ for some nonzero scalar $\eta \in \mathbb{F}$. So $\left\{z_{1}, u, z_{3}\right\}$ is linearly independent. By (4.29), we conclude that $\left\langle u^{2}, z_{1}^{2}, u \oslash z_{1}\right\rangle=\left\langle x^{2}, y^{2}, x \oslash y\right\rangle$. Thus, $\psi\left(e_{2}^{2}\right)=\lambda_{1} u^{2}+$ $\lambda_{2} u \oslash z_{1}+\lambda_{3} z_{1}^{2}$ for some $\left(\lambda_{i}\right) \in \mathbb{F}^{3}$ with $\lambda_{3} \neq 0$. Let $P \in \mathcal{M}_{3, m}(\mathbb{F})$ be the matrix

Linear Spaces and Preservers of Bounded Rank-Two Per-Symmetric Triangular Matrices 647
defined by $P e_{1}=u, P e_{2}=z_{1}$ and $P e_{3}=z_{3}$. Then P is of full rank and

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{11} & a_{13}+\lambda_{2} a_{22} & \eta a_{12}+\lambda_{1} a_{22} \\
0 & \lambda_{3} a_{22} & a_{13}+\lambda_{2} a_{22} \\
0 & 0 & a_{11}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$. We are done.
Case III-2-D: (4.26) and (4.27) hold. Let $\tau: \mathcal{S T}_{3}(\mathbb{F}) \rightarrow \mathcal{S T}_{3}(\mathbb{F})$ be the bijective linear mapping defined by

$$
\tau(A)=\left[\begin{array}{ccc}
a_{22} & a_{12} & a_{13} \\
0 & a_{11} & a_{12} \\
0 & 0 & a_{22}
\end{array}\right] \quad \text { for all } A=\left(a_{i j}\right) \in \mathcal{S} \mathcal{T}_{3}(\mathbb{F})
$$

It is easily seen that τ is a bounded rank-two linear preserver such that $\tau(\mathcal{W})=\mathcal{W}_{1}$ and $\tau\left(\mathcal{W}_{1}\right)=\mathcal{W}$. It follows from (4.26) and (4.27) that

$$
(\psi \circ \tau)(\mathcal{W})=\psi\left(\mathcal{W}_{1}\right) \subseteq x \oslash \mathcal{M}_{m, 1}(\mathbb{F}) \quad \text { and } \quad(\psi \circ \tau)\left(\mathcal{W}_{1}\right)=\psi(\mathcal{W})=\left\langle u^{2}, v^{2}, u \oslash v\right\rangle
$$

We then infer by similar arguments as in Subcase III-2-C and conclude that ψ takes one of the following forms: there exists a full rank matrix $P \in \mathcal{M}_{3, m}(\mathbb{F})$ such that

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{22} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{11} & \eta_{1} a_{12}+\lambda_{1} a_{11} \\
0 & \lambda_{3} a_{11} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{11} \\
0 & 0 & a_{22}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S} \mathcal{T}_{3}(\mathbb{F})$, where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \eta_{1}, \eta_{2} \in \mathbb{F}$ with $\lambda_{3}, \eta_{1}, \eta_{2} \neq 0$; or

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{22} & a_{12}+\lambda_{2} a_{11} & \eta a_{13}+\lambda_{1} a_{11} \\
0 & \lambda_{3} a_{11} & a_{12}+\lambda_{2} a_{11} \\
0 & 0 & a_{22}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$, where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \eta \in \mathbb{F}$ with $\lambda_{3}, \eta \neq 0$; or

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{22} & a_{13}+\lambda_{2} a_{11} & \eta a_{12}+\lambda_{1} a_{11} \\
0 & \lambda_{3} a_{11} & a_{13}+\lambda_{2} a_{11} \\
0 & 0 & a_{22}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$, where $\lambda_{1}, \lambda_{2}, \lambda_{3}, \eta \in \mathbb{F}$ with $\lambda_{3}, \eta \neq 0$.
By Theorem 4.3, Lemma 2.3(a) and (b) (i), and Lemma 2.6, we obtain a classification of bounded rank-two linear preservers between per-symmetric triangular matrix spaces over a field of characteristic not two.

Corollary 4.4. Let \mathbb{F} be a field of characteristic not two and m, n be integers such that $m, n \geqslant 3$. Then $\psi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{S T}_{m}(\mathbb{F})$ is a bounded rank-two linear preserver if and only if $m \geqslant n$ and ψ is of one of the following forms:
(i) There exist a nonzero vector $u \in \mathcal{U}_{p, m}$ and a linear mapping $\varphi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{U}_{q, m}$, with $1 \leqslant p \leqslant m+1-q \leqslant m$, such that

$$
\psi(A)=u \oslash \varphi(A) \quad \text { for all } A \in \mathcal{S T}_{n}(\mathbb{F})
$$

where $\varphi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{n}(\mathbb{F})$.
(ii) There exist a full rank matrix $P \in \mathcal{M}_{m, n}(\mathbb{F})$ and a nonzero $\lambda \in \mathbb{F}$ such that

$$
\psi(A)=\lambda P A P^{+} \quad \text { for all } A \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})
$$

where $P e_{i} \in \mathcal{U}_{p_{i}, m} \backslash \mathcal{U}_{p_{i}-1, m}$ for $i=1, \ldots, n$ such that $1 \leqslant p_{i} \leqslant \frac{m+1}{2}$ for every $1 \leqslant i \leqslant \frac{n+1}{2}$, and $p_{i} \leqslant m+1-p_{j}$ for every $1 \leqslant i<j \leqslant n+1-i$. In particular, $P \in \mathcal{T}_{n}(\mathbb{F})$ when $m=n$.
(iii) When $n=4$, in addition to (i) and (ii), ψ also takes the form

$$
\psi(A)=P\left[\begin{array}{cccc}
a_{11} & a_{12} & \alpha a_{13}+\theta\left(a_{14}-a_{23}\right) & \beta a_{14} \\
0 & a_{22} & (2 \alpha-\beta) a_{23} & \alpha a_{13}+\theta\left(a_{14}-a_{23}\right) \\
0 & 0 & a_{22} & a_{12} \\
0 & 0 & 0 & a_{11}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{4}(\mathbb{F})$, where $\alpha, \beta, \theta \in \mathbb{F}$ are scalars such that α, β are nonzero with $\beta \neq 2 \alpha$, and θ is nonzero only if $|\mathbb{F}|=3$, and $P \in \mathcal{M}_{m, 4}(\mathbb{F})$ is a full rank matrix in which $P e_{i} \in \mathcal{U}_{p_{i}, m}$ for $1 \leqslant i \leqslant 4$ with $1 \leqslant p_{i} \leqslant \frac{m+1}{2}$ for every $1 \leqslant i \leqslant 2$, and $p_{i} \leqslant m+1-p_{j}$ for every $1 \leqslant i<j \leqslant 5-i$. In particular, $P \in \mathcal{T}_{4}(\mathbb{F})$ when $m=4$.
(iv) When $n=3$, in addition to (i) and (ii), ψ also takes one of the following forms:
(a) There exist a surjective linear mapping $\phi: \mathcal{S T}_{3}(\mathbb{F}) \rightarrow \mathbb{F}^{3}$ and a full rank matrix $P \in \mathcal{M}_{m, 2}(\mathbb{F})$ such that

$$
\psi(A)=P\left[\begin{array}{ll}
\phi(A)_{3} & \phi(A)_{1} \\
\phi(A)_{2} & \phi(A)_{3}
\end{array}\right] P^{+} \quad \text { for all } A \in \mathcal{S T}_{3}(\mathbb{F})
$$

where $P e_{1}, P e_{2} \in \mathcal{U}_{p, m}$ for some integer $1 \leqslant p \leqslant \frac{m+1}{2}, \phi(A)_{i}$ is the i-th component of $\phi(A) \in \mathbb{F}^{3}$, and $\phi(A) \neq 0$ for every nonzero bounded rank-two matrix $A \in \mathcal{S T}_{3}(\mathbb{F})$.
(b) There exist scalars $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{F}$ with $\lambda_{3} \neq 0$ such that either

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{p p} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{q q} & \eta_{1} a_{12}+\lambda_{1} a_{q q} \\
0 & \lambda_{3} a_{q q} & \eta_{2} a_{12}+a_{13}+\lambda_{2} a_{q q} \\
0 & 0 & a_{p p}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S} \mathcal{T}_{3}(\mathbb{F})$, where $\eta_{1}, \eta_{2} \in \mathbb{F}$ are nonzero and $\{p, q\}=$ $\{1,2\}$; or

$$
\psi(A)=P\left[\begin{array}{ccc}
a_{p p} & a_{1 s}+\lambda_{2} a_{q q} & \eta_{1} a_{1 t}+\lambda_{1} a_{q q} \\
0 & \lambda_{3} a_{q q} & a_{1 s}+\lambda_{2} a_{q q} \\
0 & 0 & a_{p p}
\end{array}\right] P^{+}
$$

for all $A=\left(a_{i j}\right) \in \mathcal{S T}_{3}(\mathbb{F})$, where $\eta \in \mathbb{F}$ is nonzero and $\{p, q\}=\{s, t\}=$ $\{1,2\}$. Here, $P \in \mathcal{M}_{m, 3}(\mathbb{F})$ is a full rank matrix such that $P e_{1}, P e_{2} \in$ $\mathcal{U}_{p, m}$ with $1 \leqslant p \leqslant \frac{m+1}{2}$ and $P e_{3} \in \mathcal{U}_{q, m}$ with $1 \leqslant q \leqslant m+1-p$. In particular, $P \in \mathcal{T}_{3}(\mathbb{F})$ when $m=3$.

We end this section by giving an example of rank-one linear preserver / rank-one non-increasing linear mapping and some examples of rank-two non-increasing linear mappings on per-symmetric triangular matrices.

Example 4.5. Let \mathbb{F} be a field and m, n be integers $\geqslant 2$. Let $p:=\left\lfloor\frac{n+1}{2}\right\rfloor$, where $\lfloor\cdot\rfloor$ is the floor function. Let $\psi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow \mathcal{S} \mathcal{M}_{m}(\mathbb{F})$ be the linear mapping defined by

$$
\psi(A)=\lambda P\left[\begin{array}{cc}
\phi\left(A_{1}\right) & \varphi\left(A_{2}\right) \\
0 & \phi\left(A_{1}\right)^{+}
\end{array}\right] P^{+} \quad \text { for every } A=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{1}^{+}
\end{array}\right] \in \mathcal{S T}_{n}(\mathbb{F})
$$

with $A_{1} \in \mathcal{T}_{p, n-p}(\mathbb{F})$ and $A_{2} \in \mathcal{S M}_{p}(\mathbb{F})$, where $\lambda \in \mathbb{F} \backslash\{0\}, P \in \mathcal{M}_{m, n}(\mathbb{F})$ is of full rank, and $\phi: \mathcal{T}_{p, n-p}(\mathbb{F}) \rightarrow \mathcal{M}_{p, n-p}(\mathbb{F})$ and $\varphi: \mathcal{S M}_{p}(\mathbb{F}) \rightarrow \mathcal{S} \mathcal{M}_{p}(\mathbb{F})$ are linear mappings. Here $\mathcal{T}_{p, n-p}(\mathbb{F})=\mathcal{T}_{p}(\mathbb{F})$ when $n-p=p$, and

$$
\mathcal{T}_{p, n-p}(\mathbb{F})=\left\{\left.\left[\begin{array}{c}
T \\
0
\end{array}\right] \in \mathcal{M}_{p, n-p}(\mathbb{F}) \right\rvert\, T \in \mathcal{T}_{p-1}(\mathbb{F})\right\} \text { when } n-p=p-1
$$

It is easily verified that

- ψ is a rank-one linear preserver whenever φ is a rank-one linear preserver on $\mathcal{S M}_{p}(\mathbb{F})$, and
- ψ is rank-one non-increasing whenever φ is a rank-one non-increasing linear mapping on $\mathcal{S M}_{p}(\mathbb{F})$.

By the structural results of rank-one linear preservers and rank-one non-increasing linear mappings on symmetric matrices (see a complete result under a more general setting in [8], [12]), the structure of ψ can be established immediately.

Example 4.6. Let \mathbb{F} be a field and m, n be integers $\geqslant 2$. Let $\psi: \mathcal{S T}_{n}(\mathbb{F}) \rightarrow$ $\mathcal{S} \mathcal{M}_{m}(\mathbb{F})$ be the linear mapping defined by

$$
\psi(A)=\lambda P A P^{+}
$$

for every $A \in \mathcal{S T}_{n}(\mathbb{F})$, where $\lambda \in \mathbb{F}$ and $P \in \mathcal{M}_{m, n}(\mathbb{F})$. Clearly, ψ is rank-two non-increasing.

Example 4.7. Let \mathbb{F} be a field and n be an integer $\geqslant 2$. Let $\psi: \mathcal{S} \mathcal{T}_{n}(\mathbb{F}) \rightarrow$ $\mathcal{S} \mathcal{M}_{n}(\mathbb{F})$ be the linear mapping defined by

$$
\psi(A)=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)
$$

for every $A=\left(a_{i j}\right) \in \mathcal{S T}_{n}(\mathbb{F})$. It is immediate to see that $\operatorname{rank} \psi(A) \leqslant 2$ whenever $\operatorname{rank} A \leqslant 2$.

Example 4.8. Let \mathbb{F} be a field and n be an integer $\geqslant 2$. Let $\psi: \mathcal{S}_{n}(\mathbb{F}) \rightarrow$ $\mathcal{S} \mathcal{M}_{n}(\mathbb{F})$ be the linear mapping defined by

$$
\psi(A)=\left[\begin{array}{ccccc}
\lambda_{1} A_{11} & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} A_{22} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{2} A_{22} & 0 \\
0 & 0 & \cdots & 0 & \lambda_{1} A_{11}
\end{array}\right]
$$

for every $A=\left(A_{i j}\right) \in \mathcal{S} \mathcal{T}_{n}(\mathbb{F})$ with $A_{i j} \in \mathcal{M}_{n_{i}, n_{j}}(\mathbb{F})$ for $1 \leqslant i \leqslant j \leqslant k$. Here $\lambda_{i} \in \mathbb{F}$ with $\lambda_{k+1-i}=\lambda_{i}$ for $i=1, \ldots, k$, and $n_{1}+\cdots+n_{k}=n$ with $n_{k+1-i}=n_{i}$ for $i=1, \ldots, k$. It is easily verified that is rank-two non-increasing.

Example 4.9. Let \mathbb{F} be a field. We define the linear mapping $\psi: \mathcal{S T}_{5}(\mathbb{F}) \rightarrow$ $\mathcal{S M}_{5}(\mathbb{F})$ such that

$$
\psi(A)=\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & 0 \\
a_{12} & a_{22} & a_{23} & a_{24} & 0 \\
0 & 0 & a_{33} & a_{23} & 0 \\
0 & 0 & 0 & a_{22} & 0 \\
0 & 0 & 0 & a_{12} & a_{11}
\end{array}\right]
$$

for every $A=\left(a_{i j}\right) \in \mathcal{S T}_{5}(\mathbb{F})$. A direct verification shows that ψ satisfies $\operatorname{rank} \psi(A) \leqslant$ 2 whenever $\operatorname{rank} A \leqslant 2$.

Example 4.10. Let \mathbb{F} be a field and $\psi: \mathcal{S T}_{5}(\mathbb{F}) \rightarrow \mathcal{S M}_{5}(\mathbb{F})$ be the linear mapping defined by

$$
\psi(A)=\left[\begin{array}{ccccc}
a_{11} & a_{12} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 & 0 \\
0 & a_{23} & a_{33} & 0 & 0 \\
0 & 0 & a_{23} & a_{22} & a_{12} \\
0 & 0 & 0 & 0 & a_{11}
\end{array}\right]
$$

for every $A=\left(a_{i j}\right) \in \mathcal{S T}_{5}(\mathbb{F})$. Then ψ satisfies $\operatorname{rank} \psi(A) \leqslant 2$ whenever rank $A \leqslant 2$. Nevertheless, we note that ψ is not rank-one non-increasing. For example, $\psi\left(E_{23}+\right.$ $\left.E_{24}+E_{33}+E_{34}\right)=E_{32}+E_{33}+E_{43}$ is of rank two.

Examples 4.64.10 demonstrate that the structure of rank-two non-increasing linear mappings on per-symmetric triangular matrices is complicated. This shows that condition (1.1) is a relevant assumption in our study.

Acknowledgment. The authors are indebted to the referee for his/her meticulous care in reading the manuscript and for his/her constructive and useful comments. The first three authors' research was supported by FRGS National Research Grant Scheme FP011-2013A.

REFERENCES

[1] L.B. Beasley. Linear operators which preserve pairs on which the rank is additive. Journal of Korean SIAM, 2:27-30, 1998.
[2] G.H. Chan and M.H. Lim. Linear transformations on symmetric matrices II. Linear and Multilinear Algebra, 32:319-325, 1992.
[3] W.L. Chooi and M.H. Lim. Rank-one nonincreasing mappings on triangular matrices and some related preserver problems. Linear and Multilinear Algebra, 49:305-336, 2001.
[4] W.L. Chooi and M.H. Lim. Some linear preserver problems on block triangular matrix algebras. Linear Algebra and its Applications, 370:25-39, 2003.
[5] W.L. Chooi, M.H. Lim, and Z.C. Ng. Linear spaces and preservers of symmetric matrices of bounded rank-two. Linear and Multilinear Algebra, 61:1051-1062, 2013.
[6] G. Frobenius. Über die Darstellung der endlichen Gruppen durch Lineare Substitutionen. Stizungsber. Deutsche Akademie der Wissenschaften zu Berlin, 994-1015, 1897.
[7] C.R. Johnson and S. Pierce. Linear maps on Hermitian matrices: The stabilizer of an inertia class II. Linear and Multilinear Algebra, 19:21-31, 1986.
[8] B. Kuzma and M. Orel. Additive mappings on symmetric matrices. Linear Algebra and its Applications, 418:277-291, 2006.
[9] C.K. Li and S. Pierce. Linear preserver problems. American Mathematical Monthly, 108:591-605, 2001.
[10] M.H. Lim. Linear transformations on symmetric matrices. Linear and Multilinear Algebra, 7:4757, 1979.
[11] M.H. Lim. Linear mappings on second symmetric product spaces that preserve rank less than or equal to one. Linear and Multilinear Algebra, 26:187-193, 1990.
[12] M.H. Lim. Rank-one nonincreasing additive mappings on second symmetric product spaces. Linear Algebra and its Applications, 402:263-271, 2005.
[13] R. Loewy. Linear mappings which are rank- k nonincreasing II. Linear and Multilinear Algebra, 36:115-123, 1993.
[14] R. Loewy and S. Pierce. Linear preservers of balanced singular inertia classes. Linear Algebra and its Applications, 201:61-77, 1994.
[15] H. Minc. Linear transformations on matrices: Rank 1 preservers and determinant preservers. Linear and Multilinear Algebra, 4:265-272, 1977.
[16] S. Pierce et al. A survey of linear preserver problems. Linear and Multilinear Algebra, 33:1-129, 1992.
[17] W. Watkins. Linear maps that preserve commuting pairs of matrices. Linear Algebra and its Applications, 14:29-35, 1976.
[18] X. Zhang, X.M. Tang, and C.G. Cao. Preserver Problems on Spaces of Matrices. Science Press, Beijing, 2007.

[^0]: *Received by the editors on August 20, 2013. Accepted for publication on April 30, 2014. Handling Editor: Raphael Loewy.
 ${ }^{\dagger}$ Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia (wlchooi@um.edu.my, khkwa@um.edu.my, limmh@um.edu.my). Supported by FRGS National Research Grant Scheme FP011-2013A.
 ${ }^{\ddagger}$ School of Mathematical Sciences, Universiti Sains Malaysia, Penang, Malaysia (zc_ng2004@yahoo.com)

