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A NOTE ON GRAPHS WHOSE LARGEST EIGENVALUE OF

THE MODULARITY MATRIX EQUALS ZERO∗

SNJEŽANA MAJSTOROVIĆ† AND DRAGAN STEVANOVIĆ‡

Abstract. Informally, a community within a graph is a subgraph whose vertices are more

connected to one another than to the vertices outside the community. One of the most popular

community detection methods is the Newman’s spectral modularity maximization algorithm, which

divides a graph into two communities based on the signs of the principal eigenvector of its modularity

matrix in the case that the modularity matrix has positive largest eigenvalue. Newman defined a

graph to be indivisible if its modularity matrix has no positive eigenvalues. It is shown here that a

graph is indivisible if and only if it is a complete multipartite graph.

Key words. Modularity matrix, Community structure, Largest eigenvalue, Complete multipar-

tite graph.
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1. Introduction. In a real-world network originating from a particular applica-

tion, communities represent vertices that are usually bonded together by a defining

property, and as a consequence, tend to be more connected to one another than to

other vertices in the network. For example, communities in social networks may arise

based on common location, interests or occupation, while citation networks may form

communities based on research topic. Usually, the information on the network’s com-

munity structure is not available, and being able to effectively identify communities

within a network may provide further insight into its topology and node properties.

This problem of community detection has been thoroughly surveyed in [6].

Let G = (V,E) be a graph with n = |V | vertices, m = |E| edges, adjacency
matrix A and let d ∈ R

n be the vector of the degrees of its vertices. For a particular

partition of V into the communities C1, . . . , Ck, k ≥ 2, a widely used measure de-
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scribing its “quality” is the modularity, introduced by Newman and Girvan [10] and

defined as

q =
1

2m

k
∑

p=1

∑

u∈Cp

∑

v∈Cp

Muv,

where

M = A− 1

2m
ddT

is the modularity matrix of G. All the row sums of M are zeros, due to the sum of

vertex degrees being equal to 2m, so the modularity matrix has an eigenvalue 0 with

the all-one vector j ∈ R
n as its eigenvector.

Newman proposed in [9] the spectral partitioning algorithm which divides a graph

into two communities, in the case that its modularity matrix has positive largest

eigenvalue, in such a way that all vertices with positive components of the principal

eigenvector of modularity matrix are placed in one community and all the rest in

the other community. The discussion in [9] implicitly implies that the graphs with

the largest eigenvalue of the modularity matrix equal to zero are totally lacking the

community structure, and Newman called such graphs indivisible.

On the other hand, apparent examples of graphs with pure anticommunity struc-

ture are the complete multipartite graphs, in which any two vertices from the same

part are not adjacent to each other, while any two vertices from different parts are

adjacent to each other. We show that these two observations are related through the

following

Theorem 1.1. A connected graph has the largest eigenvalue of the modularity

matrix equal to zero if and only if it is a complete multipartite graph.

The paper is organized as follows. In the next section, we describe the modularity

spectrum of complete multipartite graphs, proving one direction of Theorem 1.1. In

Section 3, we combine the facts that the modularity matrix is a rank-one modification

of the adjacency matrix and that the graphs with exactly one positive eigenvalue of

the adjacency matrix are complete multipartite graphs, to prove the other direction

of Theorem 1.1. Using Sylvester’s law of inertia, an analogue of Theorem 1.1 is

proved for the normalized modularity matrix as well. Finally, in Section 4, we discuss

differences between our approach and the approach taken in [3], where these results

have been obtained independently.

2. The modularity spectrum of complete multipartite graphs. Recall

that G is a complete multipartite graph if there exists a partition V = V1 ∪ · · · ∪ Vk

of its vertices such that any two vertices from different parts are adjacent to each
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other, while any two vertices from the same part are not adjacent to each other. The

complete multipartite graph with parts of size np = |Vp|, p = 1, . . . , k, is denoted by

Kn1,...,nk
. Denote the vertices of the part Vp, p = 1, . . . , k, by vp,1, . . . , vp,np

. Note

that the degree of any vertex from Vp is equal to d(vp,q) = n − np, p = 1, . . . , k,

q = 1, . . . , np.

For each p = 1, . . . , k, if np ≥ 2, let xp,q ∈ R
n, q = 2, . . . , np, denote the vector

with

xp,q(vp,1) = 1, xp,q(vp,q) = −1, xp,q(v) = 0 for v ∈ V \ {vp,1, vp,q}.

Then

Mxp,q = Axp,q −
1

2m
ddTxp,q = [d(vp,1)− d(vp,q)]−

1

2m
d [d(vp,1)− d(vp,q)] = 0,

showing that xp,q is an eigenvector of M corresponding to eigenvalue 0. Since j and

the vectors xp,q, p = 1, . . . , k, q = 2, . . . , np, are linearly independent (j is orthogonal

to each xp,q, while for each vertex u ∈ V \{v1,1, . . . , vk,1} exactly one vector among all

xp,q has a nonzero u-component), this shows that the multiplicity of 0 as an eigenvalue

of M is at least 1 +
∑k

p=1(np − 1) = n− k + 1.

The remaining k− 1 eigenvectors of M can be chosen in such a way that they are

orthogonal to j and all of xp,q. Such an eigenvector y has to be constant within any

part Vp, p = 1, . . . , k: if np ≥ 2, then y is orthogonal to all of xp,q which implies that

y(vp,1) = y(vp,q) for each q = 2, . . . , np (and if np = 1, then y is trivially constant in

the singleton Vp).

Let jp ∈ R
n, p = 1, . . . , k, be the vector being equal to 1 for vertices in Vp and 0

for vertices in V \ Vp. Then there exist coefficients αp ∈ R, p = 1, . . . , k, such that

y =

k
∑

p=1

αpjp.

From the orthogonality of y and j we get

(2.1) yT j =

k
∑

p=1

αpnp = 0.

Let λ be an eigenvalue of M corresponding to the eigenvector y. Noting that the

column of A corresponding to a vertex in Vp is equal to j − jp, p = 1, . . . , k, and that
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d =
∑k

p′=1 jp′(n− np′), we get

0 = My − λy =

k
∑

p=1

αp(Mjp − λjp)

=

k
∑

p=1

αp

[

Ajp −
1

2m
ddT jp − λjp

]

=

k
∑

p=1

αp

[

(j − jp)np − d
(n− np)np

2m
− λjp

]

=

k
∑

p=1

αp





∑

p′ 6=p

jp′np −
k

∑

p′=1

jp′

(n− np′)(n− np)np

2m
− λjp





=

k
∑

p′=1

jp′





∑

p6=p′

αpnp −
k
∑

p=1

αp
(n− np′)(n− np)np

2m
− αp′λ





=
k

∑

p′=1

jp′

[

−αp′np′ −
k

∑

p=1

αp
(n− np′)(n− np)np

2m
− αp′λ

]

.

The vectors jp′ , p′ = 1, . . . , k, are linearly independent, which implies that the co-

efficient of each jp′ above is equal to 0. After dividing it by n − np′ and adding
n
2m

∑k
p=1 αpnp = 0, we get

(2.2) αp′

λ+ np′

n− np′

=

k
∑

p=1

αp

n2
p

2m
.

Since the right-hand side of Eq. (2.2) does not depend on p′, the expression αp′

λ+np′

n−np′

has a constant value c for each p′. In particular,

αp
λ+ np

n− np
= αp′

λ+ np′

n− np′

= c.

If λ = −np for some p = 1, . . . , k, then c = 0, and consequently, αp′ = 0 holds for

all p′ such that np′ 6= np. Let P be the set of all indices i such that ni = np. Then

both Eq. (2.1) and (2.2) reduce to

∑

i∈P

αi = 0,

which has |P | − 1 linearly independent solutions, yielding that −np is an eigenvalue

of M with multiplicity |P | − 1.
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If λ+ np 6= 0 for each p, then

αp = αp′

λ+ np′

n− np′

n− np

λ+ np
.

Replacing the values αp back in Eq. (2.2) and dividing it by αp′

λ+np′

n−np′
, we obtain

(2.3) f(λ) :=

k
∑

p=1

n2
p(n− np)

2m(λ+ np)
= 1.

Let n′
1 < · · · < n′

k′ be the sequence of all distinct values among n1, . . . , nk. The

function f(λ) is defined on the union of intervals (−∞,−n′
k′) ∪ (−n′

k′ ,−n′
k′−1) ∪

· · · ∪ (−n′
2,−n′

1) ∪ (−n′
1,+∞). The derivative f ′(λ) =

∑k
p=1 −

n2

p(n−np)

2m(λ+np)2
is negative

everywhere, so that f(λ) is strictly decreasing on each interval. The function f(λ) is

negative on (−∞,−n′
k′), so that Eq. (2.3) has no solution on this interval. Since

lim
λ→−n′

i
−
f(λ) = −∞, lim

λ→−n′

i
+
f(λ) = +∞, lim

λ→+∞
f(λ) = 0,

Eq. (2.3) has a unique solution on each of the intervals (−n′
i,−n′

i−1), i = 2, . . . , k′,

and (−n′
1,+∞). Its solution on the interval (−n′

1,+∞), however, is equal to 0, which

has been dealt with already.

To conclude, we have:

Theorem 2.1. For a complete multipartite graph Kn1,...,nk
with n = n1+ · · ·+nk

vertices, let n′
1 < · · · < n′

k′ be the sequence of all distinct values among n1, . . . , nk,

and let si, i = 1, . . . , k′ be the number of occurrences of n′
i among n1, . . . , nk. The

spectrum of the modularity matrix of Kn1,...,nk
consists of:

(i) an eigenvalue 0 of multiplicity n− k + 1,

(ii) an eigenvalue −n′
i of multiplicity si − 1, whenever si ≥ 2, and

(iii) k′−1 eigenvalues λ, one from each of the intervals (−n′
i,−n′

i−1), i = 2, . . . , k′,

satisfying

k
∑

p=1

n2
p(n− np)

2m(λ+ np)
= 1.

Hence, a complete multipartite graph has the largest eigenvalue of the modularity

matrix equal to zero, proving one direction of Theorem 1.1.
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Fig. 3.1. The subgraph induced by vertices A, B, C and D.

3. Noncomplete multipartite graphs have a positive modularity eigen-

value. Let us first recall an 1982 result of Miroslav Petrović, that was originally

stated in terms of infinite graphs.

Theorem 3.1 ([11]). A connected graph has exactly one positive eigenvalue of

its adjacency matrix if and only if it is a complete multipartite graph.

In the process of proving this result, Petrović first determined the adjacency

spectrum of complete multipartite graphs. It is interesting that the same spectrum

has been independently determined 30 years later by Charles Delorme in [5]. For

the proof of the other direction of Theorem 3.1, Petrović relied on the simple use of

the Interlacing theorem [4]: if a graph is not a complete multipartite graph, then it

contains two nonadjacent vertices A and B, together with a vertex C that is, say,

adjacent to B, but not adjacent to A. Since A is not an isolated vertex, there exists a

vertex D adjacent to A (see Fig. 3.1). Then, regardless of the existence of edges BD

and CD, the subgraph induced by vertices A, B, C and D has two positive adjacency

eigenvalues, implying that a graph which is not a complete multipartite graph has at

least two positive adjacency eigenvalues.

We now need the following classical result that may be found, for example, in [7,

Theorem 8.1.8] or [12, pp. 94–97].

Lemma 3.2. Let A be a real symmetric n × n matrix with eigenvalues λ1(A) ≥
· · · ≥ λn(A). Let B = A+zzT , where z ∈ R

n, have eigenvalues λ1(B) ≥ · · · ≥ λn(B).

Then

λi−1(A) ≥ λi(B) ≥ λi(A), i = 1, . . . , n

under the convention that λ0(A) = +∞.

To finish the proof of the other direction of Theorem 1.1, we observe that M =

A− 1
2mddT is a rank-one modification of A with z = d/

√
2m, i.e., that A = M + zzT .
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Applying Lemma 3.2 to A and M , we get that λ1(M) ≥ λ2(A). Now, if G is not

a complete multipartite graph, then it has at least two positive eigenvalues of its

adjacency matrix by Theorem 3.1, which then implies that the largest eigenvalue of

its modularity matrix is positive.

Remark 3.3. As an alternative to modularity matrix, Bolla [2] studied the

normalized modularity matrix defined as

MD = D−1/2MD−1/2,

with D = diag(d). The spectrum of MD is contained within [−1, 1] and always

contains an eigenvalue 0 with
√
d as its eigenvector. The analogue of Theorem 1

holds for the normalized modularity matrix as well: A connected graph has the largest

eigenvalue of the normalized modularity matrix equal to zero if and only if it is a

complete multipartite graph.

The proof stems immediately from the proof of Theorem 1: since MD and M are

congruent matrices, by Sylvester’s law of inertia [8] the matrix MD has no positive

eigenvalues (and has eigenvalue 0) if and only if the matrixM has no positive eigenval-

ues (and has eigenvalue 0), which happens if and only if G is a complete multipartite

graph.

4. Concluding remarks. Theorem 1.1 resolves the open problem that the sec-

ond author posed at CRM Conference on Applications of Graph Spectra in Barcelona

in July, 2012. In the meantime, one of the participants of that conference and her

group solved this open problem independently in [3] (see also addendum to [1] at

http://media.wiley.com/product ancillary/28/11183449/DOWNLOAD/addendum.pdf). We

would like to shed some light on the differences between the approaches taken here

and in [3].

Bolla et al. [3] first derive the modularity and the normalized modularity spectra

of complete graphs (not the multipartite ones), determine the multiplicity of mod-

ularity eigenvalue zero of a complete multipartite graph, and then show that the

remaining modularity eigenvalues are negative, without determining them. In con-

trast, we completely describe the modularity eigenstructure of complete multipartite

graphs by determining their eigenvectors and providing an expression that implicitly

defines non-zero modularity eigenvalues (Theorem 2.1).

To prove the other part of Theorem 1.1, Bolla et al. [3] rely on characterization

of complete multipartite graphs in terms of 3-vertex induced subgraphs and use the

characterization of negative semidefinite matrices in terms of signs of their principal

minors (specifically, the minors of order three). In contrast, we use a very insightful

observation of the first author that the modularity matrix is a rank-one perturbation

of the adjacency matrix, which enabled us to complete the proof by using a classical
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interlacing result (Lemma 3.2) and a slightly less classical characterization of the

adjacency spectra of complete multipartite graphs (first obtained by Petrović [11] in

1982, then independently reproved by Delorme [5] in 2012).
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