ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC GRAPHS WITH PERFECT MATCHINGS*

XIAO LING ZHANG ${ }^{\dagger}$

Abstract

For a connected graph, the distance spectral radius is the largest eigenvalue of its distance matrix. Let $U_{2 k}^{1}$ be the graph obtained from C_{3} by attaching a path of length $n-3$ at one vertex. Let $U_{2 k}^{2}$ be the graph obtained from C_{3} by attaching a pendant edge together with $k-2$ paths of length 2 at the same vertex. In this paper, it is proved that $U_{2 k}^{1}$ (resp., $U_{2 k}^{2}$) is the unique graph with the maximum (resp., minimum) distance spectral radius among all unicyclic graphs with perfect matchings on $2 k(k \geqslant 5)$ vertices.

Key words. Distance spectral radius, Unicyclic graph, Perfect matching.

AMS subject classifications. 05C50, 15A18.

1. Introduction. Let G be a connected graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance between the vertices v_{i} and v_{j} is the length of a shortest path between them, and is denoted by $d_{G}\left(v_{i}, v_{j}\right)$, or $d\left(v_{i}, v_{j}\right)$. The distance matrix $D=D(G)$ of G is defined so that its $(i, j)-$ entry is equal to $d_{G}\left(v_{i}, v_{j}\right)$. The largest eigenvalue of $D(G)$ is called the distance spectral radius, and is denoted by $\rho(G)$.

Balaban et al. 11 proposed the use of $\rho(G)$ as a molecular descriptor, while in [4] it was successfully used to infer the extent of branching and model boiling points of alkanes. Therefore, the study concerning the maximum (minimum) distance spectral radius of a given class of graphs is of great interest and significance. Recently, the maximum (minimum) distance spectral radius of a given class of graphs has been studied extensively. For example, Subhi and Powers [8] determined the graph with maximum distance spectral radius among all trees on n vertices; Stevanović and Ilić 9$]$ determined the graph with maximum distance spectral radius among all trees with fixed maximum degree Δ; Ilić [5] characterized the graph with minimum distance spectral radius among trees with given matching number; Bose et al. [2] studied the graphs with minimum (maximum) distance spectral radius among all graphs of order n with r pendent vertices; Zhang and Godsil 11] determined the graph with minimum distance spectral radius among all graphs of order n with k cut

[^0]vertices (resp., k cut edges); Yu et al. [10] determined the unique graph with minimum (maximum) distance spectral radius among unicyclic graphs on n vertices; Milan Nath and Somnath Paul [7] determined the unique graph with minimum distance spectral radius among all connected bipartite graphs of order n with a given matching number (resp., with a given vertex connectivity).

A unicyclic graph is a connected graph in which the number of edges equals the number of vertices. A rooted graph has one of its vertex, called the root, distinguished from the others. We use the following notation to represent a unicyclic graph: $G=$ $U\left(C_{l} ; T_{1}, T_{2}, \ldots, T_{l}\right)$, where C_{l} is the unique cycle in G with $V\left(C_{l}\right)=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ such that v_{i} is adjacent to $v_{i+1}(\bmod l)$ for $1 \leqslant i \leqslant l$. For each i, let T_{i} be the rooted tree with root v_{i} (see Fig. 1). If $\left|V\left(T_{i}\right)\right|=1$, we say T_{i} is a trivial tree. Let $\mathcal{U}(2 k)$ denote the set of all unicyclic graphs on $2 k$ vertices with perfect matchings. Let $U_{2 k}^{1}$ be the graph obtained from C_{3} by attaching a path of length $n-3$ at a vertex. Let $U_{2 k}^{2}$ be the graph obtained from C_{3} by attaching a pendant edge together with $k-2$ paths of length 2 at the same vertex.

Fig. 1. Graph $U\left(C_{l} ; T_{1}, T_{2}, \ldots, T_{l}\right)$.

In this paper, we mainly consider the distance spectral radius of unicyclic graphs on $2 k(k \geqslant 3)$ vertices with perfect matchings, and prove that $U_{2 k}^{1}$ (resp., $U_{2 k}^{2}$) is the unique graph with the maximum (resp., minimum) distance spectral radius among all unicyclic graphs with perfect matchings on $2 k(k \geqslant 5)$ vertices.
2. Prelimaries. We first give some lemmas which we will use in the main results.

Lemma 2.1. [9] Let w be a vertex of the nontrivial connected graph G and for positive integers p and q, let $G_{p, q}$ denote the graph obtained from G by adding pendent paths $P=w v_{1} v_{2} \cdots v_{p}$ and $Q=w u_{1} u_{2} \cdots u_{q}$ of length p and q, respectively, at w. If $p \geqslant q \geqslant 1$, then $\rho\left(G_{p, q}\right)<\rho\left(G_{p+1, q-1}\right)$.

Lemma 2.2. 11 Let u and v be two adjacent vertices of a connected graph G and for positive integers k and l, let $G_{k, l}$ denote the graph obtained from G by adding paths of length k at u and length l at v. If $k>l \geqslant 1$, then $\rho\left(G_{k, l}\right)<\rho\left(G_{k+1, l-1}\right)$; if $k=l \geqslant 1$, then $\rho\left(G_{k, l}\right)<\rho\left(G_{k+1, l-1}\right)$ or $\rho\left(G_{k, l}\right)<\rho\left(G_{k-1, l+1}\right)$.

Lemma 2.3. 3] $\rho\left(C_{n}\right)=\frac{n^{2}}{4}$, if n is even; $\rho\left(C_{n}\right)=\frac{n^{2}-1}{4}$, if n is odd.
Lemma 2.4. 6] Let $A=\left(a_{i j}\right)$ be an $n \times n$ nonnegative matrix. Then

$$
\min _{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n} a_{i j} \leqslant \rho(A) \leqslant \max _{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n} a_{i j} .
$$

LEmma 2.5. If $n \geqslant 10$ and n is even, then $\rho\left(U_{n}^{2}\right)<\rho\left(C_{n}\right)$.
Proof. By Lemma 2.4, we get

$$
\rho\left(U_{n}^{2}\right) \leqslant \max _{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n} d_{i j}=\frac{7 n}{2}-9 .
$$

By Lemma 2.3, we have

$$
\rho\left(C_{n}\right)=\frac{n^{2}}{4}
$$

If $n=10$, by matlab, we get $\rho\left(U_{10}^{2}\right)=21.0245<\rho\left(C_{10}\right)=25$.
If $n \geqslant 12$ and n is even,

$$
\rho\left(U_{n}^{2}\right)-\rho\left(C_{n}\right) \leqslant\left(\frac{7 n}{2}-9\right)-\frac{n^{2}}{4}=-\frac{(n-7)^{2}-13}{4}<0
$$

i.e., $\rho\left(U_{n}^{2}\right)<\rho\left(C_{n}\right)$.

So, in either case, we can get $\rho\left(U_{n}^{2}\right)<\rho\left(C_{n}\right)$, for $n \geqslant 10$ and n is even.
Let X be the Perron vector of G corresponding to $\rho(G)$. Suppose $T_{i}-\left\{v_{i}\right\}=$ $\alpha K_{2} \cup K_{1}$ and $T_{i+1}-\left\{v_{i+1}\right\}=\beta K_{2} \cup \gamma K_{1}$ for some $1 \leqslant i \leqslant l$, where α and β are both nonnegative integers, $\gamma=0$ or 1 . Using a symmetry, we can denote the coordinates of the Perron vector corresponding to the vertices in $V\left(T_{i}\right)$ and $V\left(T_{i+1}\right)$ as shown in Fig. 2. Then, we have

LEMMA 2.6. (i) $c+d>b$; (ii) $h+d>c$; (iii) $a+b>c$; (iv) $c+d>h$; (v) $a+d>b$.

Proof. We first prove (i).
Let $S^{\prime}=\alpha(a+b)+c+d$ and $S=\sum_{v_{j} \in V(G)} x_{j}$. Since

$$
D(G) X=\rho(G) X
$$

Fig. 2. Graph G.
we can easily get

$$
\begin{equation*}
\rho(G) x_{i}=\sum_{j=1}^{2 k} d_{i j} x_{j} \tag{2.1}
\end{equation*}
$$

So, we have

$$
\begin{aligned}
\rho(G) c+\rho(G) d-\rho(G) b & \geqslant 2 a+(\alpha+4) b-2 c-d+\left(S-S^{\prime}-x_{i-1}-h\right) \\
& \geqslant 2 a+(\alpha+4) b-2 c-d
\end{aligned}
$$

i.e.,

$$
(\rho(G)+2)(c+d-b) \geqslant 2 a+(\alpha+2) b+d>0
$$

which implies

$$
c+d>b
$$

Similarly, we can prove (ii),(iii), (iv) and (v).
Lemma 2.7. Let graphs $G_{1}, G_{1}^{\prime}, G_{2}, G_{2}^{\prime} \in \mathcal{U}(2 k)$ be as shown in Fig. 3, where $p \geqslant 2$ and $q \geqslant 1$. Then we have
(i) $\rho\left(G_{1}\right)<\rho\left(G_{1}^{\prime}\right)$; (ii) $\rho\left(G_{2}\right)<\rho\left(G_{2}^{\prime}\right)$.

Proof. We first prove (i).
Let X be the Perron vector of G_{1} corresponding to $\rho\left(G_{1}\right)$. Using a symmetry, we can denote the coordinates of the Perron vector corresponding to some vertices of G_{1} as shown in Fig. 3. Let $S=\sum_{v_{i} \in V\left(G_{1}\right)} x_{i}$ and $S^{\prime}=S-p(a+b)$, where $p \geqslant 2$. From G_{1} to G_{1}^{\prime}, we have

$$
\begin{aligned}
\rho\left(G_{1}^{\prime}\right)-\rho\left(G_{1}\right) & \geqslant X^{T}\left(D\left(G_{1}^{\prime}\right)-D\left(G_{1}\right)\right) X \\
& =(p-1)(a+b)\left(S^{\prime}-a-b\right) .
\end{aligned}
$$

Fig. 3. Graphs $G_{1}, G_{1}^{\prime}, G_{2}, G_{2}^{\prime}$.

In the following, we will prove $S^{\prime}-a-b>0$ into two cases.
If $H_{1}=C_{3}$, let $C_{3}=u v w u$. Then $S^{\prime}=d+x_{v}+x_{w}$. By (2.1), we have

$$
\rho\left(G_{1}\right) d+\rho\left(G_{1}\right) x_{v}+\rho\left(G_{1}\right) x_{w}-\rho\left(G_{1}\right) a-\rho\left(G_{1}\right) b=4 a+(p+6) b-d-3 x_{v}-3 x_{w}
$$

i.e.,

$$
\left(\rho\left(G_{1}\right)+3\right)\left(S^{\prime}-a-b\right)=2 d+a+(p+3) b>0 .
$$

So, we have $S^{\prime}-a-b>0$.
If $H_{1} \neq C_{3}$, then $\left|V\left(H_{1}\right)\right| \geqslant 4$. There must exist some vertex $w \in V\left(H_{1}\right)$ such that $d_{H_{1}}(u, w)=2$. Suppose $v \in N_{H_{1}}(u) \cap N_{H_{1}}(w)$. By (2.1), we have

$$
\rho\left(G_{1}\right) S^{\prime}-\rho\left(G_{1}\right)(a+b) \geqslant p(a+2 b)+4 a+6 b-4 S^{\prime}
$$

i.e., $\left(\rho\left(G_{1}\right)+4\right)\left(S^{\prime}-a-b\right)>p(a+2 b)+2 b>0$, which implies $S^{\prime}-a-b>0$.

So, in either case, we can get $S^{\prime}-a-b>0$, which implies

$$
\rho\left(G_{1}\right)<\rho\left(G_{1}^{\prime}\right) .
$$

Similarly, we can prove (ii).

3. Main results.

Theorem 3.1. $U_{2 k}^{1}$ is the unique graph with the maximum distance spectral radius among all unicyclic graphs with perfect matchings on $2 k(k \geqslant 3)$ vertices.

Proof. Choose $G \in \mathcal{U}(2 k)$ such that $\rho(G)$ is as large as possible. Let $G=$ $U\left(C_{l} ; T_{1}, T_{2}, \ldots, T_{l}\right)$ and $V\left(C_{l}\right)=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. Let $X=\left(x_{1}, x_{2}, \ldots, x_{2 k}\right)^{T}$ be the

Perron vector of G corresponding to $\rho(G)$, where x_{i} corresponds to the vertex v_{i} $(1 \leqslant i \leqslant 2 k)$.

Suppose $M(G)$ is any perfect matching of G. If there exists some $1 \leqslant i \leqslant l$ such that $v_{i} v_{(i+1)} \bmod l \in M(G)$, we may assume $v_{1} v_{2} \in M(G)$. Then $v_{2} v_{3} \notin M(G)$ and $v_{1} v_{l} \notin M(G)$. If $v_{i} v_{(i+1)} \bmod l \notin M(G)$ for any $1 \leqslant i \leqslant l$, then $v_{2} v_{3} \notin M(G)$ and $v_{1} v_{l} \notin M(G)$. So, in either case, we can always assume $v_{2} v_{3} \notin M(G)$ and $v_{1} v_{l} \notin M(G)$.

Claim 1. $l=3$.
Otherwise, we may assume $l \geqslant 4$.
Case 1. $l=4$.

$$
\begin{aligned}
& \text { If } \sum_{v_{i} \in V\left(T_{4}\right)} x_{i} \geqslant \sum_{v_{i} \in V\left(T_{3}\right)} x_{i} \text {, let } \\
& \qquad G^{\prime}=G-\left\{v_{1} v_{4}\right\}+\left\{v_{1} v_{3}\right\} .
\end{aligned}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$. From G to G^{\prime}, the distances between $V\left(T_{1}\right)$ and $V\left(T_{3}\right)$ are decreased by 1 ; the distances between $V\left(T_{1}\right)$ and $V\left(T_{4}\right)$ are increased by 1 ; the distances between $V\left(T_{2}\right)$ and $V\left(T_{1}\right) \cup V\left(T_{3}\right) \cup V\left(T_{4}\right), V\left(T_{3}\right)$ and $V\left(T_{4}\right)$ are unchanged. So, we have

$$
\begin{aligned}
\rho\left(G^{\prime}\right)-\rho(G) & \geqslant X^{T}\left(D\left(G^{\prime}\right)-D(G)\right) X \\
& =2 \sum_{v_{j} \in V\left(T_{1}\right)} x_{j}\left(\sum_{v_{i} \in V\left(T_{4}\right)} x_{i}-\sum_{v_{i} \in V\left(T_{3}\right)} x_{i}\right) \\
& \geqslant 0 .
\end{aligned}
$$

In the following, we will prove $\rho(G) \neq \rho\left(G^{\prime}\right)$.
If not, then X is also the Perron vector of G^{\prime} corresponding to $\rho\left(G^{\prime}\right)$. According to (2.1), we have

$$
\begin{aligned}
& \rho(G) x_{4}=\sum_{v_{j} \in V\left(T_{4}\right)} d_{4 j} x_{j}+\sum_{v_{j} \in V\left(T_{1}\right)}\left(d_{1 j}+1\right) x_{j}+\sum_{v_{j} \in V\left(T_{2}\right)}\left(d_{2 j}+2\right) x_{j}+\sum_{v_{j} \in V\left(T_{3}\right)}\left(d_{3 j}+1\right) x_{j}, \\
& \rho\left(G^{\prime}\right) x_{4}=\sum_{v_{j} \in V\left(T_{4}\right)} d_{4 j} x_{j}+\sum_{v_{j} \in V\left(T_{1}\right)}\left(d_{1 j}+2\right) x_{j}+\sum_{v_{j} \in V\left(T_{2}\right)}\left(d_{2 j}+2\right) x_{j}+\sum_{v_{j} \in V\left(T_{3}\right)}\left(d_{3 j}+1\right) x_{j} .
\end{aligned}
$$

Since $\rho(G)=\rho\left(G^{\prime}\right)$, from the above two equations, we get

$$
\sum_{v_{j} \in V\left(T_{1}\right)} x_{j}=0
$$

which contradicts to the fact that X is a Perron eigenvector.

So, we have $\rho\left(G^{\prime}\right)>\rho(G)$, which is a contradiction.
If $\sum_{v_{i} \in V\left(T_{4}\right)} x_{i}<\sum_{v_{i} \in V\left(T_{3}\right)} x_{i}$, let

$$
G^{\prime}=G-\left\{v_{2} v_{3}\right\}+\left\{v_{2} v_{4}\right\} .
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$. Similar to the above, we can also get a contradiction.
Case 2. $l \geqslant 5$.

$$
\text { If } \begin{aligned}
\sum_{v_{i} \in V\left(T_{3}\right) \cup \cdots \cup V\left(T_{\left\lfloor\frac{l}{2}\right\rfloor+1}\right)} x_{i} \geqslant \sum_{v_{i} \in V\left(T_{\left\lceil\frac{l}{2}\right\rceil+2}\right) \cup \cdots \cup V\left(T_{l}\right)} x_{i} \text {, let } \\
G^{\prime}=G-\left\{v_{2} v_{3}\right\}+\left\{v_{2} v_{l}\right\} .
\end{aligned}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$. From G to G^{\prime}, the distances between $V\left(T_{1}\right)$ and $V\left(T_{3}\right) \cup \cdots \cup$ $V\left(T_{\left\lceil\frac{l}{2}\right\rceil}\right)$ are increased by at least 1 ; the distances between $V\left(T_{2}\right)$ and $V\left(T_{3}\right) \cup \cdots \cup$ $V\left(T_{\left\lfloor\frac{l}{2}\right\rfloor+1}\right)$ are increased by at least 1 ; the distances between $V\left(T_{2}\right)$ and $V\left(T_{\left\lceil\frac{l}{2}\right\rceil+2}\right) \cup$ $\cdots \cup V\left(T_{l}\right)$ are decreased by 1 ; the distances between $V\left(T_{i}\right)(3 \leqslant i \leqslant l-1)$ and $V\left(T_{j}\right)$ $(i<j \leqslant l)$ are unchanged or increased by at least 1 . So, we have

$$
\begin{aligned}
\rho\left(G^{\prime}\right)-\rho(G) & \geqslant X^{T}\left(D\left(G^{\prime}\right)-D(G)\right) X \\
& >2 \sum_{v_{j} \in V\left(T_{2}\right)} x_{j}\left(\sum_{v_{i} \in V\left(T_{3}\right) \cup \cdots \cup V\left(T_{\left\lfloor\frac{l}{2}\right\rfloor+1}\right)} x_{i}-\sum_{v_{i} \in V\left(T_{\left\lceil\frac{l}{2}\right\rceil+2}\right) \cup \ldots \cup V\left(T_{l}\right)} x_{i}\right) \\
& \geqslant 0,
\end{aligned}
$$

i.e., $\rho\left(G^{\prime}\right)>\rho(G)$, which is a contradiction.

$$
\begin{gathered}
\text { If } \sum_{v_{i} \in V\left(T_{3}\right) \cup \cdots \cup V\left(T_{\left\lfloor\frac{l}{2}\right\rfloor+1}\right)} x_{i}<\sum_{v_{i} \in V\left(T_{\left\lceil\frac{l}{2}\right\rceil+2}\right) \cup \cdots \cup V\left(T_{l}\right)} x_{i} \text {, let } \\
G^{\prime}=G-\left\{v_{1} v_{l}\right\}+\left\{v_{1} v_{3}\right\} .
\end{gathered}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$. Similar to the above, we can also get a contradiction.
Claim 2. $G=U_{2 k}^{1}$.
Since $G=U\left(C_{3} ; T_{1}, T_{2}, T_{3}\right)$, using Lemma 2.1 frequently, we can first get each T_{i} $(1 \leqslant i \leqslant 3)$ is a path. Then using Lemma 2.2 at most twice, we can get $G=U_{2 k}^{1}$.

Theorem 3.2. H_{2} (see Fig. 4) is the unique graph with the minimum distance spectral radius among all unicyclic graphs with perfect matchings on 6 vertices.

Proof. There are 8 graphs in $\mathcal{U}(6)$ (see Fig. 4). By Lemma 2.1, we have

$$
\begin{equation*}
\rho\left(H_{8}\right)>\rho\left(H_{5}\right) \tag{3.1}
\end{equation*}
$$

H_{1}

H_{2}

H_{3}

H_{4}

H_{5}

H_{6}

H_{7}

H_{8}

Fig. 4. Graphs $H_{1}-H_{8}$.

By Lemma 2.2, we have

$$
\begin{equation*}
\rho\left(H_{3}\right)>\rho\left(H_{4}\right), \quad \rho\left(H_{7}\right)>\rho\left(H_{6}\right) . \tag{3.2}
\end{equation*}
$$

Combining (3.1), (3.2) and Table 3.1, we get $G=H_{2}$.
Table 3.1

G	H_{1}	H_{2}	H_{4}	H_{5}	H_{6}
$\rho(G)$	9.0000	8.8219	9.2606	9.3154	9.3852

Theorem 3.3. G_{9} (see Fig. 5) is the unique graph with the minimum distance spectral radius among all unicyclic graphs with perfect matchings on 8 vertices.

Proof. Choose $G \in \mathcal{U}(8)$ such that $\rho(G)$ is as small as possible. Let $G=$ $U\left(C_{l} ; T_{1}, T_{2}, \ldots, T_{l}\right)$. Then, we get $l \leqslant 8$. By Lemma 2.1 and Lemma 2.7, we get $T_{i}-\left\{v_{i}\right\}=a K_{1} \cup b K_{2}$ for $1 \leqslant i \leqslant l$, where $a=0$ or 1 . Since $|V(G)|=8$, we have $G \in\left\{G_{i} \mid 1 \leqslant i \leqslant 18\right.$ and i is an integer $\}$ (see Fig. 5).

By Lemma [2.2, we have

$$
\begin{equation*}
\rho\left(G_{11}\right)>\rho\left(G_{10}\right), \quad \rho\left(G_{15}\right)>\rho\left(G_{17}\right) \tag{3.3}
\end{equation*}
$$

Combining (3.3) and Table 3.2, we get $G=G_{9}$.

```
Table 3.2
```

G	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}
$\rho(G)$	16.0000	15.4245	16.4273	15.8882	15.3066	15.2065	15.7572	16.3222
G	G_{9}	G_{10}	G_{12}	G_{13}	G_{14}	G_{16}	G_{17}	G_{18}
$\rho(G)$	14.9363	15.5440	17.1619	16.1147	15.0744	17.2816	15.6487	16.1798

Theorem 3.4. $U_{2 k}^{2}$ is the unique graph with the minimum distance spectral radius among all unicyclic graphs with perfect matchings on $2 k(k \geqslant 5)$ vertices.

G_{1}

G_{7}

G_{2}

G_{8}

G_{3}

G_{5}

G_{9}

G_{12}

G_{13}

G_{14}

G_{15}

G_{16}

G_{17}

G_{18}

Fig. 5. Graphs $G_{1}-G_{18}$.

Proof. Choose $G \in \mathcal{U}(2 k)$ such that $\rho(G)$ is as small as possible. Let $G=$ $U\left(C_{l} ; T_{1}, T_{2}, \ldots, T_{l}\right)$ and $C_{l}=v_{1} v_{2} \cdots v_{l} v_{1}$. By Lemma 2.1 and Lemma 2.7, we get $T_{i}-\left\{v_{i}\right\}=a K_{1} \cup b K_{2}$ for $1 \leqslant i \leqslant l$, where $a=0$ if $\left|V\left(T_{i}\right)\right|$ is odd, and $a=1$ if $\left|V\left(T_{i}\right)\right|$ is even. In the following, we always assume $N_{T_{i}}\left(v_{i}\right)=\left\{v_{j} \mid v_{j} \in\right.$ $V\left(T_{i}\right)$ and v_{j} is adjacent to $\left.v_{i}\right\}, N_{T_{i}}^{\prime}\left(v_{i}\right)=\left\{v_{j} \mid v_{j} \in N_{T_{i}}\left(v_{i}\right), d\left(v_{j}\right)=2\right\}$ and $R_{T_{i}}=$ $\left\{v_{j} \mid v_{j} \in N_{T_{i}}\left(v_{i}\right), d\left(v_{j}\right)=1\right\} \cup\left\{v_{i}\right\}$. Then $\left|R_{T_{i}}\right|=1$ or 2 . Suppose G^{\prime} is the graph obtained from G by grafting some edges and $G^{\prime} \in \mathcal{U}(2 k)$. For some i, if T_{i} is still a rooted tree of G^{\prime}, we still use T_{i} to denote the rooted tree with root v_{i} in G^{\prime}; if T_{i} is not a rooted tree of G^{\prime} any more, but v_{i} is still a root, we always use T_{i}^{\prime} to denote the rooted tree with root v_{i} in G^{\prime}. Let $M(G)$ be any perfect matching of G.

Claim 1. $l \leqslant 4$.
Otherwise, we may assume $l \geqslant 5$.
Case 1. There exists some $1 \leqslant i \leqslant l$ such that $\left|V\left(T_{i}\right)\right| \geqslant 3$.
Without loss of generality, we may assume $\left|V\left(T_{1}\right)\right| \geqslant 3$.
Subcase 1.1. $v_{l-1} v_{l} \notin M(G)$ and $v_{2} v_{3} \notin M(G)$.
Suppose $N_{T_{l}}^{\prime}\left(v_{l}\right)=\left\{v_{l 1}, \ldots, v_{l r}\right\}$ and $N_{T_{2}}^{\prime}\left(v_{2}\right)=\left\{v_{21}, \ldots, v_{2 s}\right\}$.
If l is even, let $G^{\prime}=G-\left\{v_{l} v_{l-1}, v_{l} v_{l 1}, \ldots, v_{l} v_{l r}\right\}+\left\{v_{1} v_{l-1}, v_{1} v_{l 1}, \ldots, v_{1} v_{l r}\right\}$. Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-1} ; T_{1}^{\prime}, T_{2}, \ldots, T_{l-1}\right)$. Let $X=\left(x_{1}, x_{2}, \ldots, x_{2 k}\right)^{T}$ be the

Perron vector of G^{\prime} corresponding to $\rho\left(G^{\prime}\right)$, where x_{i} corresponds to the vertex v_{i} $(1 \leqslant i \leqslant 2 k)$. For convenience, we can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}^{\prime}\right)$ the same as $V\left(T_{i+1}\right)$ in Fig. 2. Since $\left|V\left(T_{1}\right)\right| \geqslant 3$ and $\sum_{v_{i} \in R_{T_{l}}} x_{i}=e+g$ or f, from G^{\prime} to G, we have

$$
\begin{aligned}
& \rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& =2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i} \sum_{v_{j} \in V\left(T_{\frac{l}{2}+1}\right) \cup \ldots \cup V\left(T_{l-1}\right)} x_{j}+2 \sum_{v_{i} \in V\left(T_{1}\right) \cup \ldots \cup V\left(T_{\frac{l}{2}}\right)} x_{i} \sum_{v_{j} \in V\left(T_{l}\right) \backslash R_{T_{l}}} x_{j} \\
& +2 \sum_{v_{i} \in V\left(T_{2}\right)} x_{i} \sum_{v_{j} \in V\left(T_{\frac{l}{2}+2}\right) \cup \ldots \cup V\left(T_{l-1}\right)} x_{j}+2 \sum_{v_{i} \in V\left(T_{3}\right)} x_{i} \sum_{v_{j} \in V\left(T_{\frac{l}{2}+3}\right) \cup \cdots \cup V\left(T_{l-1}\right)} x_{j} \\
& +\cdots+2 \sum_{v_{i} \in V\left(T_{\frac{l}{2}-1}\right)} x_{i} \sum_{v_{j} \in V\left(T_{l-1}\right)} x_{j} \\
& -2 \sum_{v_{i} \in R_{T_{l}}} x_{i} \sum_{v_{j} \in V\left(T_{\frac{l}{2}+1}\right) \cup \cdots \cup V\left(T_{l-1}\right)} x_{j}-2 \sum_{v_{i} \in R_{T_{l}}} x_{i} \sum_{v_{j} \in V\left(T_{l}\right) \backslash R_{T_{l}}} x_{j} \\
& >2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in R_{T_{l}}} x_{i}\right)\left(\sum_{v_{j} \in V\left(T_{\frac{l}{2}+1}\right) \cup \ldots \cup V\left(T_{l-1}\right) \cup V\left(T_{l}\right) \backslash R_{T_{l}}} x_{j}\right) \\
& >2[e+g+h-(e+g)]\left(\sum_{v_{j} \in V\left(T_{\frac{l}{2}+1}\right) \cup \ldots \cup V\left(T_{l-1}\right) \cup V\left(T_{l}\right) \backslash R_{T_{l}}} x_{j}\right) \\
& >0 \text {, }
\end{aligned}
$$

which is a contradiction.
If l is odd, let

$$
\begin{aligned}
G^{\prime}= & G-\left\{v_{2} v_{3}, v_{2} v_{21}, \ldots, v_{2} v_{2 s}\right\}-\left\{v_{l} v_{l-1}, v_{l} v_{l 1}, \ldots, v_{l} v_{l r}\right\} \\
& +\left\{v_{1} v_{3}, v_{1} v_{21}, \ldots, v_{1} v_{2 s}\right\}+\left\{v_{1} v_{l-1}, v_{1} v_{l 1}, \ldots, v_{1} v_{l r}\right\} .
\end{aligned}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-2} ; T_{1}^{\prime}, T_{3}, \ldots, T_{l-1}\right)$. From G^{\prime} to G, we have

$$
\begin{aligned}
& \rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& >2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in R_{T_{2}}} x_{i}\right)\left(\sum_{v_{i} \in V\left(T_{3}\right) \cup \cdots \cup V\left(T_{\frac{l+1}{2}}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{2}\right) \backslash R_{T_{2}}} x_{i}\right) \\
& \quad+2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in R_{T_{l}}} x_{i}\right)\left(\sum_{v_{i} \in V\left(T_{\frac{l+1}{2}+1}\right) \cup \ldots \cup V\left(T_{l-1}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{l}\right) \backslash R_{T_{l}}} x_{i}\right) .
\end{aligned}
$$

Similar to the case that l is even, we can also get a contradiction.
Subcase 1.2. $v_{l-1} v_{l} \notin M(G)$ and $v_{2} v_{3} \in M(G)$.
Suppose $N_{T_{l}}^{\prime}\left(v_{l}\right)=\left\{v_{l 1}, \ldots, v_{l r}\right\}$ and $N_{T_{3}}^{\prime}\left(v_{3}\right)=\left\{v_{31}, \ldots, v_{3 t}\right\}$. Let

$$
\begin{aligned}
G^{\prime}= & G-\left\{v_{l} v_{l-1}, v_{l} v_{l 1}, \ldots, v_{l} v_{l r}\right\}-\left\{v_{3} v_{4}, v_{3} v_{31}, \ldots, v_{3} v_{3 t}\right\} \\
& +\left\{v_{1} v_{l-1}, v_{1} v_{l 1}, \ldots, v_{1} v_{l r}\right\}+\left\{v_{2} v_{4}, v_{2} v_{31}, \ldots, v_{2} v_{3 t}\right\}
\end{aligned}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-2} ; T_{1}^{\prime}, T_{2}^{\prime}, T_{4}, \ldots, T_{l-1}^{\prime}\right)$. From G^{\prime} to G, we have

$$
\begin{aligned}
& \rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& >2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}\right)\left(\sum_{v_{i} \in V\left(T_{4}\right) \cup \cdots \cup V\left(T_{l-1}\right)} x_{i}+\sum_{v_{i} \in\left(V\left(T_{3}\right) \backslash R_{T_{3}}\right) \cup\left(V\left(T_{l}\right) \backslash R_{T_{l}}\right)} x_{i}\right) \\
& (3.4)-2\left(x_{3}+\sum_{v_{i} \in R_{T_{l}}} x_{i}\right)\left(\sum_{v_{i} \in V\left(T_{4}\right) \cup \cdots \cup V\left(T_{l-1}\right)} x_{i}+x_{v_{i} \in\left(V\left(T_{3}\right) \backslash R_{T_{3}}\right) \cup\left(V\left(T_{l}\right) \backslash R_{T_{l}}\right)}\right) .
\end{aligned}
$$

We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}^{\prime}\right)$ and $V\left(T_{2}^{\prime}\right)$ the same as $V\left(T_{i+1}\right)$ and $V\left(T_{i}\right)$ in Fig. 2. Then, by Lemma 2.3 (ii), we have

$$
\begin{align*}
\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in R_{T_{l}}} x_{i}+\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}-x_{3} & \geqslant(e+g+h)-(e+g)+d-c \\
& =h+d-c \\
& >0 \tag{3.5}
\end{align*}
$$

Combining (3.4) and (3.5), we get $\rho(G)>\rho\left(G^{\prime}\right)$, which is a contradiction.
Subcase 1.3. $v_{l-1} v_{l} \in M(G)$ and $v_{2} v_{3} \in M(G)$.
If there exists some $i=2,3, l-1, l$ such that $\left|V\left(T_{i}\right)\right| \geqslant 3$, then dealing with this case the same as Subcase 1.1 and Subcase 1.2, respectively, we can get a contradiction.

Otherwise, $\left|V\left(T_{2}\right)\right|=\left|V\left(T_{3}\right)\right|=\left|V\left(T_{l-1}\right)=\left|V\left(T_{l}\right)\right|=1\right.$.
If $l=5$, let

$$
G^{\prime}=G-\left\{v_{3} v_{4}\right\}+\left\{v_{1} v_{3}\right\} .
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{3} ; T_{1}^{\prime}, T_{2}, T_{3}\right)$. We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}^{\prime}\right)$ the same as $V\left(T_{i}\right)$ in Fig. 2. Using a symmetry, we can get $x_{2}=x_{3}$. Since $|V(G)| \geqslant 10$, we have $\left|V\left(T_{1}\right)\right| \geqslant 6$. By

Lemma 2.3 (i), from G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) & \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& =2 x_{3} \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-2 x_{2} x_{4}-4 x_{3} x_{4} \\
& =2 x_{3}\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-3 x_{4}\right) \\
& \geqslant 2 x_{3}[2(a+b)+c+d-3 b] \\
& =2 x_{3}(2 a+c+d-b) \\
& >0
\end{aligned}
$$

which is a contradiction.
If $l=6$, let

$$
G^{\prime}=G-\left\{v_{3} v_{4}, v_{4} v_{5}\right\}+\left\{v_{1} v_{3}, v_{1} v_{4}\right\}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$. From G^{\prime} to G, we have $\rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X$
$=2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}\left(x_{3}+2 \sum_{v_{i} \in V\left(T_{4}\right)} x_{i}\right)+2 x_{3}\left(x_{6}-\sum_{v_{i} \in V\left(T_{4}\right)} x_{i}-x_{5}\right)-4 x_{5} \sum_{v_{i} \in V\left(T_{4}\right)} x_{i}$
$=2 x_{3}\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{5}+x_{6}\right)+2 \sum_{v_{i} \in V\left(T_{4}\right)} x_{i}\left(2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{3}-2 x_{5}\right)$
>0.

If $l=7,\left|V\left(T_{4}\right)\right| \geqslant 3$ or $\left|V\left(T_{5}\right)\right| \geqslant 3$, deal with the case the same as Subcase 1.2.
If $l=7,\left|V\left(T_{4}\right)\right|=\left|V\left(T_{5}\right)\right|=1$ and $\left|V\left(T_{1}\right)\right|=4$, by matlab, we get $\rho(G)=$ $22.9526>\rho\left(U_{10}^{2}\right)=21.0245$, which is a contradiction.

$$
\begin{array}{r}
\text { If } l=7,\left|V\left(T_{4}\right)\right|=\left|V\left(T_{5}\right)\right|=1 \text { and }\left|V\left(T_{1}\right)\right|>4, \text { let } \\
G^{\prime}=G-\left\{v_{5} v_{6}\right\}+\left\{v_{1} v_{5}\right\} .
\end{array}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$. From G^{\prime} to G, we have

$$
\begin{align*}
& \rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& =2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i} x_{4}+4 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i} x_{5}+2 x_{2} x_{5}-2 x_{3} x_{6}-4 x_{4} x_{6}-4 x_{5} x_{6} \\
& >2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i} x_{4}-x_{3} x_{6}-2 x_{4} x_{6}\right)+4 x_{5}\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{6}\right) \tag{3.6}
\end{align*}
$$

Since v_{3} and v_{4} are symmetric in G^{\prime}, we can assume $x_{3}=x_{4}$. We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}\right)$ the same as $V\left(T_{i}\right)$ in Fig. 2. By Lemma 2.3 (i), we have

$$
\begin{align*}
\sum_{v_{i} \in V\left(T_{1}\right)} x_{i} x_{4}-x_{3} x_{6}-2 x_{4} x_{6} & =\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-3 x_{6}\right) x_{4} \\
& \geqslant(2(a+b)+c+d-3 b) x_{4} \\
& =(2 a+c+d-b) x_{4} \\
& >0 \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{6}>\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-3 x_{6}>0 \tag{3.8}
\end{equation*}
$$

Combining (3.6), (3.7) and (3.8), we get $\rho(G)>\rho\left(G^{\prime}\right)$, which is a contradiction.

$$
\begin{aligned}
& \text { If } l=7 \text { and }\left|V\left(T_{4}\right)\right|=\left|V\left(T_{5}\right)\right|=2 \text {, let } \\
& \qquad G^{\prime}=G-\left\{v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}\right\}+\left\{v_{1} v_{4}, v_{1} v_{5}, v_{1} v_{6}\right\}
\end{aligned}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{3} ; T_{1}^{\prime}, T_{6}, T_{7}\right)$. From G^{\prime} to G, we have

$$
\begin{aligned}
& \rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
&= 2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}\left(2 \sum_{v_{i} \in V\left(T_{4}\right)} x_{i}+2 \sum_{v_{i} \in V\left(T_{5}\right)} x_{i}+x_{6}\right)+2 x_{2}\left(\sum_{v_{i} \in V\left(T_{5}\right)} x_{i}+x_{6}\right) \\
&-2 x_{3}\left(2 \sum_{v_{i} \in V\left(T_{4}\right)} x_{i} \sum_{v_{i} \in V\left(T_{5}\right)} x_{i}\right) \\
&+2 \sum_{v_{i} \in V\left(T_{4}\right)} x_{i}\left(x_{7}-\sum_{v_{i} \in V\left(T_{5}\right)} x_{i}\right)-2 \sum_{v_{i} \in V\left(T_{5}\right)} x_{i} x_{6} \\
&> 4\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{3}\right) \sum_{v_{i} \in V\left(T_{4}\right)} x_{i}+2 x_{6}\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in V\left(T_{5}\right)} x_{i}\right) \\
&(3.9)+2\left(2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{3}-\sum_{v_{i} \in V\left(T_{4}\right)} x_{i}\right) \sum_{v_{i} \in V\left(T_{5}\right)} x_{i} .
\end{aligned}
$$

We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}^{\prime}\right)$ the same as $V\left(T_{i}\right)$ in Fig. 2. Since $\left|V\left(T_{1}\right)\right| \geqslant 3$, we have

$$
\begin{equation*}
\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{3}>a+b+d-b=a+d>0 \tag{3.10}
\end{equation*}
$$

Similarly, we can have

$$
\begin{array}{r}
\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in V\left(T_{5}\right)} x_{i}>0, \\
2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{3}-\sum_{v_{i} \in V\left(T_{4}\right)} x_{i}>0 . \tag{3.11}
\end{array}
$$

Combining (3.9), (3.10) and (3.11), we get $\rho(G)>\rho\left(G^{\prime}\right)$, which is a contradiction.

$$
\text { If } l \geqslant 8 \text {, let }
$$

$$
G^{\prime}=G-\left\{v_{3} v_{4}, v_{l-2} v_{l-1}\right\}+\left\{v_{2} v_{4}, v_{l-2} v_{l}\right\} .
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-2} ; T_{1}, T_{2}^{\prime}, T_{4}, \ldots, T_{l-2}, T_{l}^{\prime}\right)$. From G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) & \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& >2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}+x_{2}+x_{l}-x_{3}-x_{l-1}\right)\left(\sum_{v_{i} \in V\left(T_{4}\right) \cup \cdots \cup V\left(T_{l-2}\right)} x_{i}\right)
\end{aligned}
$$

Similarly to the case $l=7$, we can also get a contradiction.
Case 2. For any $1 \leqslant i \leqslant l,\left|V\left(T_{i}\right)\right|=2$.
If $l=5$, by matlab, we get $\rho(G)=21.7047>\rho\left(U_{10}^{2}\right)=21.0245$, which is a contradiction.

If $l=6$, by matlab, we get $\rho(G)=29.8114>\rho\left(U_{12}^{2}\right)=27.0578$, which is a contradiction.

If $l=7$, by matlab, we get $\rho(G)=37.9249>\rho\left(U_{14}^{2}\right)=33.1338$, which is a contradiction.

If $l=8$, by matlab, we get $\rho(G)=48.0000>\rho\left(U_{16}^{2}\right)=39.2346$, which is a contradiction.

If $l \geqslant 9$, let

$$
G^{\prime}=G-\left\{v_{2} v_{3}, v_{3} v_{4}, \ldots, v_{l-2} v_{l-1}\right\}+\left\{v_{1} v_{3}, v_{1} v_{4}, \ldots, v_{1} v_{l-1}\right\} .
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{3} ; T_{1}^{\prime}, T_{l-1}, T_{l},\right)$. Since $\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}=\cdots=\sum_{v_{i} \in V\left(T_{l-2}\right)} x_{i}$
and $\sum_{v_{i} \in V\left(T_{l-1}\right)} x_{i}=\sum_{v_{i} \in V\left(T_{l}\right)} x_{i}$ in G^{\prime}, from G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) \geqslant & X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
> & 2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}\left(\sum_{v_{i} \in V\left(T_{3}\right)} x_{i}+\cdots+\sum_{v_{i} \in V\left(T_{l-1}\right)} x_{i}\right) \\
& +2 \sum_{v_{i} \in V\left(T_{2}\right)} x_{i}\left(-\sum_{v_{i} \in V\left(T_{3}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{5}\right)} x_{i}+\cdots+\sum_{v_{i} \in V\left(T_{l-1}\right)} x_{i}\right) \\
& +2 \sum_{v_{i} \in V\left(T_{3}\right)} x_{i}\left(-\sum_{v_{i} \in V\left(T_{4}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{6}\right)} x_{i}+\cdots+\sum_{v_{i} \in V\left(T_{l}\right)} x_{i}\right) \\
& +\cdots+2 \sum_{v_{i} \in V\left(T_{l-3}\right)} x_{i}\left(-\sum_{v_{i} \in V\left(T_{l-2}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{l}\right)} x_{i}\right) \\
& +2 \sum_{v_{i} \in V\left(T_{l-2}\right)} x_{i}\left(-\sum_{v_{i} \in V\left(T_{l-1}\right)} x_{i}\right) \\
> & 0,
\end{aligned}
$$

which is a contradiction.
Case 3. For any $1 \leqslant i \leqslant l,\left|V\left(T_{i}\right)\right| \leqslant 2$, and there exists some $1 \leqslant j \leqslant l$ such that $\left|V\left(T_{j}\right)\right|=1$.

For convenience, we may assume that $\left|V\left(T_{1}\right)\right|=2$ and $\left|V\left(T_{l}\right)\right|=1$.
Subcase 3.1. $\left|V\left(T_{2}\right)\right|=1$.
Then $v_{2} v_{3}, v_{l-1} v_{l} \in M(G)$. Dealing with this case the same as Subcase 1.3.
Subcase 3.2. $\left|V\left(T_{2}\right)\right|=\left|V\left(T_{3}\right)\right|=2$.
Then $v_{l-1} v_{l} \in M(G)$. Since $|V(G)| \geqslant 10$, we can get $l \geqslant 6$.
If $l=6$, we get $\rho(G)=22.3859>\rho\left(U_{10}^{2}\right)=21.0245$, which is a contradiction.
If $l=7$ and $\left|V\left(T_{4}\right)\right|=1$, we get $\rho(G)=22.2365>\rho\left(U_{10}^{2}\right)=21.0245$, which is a contradiction.

If $l=7$ and $\left|V\left(T_{4}\right)\right|=2$, we get $\rho(G)=30.0508>\rho\left(U_{12}^{2}\right)=27.0578$, which is a contradiction.

If $l \geqslant 8$ is odd, let

$$
G^{\prime}=G-\left\{v_{2} v_{3}, v_{3} v_{4}, v_{l-2} v_{l-1}\right\}+\left\{v_{1} v_{3}, v_{1} v_{4}, v_{1} v_{l-2}\right\} .
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-4} ; T_{1}^{\prime}, T_{4}, \ldots, T_{l-2}\right)$. We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}^{\prime}\right)$ the same as $V\left(T_{i}\right)$ in Fig. 2. From G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) & \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& >2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-x_{l-1}\right)\left(\sum_{v_{i} \in V\left(T_{4}\right) \cup \ldots \cup V\left(T_{l-2}\right)} x_{i}\right) \\
& =(c+d-b)\left(\sum_{v_{i} \in V\left(T_{4}\right) \cup \ldots \cup V\left(T_{l-2}\right)} x_{i}\right) \\
& >0 .
\end{aligned}
$$

If $l \geqslant 8$ is even, let

$$
G^{\prime}=G-\left\{v_{1} v_{l}, v_{3} v_{4}, v_{l-2} v_{l-1}\right\}+\left\{v_{2} v_{l}, v_{2} v_{4}, v_{l-2} v_{l}\right\}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-3} ; T_{2}^{\prime}, T_{4}, \ldots, T_{l-2}, T_{l}^{\prime}\right)$. We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{2}^{\prime}\right)$ and $V\left(T_{l}^{\prime}\right)$ the same as $V\left(T_{i+1}\right)$ and $V\left(T_{i}\right)$ in Fig. 2, respectively. From G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) & \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& >2\left(\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}+x_{l}-x_{l-1}\right)\left(\sum_{v_{i} \in V\left(T_{\frac{l}{2}+1}\right) \cup \ldots \cup V\left(T_{l-2}\right)} x_{i}\right) \\
& =(h+f+d-c)\left(\sum_{v_{i} \in V\left(T_{\frac{l}{2}+1}\right) \cup \ldots \cup V\left(T_{l-2}\right)} x_{i}\right) \\
& >0,
\end{aligned}
$$

which is a contradiction.
Subcase 3.3. $\left|V\left(T_{2}\right)\right|=2,\left|V\left(T_{3}\right)\right|=1$.
Then $v_{3} v_{4}, v_{l-1} v_{l} \in M(G)$. Since $|V(G)| \geqslant 10,\left|V\left(T_{1}\right)\right|=2$ and $\left|V\left(T_{l}\right)\right|=1$, we get $l \geqslant 7$.

If $l=7$, we get $\rho(G)=22.9172>\rho\left(U_{10}^{2}\right)=21.0245$, which is a contradiction.
If $l=8$ and $\left|V\left(T_{5}\right)\right|=1$, we get $\rho(G)=23.3244>\rho\left(U_{10}^{2}\right)=21.0245$, which is a contradiction.

If $l=8$ and $\left|V\left(T_{5}\right)\right|=2$, we get $\rho(G)=32.0000>\rho\left(U_{12}^{2}\right)=27.0578$, which is a contradiction.

If $l=9$ and $\left|V\left(T_{5}\right)\right|=1$ or $\left|V\left(T_{7}\right)\right|=1$, we can deal with the case similarly to Subcase 1.3.

If $l=9$ and $\left|V\left(T_{5}\right)\right|=2,\left|V\left(T_{7}\right)\right|=2$, we can deal with the case similarly to Subcase 3.2.

If $l \geqslant 10$, Let

$$
G^{\prime}=G-\left\{v_{4} v_{5}, v_{l-2} v_{l-1}\right\}+\left\{v_{2} v_{5}, v_{1} v_{l-2}\right\} .
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{l-4} ; T_{1}^{\prime}, T_{2}^{\prime}, T_{5}, \ldots, T_{l-2}\right)$. We can denote the coordinates of Perron vector X corresponding to vertices in $V\left(T_{1}^{\prime}\right)$ and $V\left(T_{2}^{\prime}\right)$ the same as $V\left(T_{i}\right)$ and $V\left(T_{i+1}\right)$ in Fig. 2, respectively. By Lemma 2.3 (i), from G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) & \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& >4\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}+\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}-x_{4}-x_{l-1}\right)\left(\sum_{v_{i} \in V\left(T_{5}\right) \cup \ldots \cup V\left(T_{l-2}\right)} x_{i}\right) \\
& =4(c+d+h+f-b-g)\left(\sum_{v_{i} \in V\left(T_{5}\right) \cup \cdots \cup V\left(T_{l-2}\right)} x_{i}\right) \\
& >0,
\end{aligned}
$$

which is a contradiction.
Case 4. For any $1 \leqslant i \leqslant l,\left|V\left(T_{i}\right)\right|=1$.
Then $G=C_{n}$. By Lemma 2.5, we have $\rho(G)>\rho\left(U_{n}^{2}\right)$, which is a contradiction.
Claim 2. $l=3$.
Otherwise, we have $l=4$. Let $G=U\left(C_{4} ; T_{1}, T_{2}, T_{3}, T_{4}\right)$ and $C_{4}=v_{1} v_{2} v_{3} v_{4} v_{1}$. Since $|V(G)| \geqslant 10$, there must exist some $1 \leqslant i \leqslant 4$ such that $\left|V\left(T_{i}\right)\right| \geqslant 3$. We may assume that $\left|V\left(T_{1}\right)\right| \geqslant 3$ and $\left|V\left(T_{1}\right)\right|$ has the same parity as $\left|V\left(T_{2}\right)\right|$.

Suppose $N_{T_{2}}^{\prime}\left(v_{2}\right)=\left\{v_{21}, \ldots, v_{2 s}\right\}$. Let

$$
G^{\prime}=G-\left\{v_{2} v_{21}, \ldots, v_{2} v_{2 s}\right\}+\left\{v_{1} v_{21}, \ldots, v_{1} v_{2 s}\right\}
$$

Then $G^{\prime} \in \mathcal{U}(2 k)$ and $G^{\prime}=U\left(C_{3} ; T_{1}^{\prime}, T_{3}, T_{4}\right)$. From G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) \geqslant & X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
= & 2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i} \sum_{v_{j} \in V\left(T_{2}\right) \backslash R_{T_{2}}} x_{j}+2 \sum_{v_{i} \in V\left(T_{1}\right)} x_{i} \sum_{v_{j} \in V\left(T_{3}\right)} x_{j} \\
& -2 \sum_{v_{i} \in V\left(T_{2}\right) \backslash R_{T_{2}}} x_{i} \sum_{v_{j} \in R_{T_{2}}} x_{j}-2 \sum_{v_{i} \in R_{T_{2}}} x_{i} \sum_{v_{j} \in V\left(T_{3}\right)} x_{j} \\
= & 2\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{j} \in R_{T_{2}}} x_{j}\right)\left(\sum_{v_{j} \in V\left(T_{2}\right) \backslash R_{T_{2}}} x_{j}+\sum_{v_{j} \in V\left(T_{3}\right)} x_{j}\right) \\
> & 0,
\end{aligned}
$$

which is a contradiction.
Claim 3. $G=U_{2 k}^{2}$.
Otherwise, let $G=U\left(C_{3} ; T_{1}, T_{2}, T_{3}\right)$. There must exist some $1 \leqslant i, j \leqslant 3$ such that $\left|V\left(T_{i}\right)\right|$ is even and $\left|V\left(T_{j}\right)\right|>1$. We may assume $\left|V\left(T_{1}\right)\right|$ is even, $\left|V\left(T_{2}\right)\right|>1$ and $\left|V\left(T_{2}\right)\right| \geqslant\left|V\left(T_{3}\right)\right|$.

If $\left|V\left(T_{2}\right)\right|=2$, then we have $\left|V\left(T_{3}\right)\right|=2$. Suppose $R_{T_{3}} \backslash\left\{v_{3}\right\}=\left\{v_{3}^{\prime}\right\}$. Let

$$
G^{\prime}=G-\left\{v_{2} v_{3}\right\}+\left\{v_{1} v_{3}^{\prime}\right\} .
$$

Then $G^{\prime}=U_{2 k}^{2}$. Using a symmetry, we get $x_{3}=x_{v_{3}^{\prime}}$ in G^{\prime}. From G^{\prime} to G, we have

$$
\begin{aligned}
\rho(G)-\rho\left(G^{\prime}\right) & \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
& =2 x_{v_{3}^{\prime}} \sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-2 x_{3} \sum_{v_{i} \in V\left(T_{2}\right)} x_{i} \\
& =2 x_{3}\left(\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}\right) .
\end{aligned}
$$

Since $|V(G)| \geqslant 10$ and $\left|V\left(T_{2}\right)\right|=\left|V\left(T_{3}\right)\right|=2$, we have $\left|V\left(T_{1}\right)\right| \geqslant 6$. So, we have $\sum_{v_{i} \in V\left(T_{1}\right)} x_{i}-\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}>0$. This implies $\rho(G)>\rho\left(G^{\prime}\right)$, which is a contradiction.

If $\left|V\left(T_{2}\right)\right|>2$, we may assume $N_{T_{1}}^{\prime}\left(v_{1}\right)=\left\{v_{11}, \ldots, v_{1 r}\right\}, R_{T_{1}} \backslash\left\{v_{1}\right\}=\left\{v_{1}^{\prime}\right\}$ and $N_{T_{3}}^{\prime}\left(v_{3}\right)=\left\{v_{31}, \ldots, v_{3 t}\right\}$. Let

$$
\begin{aligned}
G^{\prime}= & G-\left\{v_{1} v_{3}, v_{1} v_{11}, \ldots, v_{1} v_{1 r}\right\}-\left\{v_{3} v_{31}, \ldots, v_{3} v_{3 t}\right\} \\
& +\left\{v_{2} v_{1}^{\prime}, v_{2} v_{11}, \ldots, v_{2} v_{1 r}\right\}+\left\{v_{2} v_{31}, \ldots, v_{2} v_{3 t}\right\} .
\end{aligned}
$$

Then $G^{\prime}=U_{2 k}^{2}$. Using a symmetry, we get $x_{1}=x_{v_{1}^{\prime}}$ in G^{\prime}. From G^{\prime} to G, we have

$$
\begin{aligned}
& \rho(G)-\rho\left(G^{\prime}\right) \geqslant X^{T}\left(D(G)-D\left(G^{\prime}\right)\right) X \\
&=-2 x_{1}\left(\sum_{v_{i} \in V\left(T_{1}\right) \backslash R_{T_{1}}} x_{i}+\sum_{v_{i} \in R_{T_{3}}} x_{i}\right)+2 x_{v_{1}^{\prime}}\left(\sum_{v_{i} \in V\left(T_{2}\right)}+\sum_{\left.v_{i} \in V\left(T_{3}\right) \backslash R_{T_{3}}\right)} x_{i}\right) \\
&+2 \sum_{v_{i} \in V\left(T_{2}\right)} x_{i}\left(\sum_{v_{i} \in V\left(T_{1}\right) \backslash R_{T_{1}}} x_{i}+\sum_{v_{i} \in V\left(T_{3}\right) \backslash R_{T_{3}}} x_{i}\right) \\
&+2 \sum_{v_{i} \in V\left(T_{3}\right) \backslash R_{T_{3}}} x_{i}\left(\sum_{v_{i} \in V\left(T_{1}\right) \backslash R_{T_{1}}} x_{i}-\sum_{v_{i} \in R_{T_{3}}} x_{i}\right) \\
&> 2\left(\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}-x_{1}\right) \sum_{v_{i} \in V\left(T_{1}\right) \backslash R_{T_{1}}} x_{i}+2\left(x_{1}+\sum_{v_{i} \in V\left(T_{3}\right) \backslash R_{T_{3}}} x_{i}\right)\left(\sum_{v_{i} \in V\left(T_{2}\right)} x_{i}-\sum_{v_{i} \in R_{T_{3}}} x_{i}\right) \\
&>0,
\end{aligned}
$$

which is a contradiction.
Acknowledgment. The author would like to thank the anonymous referees for their valuable comments and suggestions.

REFERENCES

[1] A.T. Balaban, D. Ciubotariu, and M. Medeleanu. Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors. Journal of Chemical Information and Computer Sciences, 31:517-523, 1991.
[2] S.S. Bose, M. Nath, and S. Paul. Distance spectral radius of graphs with r pendent vertices. Linear Algebra and its Applications, 435:2828-2836, 2011.
[3] P.W. Fowler, G. Caporossi, and P. Hansen. Distance matrices, Wiener indices, and related invariants of fullerenes. Journal of Physical Chemistry A, 105:6232-6242, 2011.
[4] I. Gutman and M. Medeleanu. On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane. Indian Journal of Chemistry - Section A, 37:569-573, 1998.
[5] A. Ilić. Distance spectral radius of trees with given matching number. Discrete Applied Mathematics, 158:1799-1806, 2010.
[6] H. Minc. Nonnegative Matrices. John Wiley and Sons Inc., New York, 1988.
[7] M. Nath and S. Paul. On the distance spectral radius of bipartite graphs. Linear Algebra and its Applications, 436:1285-1296, 2012.
[8] S. Ruzeih and D. Powers. The distance spectrum of the path P_{n} and the first distance eigenvector of connected graphs. Linear and Multilinear Algebra, 28:75-81, 1990.
[9] D. Stevanović and A. Ilić. Distance spectral radius of trees with fixed maximum degree. Electronic Journal of Linear Algebra, 20:168-179, 2010.
[10] G.L. Yu, Y.R. Wu, and J.L. Shu. Some graft transformations and its application on a distance spectrum. Discrete Mathematics, 311:2117-2123, 2011.
[11] X.L. Zhang and C. Godsil. Connectivity and minimal distance spectral radius. Linear and Multilinear Algebra, 59:745-754, 2011.

[^0]: *Received by the editors on August 23, 2013. Accepted for publication on August 11, 2014. Handling Editor: Ravi Bapat.
 ${ }^{\dagger}$ School of Mathematics and Information Science, Yantai University, Yantai, Shandong 264005, P.R. China (zhangxling04@aliyun.com). Supported by NSFC (11126256) and NSF of Shandong Province of China (ZR2012AQ022).

