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ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC
GRAPHS WITH PERFECT MATCHINGS*

XIAO LING ZHANGT

Abstract. For a connected graph, the distance spectral radius is the largest eigenvalue of its
distance matrix. Let U21k be the graph obtained from C3 by attaching a path of length n — 3 at one
vertex. Let U22k be the graph obtained from C3 by attaching a pendant edge together with k — 2
paths of length 2 at the same vertex. In this paper, it is proved that U21k (resp., U22k) is the unique
graph with the maximum (resp., minimum) distance spectral radius among all unicyclic graphs with
perfect matchings on 2k(k > 5) vertices.
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1. Introduction. Let G be a connected graph with vertex set {vi,va,...,v,}.
The distance between the vertices v; and v; is the length of a shortest path between
them, and is denoted by dg(v;,v;), or d(v;,v;). The distance matric D = D(G) of
G is defined so that its (i, j)— entry is equal to dg(v;,v;). The largest eigenvalue of
D(G) is called the distance spectral radius, and is denoted by p(G).

Balaban et al. [I] proposed the use of p(G) as a molecular descriptor, while
in [4] it was successfully used to infer the extent of branching and model boiling
points of alkanes. Therefore, the study concerning the maximum (minimum) distance
spectral radius of a given class of graphs is of great interest and significance. Recently,
the maximum (minimum) distance spectral radius of a given class of graphs has
been studied extensively. For example, Subhi and Powers [§] determined the graph
with maximum distance spectral radius among all trees on n vertices; Stevanovié
and Ili¢ [9] determined the graph with maximum distance spectral radius among all
trees with fixed maximum degree A; Ili¢ [5] characterized the graph with minimum
distance spectral radius among trees with given matching number; Bose et al. [2]
studied the graphs with minimum (maximum) distance spectral radius among all
graphs of order n with r pendent vertices; Zhang and Godsil [11] determined the
graph with minimum distance spectral radius among all graphs of order n with k& cut
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vertices (resp., k cut edges); Yu et al. [10] determined the unique graph with minimum
(maximum) distance spectral radius among unicyclic graphs on n vertices; Milan Nath
and Somnath Paul [7] determined the unique graph with minimum distance spectral
radius among all connected bipartite graphs of order n with a given matching number
(resp., with a given vertex connectivity).

A wunicyclic graph is a connected graph in which the number of edges equals the
number of vertices. A rooted graph has one of its vertex, called the root, distinguished
from the others. We use the following notation to represent a unicyclic graph: G =
U(Cy; T, Ts,...,T;), where C) is the unique cycle in G with V(C;) = {v1,ve,..., v}
such that v; is adjacent to v;1 ( mod [) for 1 < ¢ < . For each i, let T; be the rooted
tree with root v; (see Fig. 1). If |[V(T;)| = 1, we say T; is a trivial tree. Let U(2k)
denote the set of all unicyclic graphs on 2k vertices with perfect matchings. Let Ug,
be the graph obtained from C3 by attaching a path of length n — 3 at a vertex. Let
U3, be the graph obtained from Cj by attaching a pendant edge together with k — 2
paths of length 2 at the same vertex.

Fig. 1. Graph U(Cy;; T, To, ..., T).

In this paper, we mainly consider the distance spectral radius of unicyclic graphs
on 2k (k > 3) vertices with perfect matchings, and prove that Uy, (resp., UZ,) is the
unique graph with the maximum (resp., minimum) distance spectral radius among
all unicyclic graphs with perfect matchings on 2k (k > 5) vertices.

2. Prelimaries. We first give some lemmas which we will use in the main results.

LEMMA 2.1. [9] Let w be a vertex of the nontrivial connected graph G and for
positive integers p and q, let Gy, 4, denote the graph obtained from G by adding pendent
paths P = wu vy - - vp and Q = wuiug - - - uq of length p and q, respectively, at w. If
p=q=1, then p(Gpq) < p(Gpti1,g-1)-
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LEMMA 2.2. [I1I] Let u and v be two adjacent vertices of a connected graph G
and for positive integers k and l, let Gy, denote the graph obtained from G by adding
paths of length k at w and length 1 at v. If k > 1> 1, then p(Gr) < p(Gry1,0-1); if
k=12>1, then P(Gk,l) < p(GkJrLl,l) or P(Gk,l) < p(Gk;leJrl)-

LEMmMA 2.3. 3] p(Cy) = %2, if n is even; p(Cy) = ”24_1, if n is odd.

LEMMA 2.4. [6] Let A = (ai;j) be an n X n nonnegative matriz. Then

min E a;; < < max g a;
1<i<n & i < P(A4) 1<i<n N
1<j<n 1<j<n

LEMMA 2.5. Ifn > 10 and n is even, then p(U2) < p(C,,).

Proof. By Lemma [Z4] we get

™
2 —_
(U:) < 121%Xn 4 dij = 5 9
1<ji<n
By Lemma 23, we have
2
n

If n = 10, by matlab, we get p(UZ,) = 21.0245 < p(Cho) = 25.

If n > 12 and n is even,
™m n? n—"7)>2-13
-y« (1) o BT
ie., p(U2) < p(Cn).
So, in either case, we can get p(U2) < p(C,,), for n > 10 and n is even. O

Let X be the Perron vector of G corresponding to p(G). Suppose T; — {v;} =
aKyUK7 and Ti41 — {vit1} = BK2U~K; for some 1 < i < I, where a and 8 are both
nonnegative integers, v = 0 or 1. Using a symmetry, we can denote the coordinates
of the Perron vector corresponding to the vertices in V(7;) and V(T;41) as shown in
Fig. 2. Then, we have

LEMMA 2.6. (i) c+d > b; (i) h+d>c¢; (iii) a+b>c¢; (iv)c+d > h; (v)
a+d>b.

Proof. We first prove (i).

Let S =a(a+b)+c+dand S= > x;. Since
v; €V(G)

D(G)X = p(G)X,
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we can easily get

So, we have

p(G)e+ p(G)d = p(G)b >
>

ie.,
(p(G)+2)(c+d—b) 22a+ (a+2)b+d >0,
which implies

c+d>b.

Similarly, we can prove (ii),(iii), (iv) and (v). O

LEMMA 2.7. Let graphs G1, G, Ga, G4 € U(2k) be as shown in Fig. 3, where

p=2andq>1. Then we have

(i) p(G1) < p(GY); (i) p(G2) < p(Gy).
Proof. We first prove (i).

Let X be the Perron vector of Gy corresponding to p(G1). Using a symmetry, we
can denote the coordinates of the Perron vector corresponding to some vertices of G
as shown in Fig. 3. Let S= Y, x; and S’ = S — p(a +b), where p > 2. From

ﬂiGV(Gl)
G1 to G, we have

p(Gh) = p(G1) = XT (D(G}) — D(G)) X
— (p— D(a+b)(S' —a—b).
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Fig. 3. Graphs G1, G}, Ga, G.

In the following, we will prove S’ — a — b > 0 into two cases.
If H; = Cs, let C3 = wowu. Then S’ = d + z, + z,,. By (Z1]), we have
p(G1)d+ p(G1)zy + p(G1)xw — p(G1)a — p(G1)b =4a+ (p + 6)b — d — 3z, — 3y,
ie.,
(p(G1) +3)(S" —a—b)=2d+a+ (p+3)b> 0.

So, we have S’ —a — b > 0.

If Hy # Cs, then |V(H;)| > 4. There must exist some vertex w € V(H;) such
that dgr, (u, w) = 2. Suppose v € Ny, (u) N N, (w). By (1)), we have

p(G1)S" — p(G1)(a+b) > p(a + 2b) + 4a + 6b — 45",
ie., (p(G1) +4)(S" — a—1b) > p(a+ 2b) + 2b > 0, which implies S’ —a — b > 0.
So, in either case, we can get S” —a — b > 0, which implies

p(G1) < p(GY).

Similarly, we can prove (ii). O

3. Main results.

THEOREM 3.1. U3, is the unique graph with the mazimum distance spectral radius
amonyg all unicyclic graphs with perfect matchings on 2k (k > 3) vertices.

Proof. Choose G € U(2k) such that p(G) is as large as possible. Let G =
U(C; Ty, Ty, ..., T)) and V(C)) = {vi,v2,...,v}. Let X = (x1,72,...,221)T be the
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Perron vector of G corresponding to p(G), where z; corresponds to the vertex v;
(1 <i<2k).

Suppose M(G) is any perfect matching of G. If there exists some 1 < i <
such that v;v(;41) mod 1 € M(G), we may assume vivy € M(G). Then vyvz ¢ M
and viv; € M(G). If v;v(11) moat & M(G) for any 1 < @ < [, then vovz ¢ M
and viv; ¢ M(G). So, in either case, we can always assume vqvs ¢ M(G) and
viv; € M(G).

Claim 1. 1 = 3.

Otherwise, we may assume [ > 4.

Case 1. | = 4.
If Z T; > Z x;, let
v €V (TY) v €V (Ts)

G =G - {’Ul’U4} + {’Ul’U3}.

Then G’ € U(2k). From G to G’, the distances between V(Ty) and V(T5) are de-
creased by 1; the distances between V' (T1) and V(Ty) are increased by 1; the distances
between V(T3) and V(T1) UV (T3) UV (Ty), V(T3) and V(T4) are unchanged. So, we
have

p(G') — p(G) > XT (D(G') ~ D(G)) X

=2 Z Zj Z Tr; — Z Ty
ﬂjEV(Tl) ﬂiEV(T4) ’U,;EV(T;:,)
= 0.
In the following, we will prove p(G) # p(G').

If not, then X is also the Perron vector of G’ corresponding to p(G’). According
to (1)), we have
p(G)HM = Z d4j$]' + Z (dlj + 1)$]' + Z (dzj + 2).T]' + Z (dgj + 1)37]',
v; EV(Ty) v, EV(TY) v EV(Ty) v EV(Ty)
p(G/)HM = Z dajzj + Z (dlj + 2)37]' + Z (d2j + 2)37]' + Z (dgj + 1)$j.
v EV(Ty) v; EV(TY) v; EV(Ty) v EV(Ty)

Since p(G) = p(G’), from the above two equations, we get

vj eV (Th)

which contradicts to the fact that X is a Perron eigenvector.



Electronic Journal of Linear Algebra ISSN 1081-3810
A publication of the International Linear Algebra Society
Volume 27, pp. 569-587, August 2014
On the Distance Spectral Radius of Unicyclic Graphs with Perfect Matchings 575

So, we have p(G') > p(G), which is a contradiction.

Ifr > z< > alet
vi€V(T4) v €V(T5)

G =G - {’UQ’U3} + {’UQ’U4}.

Then G’ € U(2k). Similar to the above, we can also get a contradiction.

Case 2. 1 > 5.
If > x; > > x;, let
V4 GV(TS)U---UV(TL%J+1) ’L)-;GV(T(%.‘+2)U~~~UV(TZ)

G =G — {vav3} + {vau; }.

Then G’ € U(2k). From G to G’, the distances between V(T1) and V(T3) U --- U
V(T71) are increased by at least 1; the distances between V(T3) and V(T5) U--- U
V(TLéHl) are increased by at least 1; the distances between V' (T3) and V(T%Hﬂ) U
---UV/(T}) are decreased by 1; the distances between V(T;) (3 < ¢ <1—1) and V(Tj)
(i < j < 1) are unchanged or increased by at least 1. So, we have

p(G") = p(G) = X" (D(G") - D(G)) X

> 2 Z T, Z T; — Z T;

v; €V (T2) v, EV(T3)U---UV (T Uq,EV(T’,L.|+2)U~'UV(Tl)
2

>0,

1Ly+1)

i.e., p(G') > p(G), which is a contradiction.

If > x; < > x;, let

v, €V (T3)U---UV (T v, €V (T, 1 YU---UV (T7)
[51+2

L4141
G =G — {viv} + {v1vs}.
Then G’ € U(2k). Similar to the above, we can also get a contradiction.

Claim 2. G = U),.

Since G = U(Cs3;T1, T2, T3), using Lemma 2] frequently, we can first get each T;
(1 <4< 3)is a path. Then using Lemma 22 at most twice, we can get G = U,,. 0

THEOREM 3.2. Hs (see Fig. 4) is the unique graph with the minimum distance
spectral radius among all unicyclic graphs with perfect matchings on 6 vertices.

Proof. There are 8 graphs in U(6) (see Fig. 4). By Lemma 2] we have

(3.1) p(Hs) > p(Hs).
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H, H, H, H, H, H, H, H,

Fig. 4. Graphs H;—Hs.
By Lemma 221 we have
(32) p(Hs) > p(Ha), p(Hz) > p(Hs).

Combining (1)), (82)) and Table 3.1, we get G = H,. O

TABLE 3.1

G H1 Hg H4 H5 HG
p(G) | 9.0000 | 8.8219 | 9.2606 | 9.3154 | 9.3852

THEOREM 3.3. Gy (see Fig. 5) is the unique graph with the minimum distance
spectral radius among all unicyclic graphs with perfect matchings on 8 vertices.

Proof. Choose G € U(8) such that p(G) is as small as possible. Let G =
U(Cy;T1,Ts,...,T;). Then, we get | < 8. By Lemma 1] and Lemma 27 we get
T; — {v;} = aK1 UbK; for 1 < i < I, where a = 0 or 1. Since |V(G)| = 8, we have
G € {G;]1 < i< 18 and i is an integer} (see Fig. 5).

By Lemma [2.2] we have

(3.3) p(G11) > p(Gro), p(Gis) > p(Gir).
Combining (3:3)) and Table 3.2, we get G = Go. O

TABLE 3.2
G G1 GQ Gg G4 G5 GG G7 GB
p(G) | 16.0000 | 15.4245 | 16.4273 | 15.8882 | 15.3066 | 15.2065 | 15.7572 | 16.3222
G Gy Gho G2 Gis G Gis Gi7 Gis
p(G) | 14.9363 | 15.5440 | 17.1619 | 16.1147 | 15.0744 | 17.2816 | 15.6487 | 16.1798

THEOREM 3.4. U22k is the unique graph with the minimum distance spectral radius
amonyg all unicyclic graphs with perfect matchings on 2k (k > 5) vertices.
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G7 GS G‘J GIO GI 1 GlZ
GI? Gl4 Gli Glﬁ GI7 GlR

Fig. 5. Graphs G1*G18.

Proof. Choose G € U(2k) such that p(G) is as small as possible. Let G =
UC;Ty,Ts,...,T;) and C; = vive---vw;. By Lemma 2] and Lemma 27 we
get T; — {v;} = aKq3 UbKy for 1 < @ < I, where a = 0 if |[V(T3)| is odd, and
a = 1if |V(T;)| is even. In the following, we always assume Nr,(v;) = {v;lv; €
V(T;) and v; is adjacent to v;}, Ny, (vi) = {vj|lv; € N, (vi),d(v;) = 2} and Ry, =
{vj|lv; € Nr,(v;),d(vj) = 1} U{v;}. Then |Rp,| = 1 or 2. Suppose G’ is the graph
obtained from G by grafting some edges and G’ € U(2k). For some i, if T; is still a
rooted tree of G’, we still use T; to denote the rooted tree with root v; in G’; if T; is
not a rooted tree of G’ any more, but v; is still a root, we always use T} to denote
the rooted tree with root v; in G’. Let M(G) be any perfect matching of G.

Claim 1. 1 < 4.

Otherwise, we may assume [ > 5.

Case 1. There exists some 1 < 7 < such that |V(T})| > 3.
Without loss of generality, we may assume |V (T7)| > 3.
Subcase 1.1. vi_1v; ¢ M(G) and vovs ¢ M(G).

Suppose N’Tl (1) ={wvir, ..., v} and N, (v2) = {va1, ..., V25 }-

If l is even, let G’ = G—{vv;—1,v011, - - ., 0O p+H{v10—1, V1011, . . . , 010 ). Then
G' € U(2k) and G' = U(Cy_1; T}, Ta,...,Ti—1). Let X = (z1,72,...,22;)7 be the



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 27, pp. 569-587, August 2014

578 X.L. Zhang

Perron vector of G’ corresponding to p(G’), where x; corresponds to the vertex v;
(1 < i < 2k). For convenience, we can denote the coordinates of Perron vector X
corresponding to vertices in V(T7) the same as V(T;41) in Fig. 2. Since |V(T1)| = 3

and Y x;=e+gor f, from G’ to G, we have
v €RT,

p(G) = p(G") = X" (D(G) - D(G")) X

=2 Z T; Z T+ 2 Z T; Z z;

v €V(Ty) UjEV(T%+1)U~~UV(TL,1) 'UiEV(Tl)UnUV(Té) v; EV(Ty)\ R,
Y e Y amyYa Y o
'UiGV(TQ) ’L/'jGV(T%+2)U~“UV(Tl,1) ﬂiGV(Tg) ﬂjGV(T%+3)U..-UV(T171)

+ 42 Z X; Z T

ﬂiEV(Téil) ’L}jEV(Tlfl)

—2 Z T; Z T; — 2 Z T; Z T

vi€RT, 1)j€V(TL+1)U~~~UV(Tl,1) vi€RT, v; EV(Ti)\Rm,
2

> 2 Z xi—in Z T

v €V (T}) v €R, v EV(Ty ,)UUV (T 1)UV (T)\Rr,
2

> 2[e+g+h—(e+g)] Z xj
vjGV(T%_H)U---UV(Tl,l)UV(Tl)\RTL

> 0,

which is a contradiction.

If [ is odd, let

!
G' = G — {vav3, V2021, . .., V2V2s } — {Vivi—1, V11, - ., VIV )

+{v1vs, 01021, . . ., 1025} + {v1vi_1, vivn, L VL )
Then G’ € U(2k) and G' = U(Cj_2;T{,T5,...,T;—1). From G’ to G, we have
p(G) — (@) = XT (D(G) — D(G')) X

> 2 Z T; — in Z T; + Z T;

v €V (T1) v, ERTy v €V (T5)U--UV (Typ1 ) v, €V (T2)\Rr,
2

+2 Z Ti— Z T Z i + Z T

v, €V (T1) v €ERT, "’iEV(THilJrl)U"'UV(Tl*l) ’UiEV(TL)\RTl
2
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Similar to the case that [ is even, we can also get a contradiction.
Subcase 1.2. vi—1v; ¢ M(G) and vavz € M(G).
Suppose Ny, (v) = {1, ..., v} and Ny, (v3) = {v31,..., v} Let

!
G' =G —{vv_1, v, ..., 0o} — {v3v4, V3031, . .., V303 }

+{vivi—1, viv, - -, v1 } 4 {v2va, V2V31, - ., V2USL )
Then G’ € U(2k) and G' = U(Ci—2; 17, T4, Ty, ..., T/ ;). From G’ to G, we have

p(G) - p(@) = X" (D(G) - D(G)) X

>2< Z i + Z wz)( Z T + Z(V(T)\R )-Ti>

v €V(T1) v; €V (T2) v €V(Ty)U---UV(T_1) v; €(V(T3)\R3)U

(3.4) —2 <x3 + Z xl> ( Z z; + Z xl> .

vi€RTy v EV(T4)U---UV(T;_q) vi €(V(T3)\Rg )U(V(T))\ Ry

We can denote the coordinates of Perron vector X corresponding to vertices in V (T7)
and V(Ty) the same as V(T;41) and V(T;) in Fig. 2. Then, by Lemma 23 (ii), we
have

Z Ti— Z T; + Z xi—2x3=2(e+g+h)—(e+g)+d—c

v; €V (T1) v €RT, v eV (T2)
=h+d—c
(3.5) > 0.
Combining (34) and B3), we get p(G) > p(G’), which is a contradiction.
Subcase 1.3. vi_1v; € M(G) and vovs € M(Q).

If there exists some ¢ = 2,3,1 — 1,1 such that |V(T};)| > 3, then dealing with this
case the same as Subcase 1.1 and Subcase 1.2, respectively, we can get a contradiction.

Otherwise, |V(T2)| = |V (T3)| = |V (T1—1) = |V(T1)| = 1.
It =5, let
G/ =G - {1)31)4} + {1)11)3}.
Then G' € U(2k) and G' = U(Cs;TY,T>,T3). We can denote the coordinates of

Perron vector X corresponding to vertices in V(77) the same as V(T;) in Fig. 2.
Using a symmetry, we can get zo = x3. Since |[V(G)| = 10, we have |V (T1)| > 6. By



Electronic Journal of Linear Algebra ISSN 1081-3810

A publication of the International Linear Algebra Society
Volume 27, pp. 569-587, August 2014

580 X.L. Zhang

Lemma 23 (i), from G’ to G, we have

p(G) - p(G') > X7 (D(G) - D(G) X

= 2$3 E Ty — 2$2$4 — 4I3I4
’U,;EV(Tl)

= 21‘3 Z Tr; — 314

vV (T1)
> 2x3[2(a+b) + c+ d — 3b]
=2x3(2a+c+d—b)
> 0,

which is a contradiction.
If Il =6, let

G/ =G - {1)31)4,1)41)5} + {1211)3, 1)11)4}.
Then G’ € U(2k). From G’ to G, we have

p(G) = p(G") = X" (D(G) - D(G") X

=2 Z x| 3 +2 Z x; | +2x3 | xg — Z T, — x5 | —4xs Z T;

v, €V (T1) v; €V (T4) v; €V (Ty) v; €V (Ty)
= 2x3 Z T, — x5 +xg | +2 Z z; | 2 Z T; — X3 — 2T5
v, €V (Ty) v, €V (Ty) v; €V (T1)

> 0.

Ifl=7,|V(T4)| =3 or |V(Ts)| > 3, deal with the case the same as Subcase 1.2.

Ifl =7, |V(Ty)| = |V(T5)| = 1 and |V(T1)| = 4, by matlab, we get p(G) =
22.9526 > p(UZ,) = 21.0245, which is a contradiction.

Ifl="7|V(Ty)| = |V(T5)| =1 and |V(T1)| > 4, let
G =G — {vsvs} + {v1vs}.
Then G’ € U(2k). From G’ to G, we have
p(G) — pl@) > XT (D(G) - D(G') X
=2 Z ;T4 + 4 Z T;T5 + 2x0x5 — 20316 — dxax6 — dT5T6

v, €V (Ty) v, €V (T1)

(36) > 2 Z T; X4 — T3xg — 2X4Te | + 4xs Z T; — Tg
v; €V (T1) vi €V (T1)
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Since v3 and v4 are symmetric in G’, we can assume x3 = z4. We can denote the
coordinates of Perron vector X corresponding to vertices in V(T7) the same as V(T;)
in Fig. 2. By Lemma 23] (i), we have

g T;Ty — T3Tg — 2T4Te = g x; — 3x¢ | x4
v; €V (T1) v €V (T1)

> 2(a+b)+c+d—3b)zy
=2a+c+d—Dbxy

(3.7) > 0,

and

(3.8) Z Ti — Tg > Z x; — 3xg > 0.
’U,;EV(Tl) ﬂiGV(Tl)

Combining (3.8), B0 and [B]), we get p(G) > p(G’), which is a contradiction.
Ifl="7and |V(Ty)| = |V(T5)| = 2, let
G’ = G — {v3v4, v4v5, V506 } + {v1V4, V1V5, V1V6 }-
Then G’ € U(2k) and G' = U(Cs;Ty,Ts,T7). From G’ to G, we have
p(G) = p(G') = XT(D(G) - D(G") X

=2 Z z; | 2 Z T + 2 Z T + T | + 232 Z x; + X

’L}iGV(Tl) ’L}iGV(T4) ﬂiEV(T5) ’L}iGV(T5)

—2x3 | 2 Z T; Z Z;

’L}iGV(T4) ﬂiGV(T5)

+2 Z xi | x7 — Z x| —2 Z TiTeg

’L}iEV(T4) ﬂiGV(T5) ’L}iGV(T5)
>4 Z Xr; — X3 Z T; + 2x¢ Z €T — Z X
’L}iGV(Tl) ﬂiEV(T4) ﬂiGV(Tl) ﬂiEV(T5)
(39) +212 Z XT; — T3 — Z x; Z X
ﬂiEV(Tl) ’U,;EV(T4) ﬂiGV(T5)

We can denote the coordinates of Perron vector X corresponding to vertices in V(77)
the same as V(T;) in Fig. 2. Since |V(T1)| > 3, we have

(3.10) Z xi—2x3 > a+b+d—b=a+d > 0.
v, €V (T1)
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Similarly, we can have

Z T; — Z x; >0,

v €V (Ty) v €V (Ts)
(3.11) 2 Y mi-a- Y, >0
v €V(T1) v €V (Ty)

Combining (39), GI0) and BII)), we get p(G) > p(G’), which is a contradiction.
I£1> 8, let

G = G — {v3v4, 12011 } + {v2v4, v1_2u1 }.
Then G' € U(2k) and G' = U(Cj—2; 11, Ty, T4, ..., Ti—2,T}). From G’ to G, we have

p(G) = p(G') = X" (D(G) - D(G")) X

> 2 Z Ti+xo +T — T3 — X1 Z X;

v €V (T1) v €V (Ty)U--UV (T _3)

Similarly to the case [ = 7, we can also get a contradiction.
Case 2. For any 1 < i <1, |[V(T})| = 2.

If [ = 5, by matlab, we get p(G) = 21.7047 > p(UZ,) = 21.0245, which is a
contradiction.

If | = 6, by matlab, we get p(G) = 29.8114 > p(UZ) = 27.0578, which is a
contradiction.

If | = 7, by matlab, we get p(G) = 37.9249 > p(UZ,) = 33.1338, which is a
contradiction.

If | = 8, by matlab, we get p(G) = 48.0000 > p(UZ) = 39.2346, which is a

contradiction.

If1>9, let
G' = G — {vav3,v304, ..., vj_2vj_1} + {V103, V104, ..., V101 }.
Then G' € U(2k) and G’ = U(Cs; 17, T1—1,T3,). Since Y, x;=---= >z

ﬂiGV(Tz) ’U,;GV(TL_Q)
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and > x;= > x;in G, from G’ to G, we have
v €V (Ti—1) v, €V (Ty)

p(G) = p(G') = X" (D(G) - D(G")) X

v; €V (Ty) v €V (T3) v, €V (Ti-1)

I D ST S R
v, €V (T2) vi €V (T3) v; €V (T5) v, €V(Ti-1)
S D ST S R o
v, €V (T3) v, €V (T4) v; €V (Ts) v, €V (Ty)
N S B S S

v, €V(T1-3) v, €V (T1-2) vi €V (Ty)
PN S B
v €V (Ti—2) v €V (Ti—1)
>0,

which is a contradiction.

Case 3. For any 1 < i <, |V(T;)| < 2, and there exists some 1 < j < [ such that
V(Ty)| = 1.

For convenience, we may assume that |V(T1)| = 2 and |V (1})| = 1.

Subcase 3.1. |V(Ty)| = 1.

Then vavz, vj—1v; € M(G). Dealing with this case the same as Subcase 1.3.
Subcase 3.2. |V (Ta)| = |V (T3)] = 2.

Then v;_1v; € M(G). Since |V(G)| > 10, we can get [ > 6.

If | = 6, we get p(G) = 22.3859 > p(UZ,) = 21.0245, which is a contradiction.

If I =7 and |V(Ty)| = 1, we get p(G) = 22.2365 > p(UZ,) = 21.0245, which is a
contradiction.

If | = 7 and |V(Ty)| = 2, we get p(G) = 30.0508 > p(UZ,) = 27.0578, which is a
contradiction.

If I > 8 is odd, let

G' = G — {vav3,v3v4, vi—2v;_1} + {v1v3, V104, VIV_2 }.
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Then G' € U(2k) and G’ = U(Ci—4;T{, Ty, ...,Ti—2). We can denote the coordinates
of Perron vector X corresponding to vertices in V(T7) the same as V(T;) in Fig. 2.
From G’ to G, we have

p(G) = p(G') = X" (D(G) - D(G")) X

> 2 Z T; — X1 Z T;

’UiGV(Tl) ﬂiEV(T4)U---UV(TL,2)

=(c+d-0) Z Z;

ﬂiEV(T4)U---UV(TL,2)
> 0.

If | > 8 is even, let
G' = G — {vivr, v304, vi—2vi—_1} + {v2v1, V2vs, V12U }.

Then G’ € U(2k) and G’ = U(Cj—3;Ty,T4,...,Ti—2,T}). We can denote the coordi-
nates of Perron vector X corresponding to vertices in V(73) and V(1)) the same as
V(Ti+1) and V(T;) in Fig. 2, respectively. From G’ to G, we have

p(G) = p(G") = X" (D(G) - D(G")) X

> 2 Z T+ x — 31 Z T;

v; €V (T2) viev(T%H)umuV(Tl,Q)

=(h+f+d—c) > i

meV(TLH)u---uV(Tl,Q)
2
>0,
which is a contradiction.
Subcase 3.3. |V (Ta)| =2, |V(T35)] = 1.

Then vsvy, vi—1v; € M(G). Since |V(G)| = 10, |[V(Ty)| = 2 and |V(T})| = 1, we
get [ > 7.

If I =7, we get p(G) = 22.9172 > p(UZ,) = 21.0245, which is a contradiction.
If | =8 and |V (T5)| = 1, we get p(G) = 23.3244 > p(UZ,)) = 21.0245, which is a

contradiction.

If | = 8 and |V (T5)| = 2, we get p(G) = 32.0000 > p(UZ,) = 27.0578, which is a
contradiction.
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Ifl =9 and |V(T5)| = 1 or |V(T%)| = 1, we can deal with the case similarly to
Subcase 1.3.

If I =9 and |V(T5)| = 2, |V(T%7)| = 2, we can deal with the case similarly to
Subcase 3.2.

T£1> 10, Let
G' = G — {vgvs, vi—2vi_1} + {v2v5, v1U1_2}.

Then G’ € U(2k) and G’ = U(C1—4; Ty, T4, T5,...,Ti—2). We can denote the coordi-
nates of Perron vector X corresponding to vertices in V(T7]) and V(T3) the same as
V(T;) and V(T;41) in Fig. 2, respectively. By Lemma 23 (i), from G’ to G, we have

p(G) = p(G') = X" (D(G) - D(G")) X

>4 Z x; + Z T; —Tq4 — T]—1 Z X;

v, €V (T1) v €V (T2) v, €V (T5)U--UV (Ty_3)

—dlc+d+h+f-b—yg) > zi

v; €V (T5)U---UV (T)_3)

> 0,

which is a contradiction.
Case 4. For any 1 < i <1, |[V(T})| = 1.
Then G = C,,. By Lemma 25 we have p(G) > p(U2), which is a contradiction.

Claim 2. 1 = 3.

Otherwise, we have | = 4. Let G = U(Cy;T1,T2,T3,T4) and Cy = v1v2030401.
Since |V(G)| > 10, there must exist some 1 < ¢ < 4 such that |V(T;)| > 3. We may
assume that |V(T1)| = 3 and |V(T1)| has the same parity as |V (T3)].

Suppose N7, (v2) = {va1,. .., vas}. Let

G =G- {’Ugvgl, . ,’UQ’UQS} + {’Ulvgl, - ,’Ul’Ugs}.
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Then G’ € U(2k) and G' = U(Cs;Ty,T5,T4). From G’ to G, we have

p(G) = p(G") = X" (D(G) - D(G")) X

=2 Z T; Z T; + 2 Z T; Z z;

Uq,EV(Tl) 'UJ'EV(TQ)\RT2 Uq,EV(Tl) UjEV(T3)
2 Y aYmeY e Y o
'UiGV(TQ)\RT2 ’UjERTz ’U-;GI%T2 ﬂjGV(Tg)
=20 ), wmi= 3w D wm+ ) @)
vi €V (T1) vjERT, v; €V (T2)\ R, v; €V(Ts)

> 0,

which is a contradiction.
Claim 3. G = U3,.

Otherwise, let G = U(Cs;T1,T2,T3). There must exist some 1 < 4,5 < 3 such
that |V(T;)| is even and |V(T})| > 1. We may assume |V(T1)| is even, |V (T2)| > 1
and |V(T3)| = |V (T3)].

If |V(Ty)| = 2, then we have |V (T3)| = 2. Suppose Rr, \ {vs} = {v}}. Let
G =G — {vavs} + {v1v5}.
Then G/ = U3,. Using a symmetry, we get x3 = T, in G'. From G’ to G, we have

p(G) = p(G') = X7 (D(G) - D(G")) X

:2%3 Z T; — 2x3 Z T;

v, €V (Ty) v, €V (Ts)
O S
v; €V (T1) v; €V (T2)

Since |V(G)| > 10 and |V(Tz)| = |V(T3)| = 2, we have |V (T1)| > 6. So, we have

> x;— Y. ax; > 0. This implies p(G) > p(G’), which is a contradiction.
v; €V (T1) v; €V (T2)

If |V(Ty)| > 2, we may assume Np. (v1) = {v11,...,v1r}, Ry, \ {v1} = {v1} and
Né“;; (US) - {’1)31, s 77}3t}' Let

G' = G —{vivz,v1011, ..., 0101} — {v3V31, ..., V3V }

+ {vov], vav11, . . ., V2v1, } + {VoUs1, . . ., V2Us: )
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Then G’ = U3,. Using a symmetry, we get z1 = Ty in G’. From G’ to G, we have

p(G) = p(G") = X" (D(G) - D(G") X

v, €V (T1)\R1, v €ERry vi€V(T2) vi€V(T3)\Rry)
2yl ¥ o ¥ o
v; €V (T2) v, €V (T1)\R1, vi €V (T3)\ Ry
EID N (IS SR P
vi €V (T3)\ Ry v; €V (T1)\ R, v; € Ry
SETED SIE T B SRNEEE] PR SR | (D P
ﬂiGV(Tz) ’U,;EV(Tl)\RTl ﬂiGV(Tg)\RTS ’L}iGV(Tz) ﬂiGRT3

> 0,

which is a contradiction. 0
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