
ELA

ON THE DISTANCE SPECTRAL RADIUS OF UNICYCLIC

GRAPHS WITH PERFECT MATCHINGS∗
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Abstract. For a connected graph, the distance spectral radius is the largest eigenvalue of its

distance matrix. Let U1
2k be the graph obtained from C3 by attaching a path of length n− 3 at one

vertex. Let U2
2k be the graph obtained from C3 by attaching a pendant edge together with k − 2

paths of length 2 at the same vertex. In this paper, it is proved that U1
2k (resp., U2

2k) is the unique

graph with the maximum (resp., minimum) distance spectral radius among all unicyclic graphs with

perfect matchings on 2k(k > 5) vertices.
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1. Introduction. Let G be a connected graph with vertex set {v1, v2, . . . , vn}.

The distance between the vertices vi and vj is the length of a shortest path between

them, and is denoted by dG(vi, vj), or d(vi, vj). The distance matrix D = D(G) of

G is defined so that its (i, j)− entry is equal to dG(vi, vj). The largest eigenvalue of

D(G) is called the distance spectral radius, and is denoted by ρ(G).

Balaban et al. [1] proposed the use of ρ(G) as a molecular descriptor, while

in [4] it was successfully used to infer the extent of branching and model boiling

points of alkanes. Therefore, the study concerning the maximum (minimum) distance

spectral radius of a given class of graphs is of great interest and significance. Recently,

the maximum (minimum) distance spectral radius of a given class of graphs has

been studied extensively. For example, Subhi and Powers [8] determined the graph

with maximum distance spectral radius among all trees on n vertices; Stevanović

and Ilić [9] determined the graph with maximum distance spectral radius among all

trees with fixed maximum degree ∆; Ilić [5] characterized the graph with minimum

distance spectral radius among trees with given matching number; Bose et al. [2]

studied the graphs with minimum (maximum) distance spectral radius among all

graphs of order n with r pendent vertices; Zhang and Godsil [11] determined the

graph with minimum distance spectral radius among all graphs of order n with k cut
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vertices (resp., k cut edges); Yu et al. [10] determined the unique graph with minimum

(maximum) distance spectral radius among unicyclic graphs on n vertices; Milan Nath

and Somnath Paul [7] determined the unique graph with minimum distance spectral

radius among all connected bipartite graphs of order n with a given matching number

(resp., with a given vertex connectivity).

A unicyclic graph is a connected graph in which the number of edges equals the

number of vertices. A rooted graph has one of its vertex, called the root, distinguished

from the others. We use the following notation to represent a unicyclic graph: G =

U(Cl;T1, T2, . . . , Tl), where Cl is the unique cycle in G with V (Cl) = {v1, v2, . . . , vl}

such that vi is adjacent to vi+1 ( mod l) for 1 6 i 6 l. For each i, let Ti be the rooted

tree with root vi (see Fig. 1). If |V (Ti)| = 1, we say Ti is a trivial tree. Let U(2k)

denote the set of all unicyclic graphs on 2k vertices with perfect matchings. Let U1
2k

be the graph obtained from C3 by attaching a path of length n− 3 at a vertex. Let

U2
2k be the graph obtained from C3 by attaching a pendant edge together with k − 2

paths of length 2 at the same vertex.

Fig. 1. Graph U(Cl;T1, T2, . . . , Tl).

In this paper, we mainly consider the distance spectral radius of unicyclic graphs

on 2k (k > 3) vertices with perfect matchings, and prove that U1
2k (resp., U2

2k) is the

unique graph with the maximum (resp., minimum) distance spectral radius among

all unicyclic graphs with perfect matchings on 2k (k > 5) vertices.

2. Prelimaries. We first give some lemmas which we will use in the main results.

Lemma 2.1. [9] Let w be a vertex of the nontrivial connected graph G and for

positive integers p and q, let Gp,q denote the graph obtained from G by adding pendent

paths P = wv1v2 · · · vp and Q = wu1u2 · · ·uq of length p and q, respectively, at w. If

p > q > 1, then ρ(Gp,q) < ρ(Gp+1,q−1).
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Lemma 2.2. [11] Let u and v be two adjacent vertices of a connected graph G

and for positive integers k and l, let Gk,l denote the graph obtained from G by adding

paths of length k at u and length l at v. If k > l > 1, then ρ(Gk,l) < ρ(Gk+1,l−1); if

k = l > 1, then ρ(Gk,l) < ρ(Gk+1,l−1) or ρ(Gk,l) < ρ(Gk−1,l+1).

Lemma 2.3. [3] ρ(Cn) =
n2

4 , if n is even; ρ(Cn) =
n2−1

4 , if n is odd.

Lemma 2.4. [6] Let A = (aij) be an n× n nonnegative matrix. Then

min
16i6n

∑

16j6n

aij 6 ρ(A) 6 max
16i6n

∑

16j6n

aij .

Lemma 2.5. If n > 10 and n is even, then ρ(U2
n) < ρ(Cn).

Proof. By Lemma 2.4, we get

ρ(U2
n) 6 max

16i6n

∑

16j6n

dij =
7n

2
− 9.

By Lemma 2.3, we have

ρ(Cn) =
n2

4
.

If n = 10, by matlab, we get ρ(U2
10) = 21.0245 < ρ(C10) = 25.

If n > 12 and n is even,

ρ(U2
n)− ρ(Cn) 6

(

7n

2
− 9

)

−
n2

4
= −

(n− 7)2 − 13

4
< 0,

i.e., ρ(U2
n) < ρ(Cn).

So, in either case, we can get ρ(U2
n) < ρ(Cn), for n > 10 and n is even.

Let X be the Perron vector of G corresponding to ρ(G). Suppose Ti − {vi} =

αK2∪K1 and Ti+1−{vi+1} = βK2∪γK1 for some 1 6 i 6 l, where α and β are both

nonnegative integers, γ = 0 or 1. Using a symmetry, we can denote the coordinates

of the Perron vector corresponding to the vertices in V (Ti) and V (Ti+1) as shown in

Fig. 2. Then, we have

Lemma 2.6. (i) c + d > b; (ii) h + d > c; (iii) a + b > c; (iv) c + d > h; (v)

a+ d > b.

Proof. We first prove (i).

Let S′ = α(a+ b) + c+ d and S =
∑

vj∈V (G)

xj . Since

D(G)X = ρ(G)X,
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Fig. 2. Graph G.

we can easily get

ρ(G)xi =

2k
∑

j=1

dijxj .(2.1)

So, we have

ρ(G)c+ ρ(G)d− ρ(G)b > 2a+ (α+ 4)b− 2c− d+ (S − S′ − xi−1 − h),

> 2a+ (α+ 4)b− 2c− d,

i.e.,

(ρ(G) + 2)(c+ d− b) > 2a+ (α+ 2)b+ d > 0,

which implies

c+ d > b.

Similarly, we can prove (ii),(iii), (iv) and (v).

Lemma 2.7. Let graphs G1, G
′
1, G2, G

′
2 ∈ U(2k) be as shown in Fig. 3, where

p > 2 and q > 1. Then we have

(i) ρ(G1) < ρ(G′
1); (ii) ρ(G2) < ρ(G′

2).

Proof. We first prove (i).

Let X be the Perron vector of G1 corresponding to ρ(G1). Using a symmetry, we

can denote the coordinates of the Perron vector corresponding to some vertices of G1

as shown in Fig. 3. Let S =
∑

vi∈V (G1)

xi and S′ = S − p(a + b), where p > 2. From

G1 to G′
1, we have

ρ(G′
1)− ρ(G1) > XT (D(G′

1)−D(G1))X

= (p− 1)(a+ b)(S′ − a− b).
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Fig. 3. Graphs G1, G
′
1, G2, G

′
2.

In the following, we will prove S′ − a− b > 0 into two cases.

If H1 = C3, let C3 = uvwu. Then S′ = d+ xv + xw. By (2.1), we have

ρ(G1)d+ ρ(G1)xv + ρ(G1)xw − ρ(G1)a− ρ(G1)b = 4a+ (p+ 6)b− d− 3xv − 3xw,

i.e.,

(ρ(G1) + 3)(S′ − a− b) = 2d+ a+ (p+ 3)b > 0.

So, we have S′ − a− b > 0.

If H1 6= C3, then |V (H1)| > 4. There must exist some vertex w ∈ V (H1) such

that dH1
(u,w) = 2. Suppose v ∈ NH1

(u) ∩NH1
(w). By (2.1), we have

ρ(G1)S
′ − ρ(G1)(a+ b) > p(a+ 2b) + 4a+ 6b− 4S′,

i.e., (ρ(G1) + 4)(S′ − a− b) > p(a+ 2b) + 2b > 0, which implies S′ − a− b > 0.

So, in either case, we can get S′ − a− b > 0, which implies

ρ(G1) < ρ(G′
1).

Similarly, we can prove (ii).

3. Main results.

Theorem 3.1. U1
2k is the unique graph with the maximum distance spectral radius

among all unicyclic graphs with perfect matchings on 2k (k > 3) vertices.

Proof. Choose G ∈ U(2k) such that ρ(G) is as large as possible. Let G =

U(Cl;T1, T2, . . . , Tl) and V (Cl) = {v1, v2, . . . , vl}. Let X = (x1, x2, . . . , x2k)
T be the
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Perron vector of G corresponding to ρ(G), where xi corresponds to the vertex vi
(1 6 i 6 2k).

Suppose M(G) is any perfect matching of G. If there exists some 1 6 i 6 l

such that viv(i+1) mod l ∈ M(G), we may assume v1v2 ∈ M(G). Then v2v3 /∈ M(G)

and v1vl /∈ M(G). If viv(i+1) mod l /∈ M(G) for any 1 6 i 6 l, then v2v3 /∈ M(G)

and v1vl /∈ M(G). So, in either case, we can always assume v2v3 /∈ M(G) and

v1vl /∈ M(G).

Claim 1. l = 3.

Otherwise, we may assume l > 4.

Case 1. l = 4.

If
∑

vi∈V (T4)

xi >
∑

vi∈V (T3)

xi, let

G′ = G− {v1v4}+ {v1v3}.

Then G′ ∈ U(2k). From G to G′, the distances between V (T1) and V (T3) are de-

creased by 1; the distances between V (T1) and V (T4) are increased by 1; the distances

between V (T2) and V (T1) ∪ V (T3) ∪ V (T4), V (T3) and V (T4) are unchanged. So, we

have

ρ(G′)− ρ(G) > XT (D(G′)−D(G))X

= 2
∑

vj∈V (T1)

xj





∑

vi∈V (T4)

xi −
∑

vi∈V (T3)

xi





> 0.

In the following, we will prove ρ(G) 6= ρ(G′).

If not, then X is also the Perron vector of G′ corresponding to ρ(G′). According
to (2.1), we have

ρ(G)x4 =
∑

vj∈V (T4)

d4jxj +
∑

vj∈V (T1)

(d1j + 1)xj +
∑

vj∈V (T2)

(d2j + 2)xj +
∑

vj∈V (T3)

(d3j + 1)xj ,

ρ(G′)x4 =
∑

vj∈V (T4)

d4jxj +
∑

vj∈V (T1)

(d1j + 2)xj +
∑

vj∈V (T2)

(d2j + 2)xj +
∑

vj∈V (T3)

(d3j + 1)xj .

Since ρ(G) = ρ(G′), from the above two equations, we get
∑

vj∈V (T1)

xj = 0,

which contradicts to the fact that X is a Perron eigenvector.
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So, we have ρ(G′) > ρ(G), which is a contradiction.

If
∑

vi∈V (T4)

xi <
∑

vi∈V (T3)

xi, let

G′ = G− {v2v3}+ {v2v4}.

Then G′ ∈ U(2k). Similar to the above, we can also get a contradiction.

Case 2. l > 5.

If
∑

vi∈V (T3)∪···∪V (T
⌊ l
2
⌋+1

)

xi >
∑

vi∈V (T
⌈ l
2
⌉+2

)∪···∪V (Tl)

xi, let

G′ = G− {v2v3}+ {v2vl}.

Then G′ ∈ U(2k). From G to G′, the distances between V (T1) and V (T3) ∪ · · · ∪

V (T⌈ l
2
⌉) are increased by at least 1; the distances between V (T2) and V (T3) ∪ · · · ∪

V (T⌊ l
2
⌋+1) are increased by at least 1; the distances between V (T2) and V (T⌈ l

2
⌉+2) ∪

· · ·∪V (Tl) are decreased by 1; the distances between V (Ti) (3 6 i 6 l− 1) and V (Tj)

(i < j 6 l) are unchanged or increased by at least 1. So, we have

ρ(G′)− ρ(G) > XT (D(G′)−D(G))X

> 2
∑

vj∈V (T2)

xj







∑

vi∈V (T3)∪···∪V (T
⌊ l
2
⌋+1

)

xi −
∑

vi∈V (T
⌈ l
2
⌉+2

)∪···∪V (Tl)

xi







> 0,

i.e., ρ(G′) > ρ(G), which is a contradiction.

If
∑

vi∈V (T3)∪···∪V (T
⌊ l
2
⌋+1

)

xi <
∑

vi∈V (T
⌈ l
2
⌉+2

)∪···∪V (Tl)

xi, let

G′ = G− {v1vl}+ {v1v3}.

Then G′ ∈ U(2k). Similar to the above, we can also get a contradiction.

Claim 2. G = U1
2k.

Since G = U(C3;T1, T2, T3), using Lemma 2.1 frequently, we can first get each Ti

(1 6 i 6 3) is a path. Then using Lemma 2.2 at most twice, we can get G = U1
2k.

Theorem 3.2. H2 (see Fig. 4) is the unique graph with the minimum distance

spectral radius among all unicyclic graphs with perfect matchings on 6 vertices.

Proof. There are 8 graphs in U(6) (see Fig. 4). By Lemma 2.1, we have

ρ(H8) > ρ(H5).(3.1)
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1H 2H 3H 4H 5H 6H 7H 8H

Fig. 4. Graphs H1–H8.

By Lemma 2.2, we have

ρ(H3) > ρ(H4), ρ(H7) > ρ(H6).(3.2)

Combining (3.1), (3.2) and Table 3.1, we get G = H2.

Table 3.1

G H1 H2 H4 H5 H6

ρ(G) 9.0000 8.8219 9.2606 9.3154 9.3852

Theorem 3.3. G9 (see Fig. 5) is the unique graph with the minimum distance

spectral radius among all unicyclic graphs with perfect matchings on 8 vertices.

Proof. Choose G ∈ U(8) such that ρ(G) is as small as possible. Let G =

U(Cl;T1, T2, . . . , Tl). Then, we get l 6 8. By Lemma 2.1 and Lemma 2.7, we get

Ti − {vi} = aK1 ∪ bK2 for 1 6 i 6 l, where a = 0 or 1. Since |V (G)| = 8, we have

G ∈ {Gi|1 6 i 6 18 and i is an integer} (see Fig. 5).

By Lemma 2.2, we have

ρ(G11) > ρ(G10), ρ(G15) > ρ(G17).(3.3)

Combining (3.3) and Table 3.2, we get G = G9.

Table 3.2

G G1 G2 G3 G4 G5 G6 G7 G8

ρ(G) 16.0000 15.4245 16.4273 15.8882 15.3066 15.2065 15.7572 16.3222

G G9 G10 G12 G13 G14 G16 G17 G18

ρ(G) 14.9363 15.5440 17.1619 16.1147 15.0744 17.2816 15.6487 16.1798

Theorem 3.4. U2
2k is the unique graph with the minimum distance spectral radius

among all unicyclic graphs with perfect matchings on 2k (k > 5) vertices.
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Fig. 5. Graphs G1–G18.

Proof. Choose G ∈ U(2k) such that ρ(G) is as small as possible. Let G =

U(Cl;T1, T2, . . . , Tl) and Cl = v1v2 · · · vlv1. By Lemma 2.1 and Lemma 2.7, we

get Ti − {vi} = aK1 ∪ bK2 for 1 6 i 6 l, where a = 0 if |V (Ti)| is odd, and

a = 1 if |V (Ti)| is even. In the following, we always assume NTi
(vi) = {vj|vj ∈

V (Ti) and vj is adjacent to vi}, N
′
Ti
(vi) = {vj |vj ∈ NTi

(vi), d(vj) = 2} and RTi
=

{vj |vj ∈ NTi
(vi), d(vj) = 1} ∪ {vi}. Then |RTi

| = 1 or 2. Suppose G′ is the graph

obtained from G by grafting some edges and G′ ∈ U(2k). For some i, if Ti is still a

rooted tree of G′, we still use Ti to denote the rooted tree with root vi in G′; if Ti is

not a rooted tree of G′ any more, but vi is still a root, we always use T ′
i to denote

the rooted tree with root vi in G′. Let M(G) be any perfect matching of G.

Claim 1. l 6 4.

Otherwise, we may assume l > 5.

Case 1. There exists some 1 6 i 6 l such that |V (Ti)| > 3.

Without loss of generality, we may assume |V (T1)| > 3.

Subcase 1.1. vl−1vl /∈ M(G) and v2v3 /∈ M(G).

Suppose N ′
Tl
(vl) = {vl1, . . . , vlr} and N ′

T2
(v2) = {v21, . . . , v2s}.

If l is even, let G′ = G−{vlvl−1, vlvl1, . . . , vlvlr}+{v1vl−1, v1vl1, . . . , v1vlr}. Then

G′ ∈ U(2k) and G′ = U(Cl−1;T
′
1, T2, . . . , Tl−1). Let X = (x1, x2, . . . , x2k)

T be the
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Perron vector of G′ corresponding to ρ(G′), where xi corresponds to the vertex vi
(1 6 i 6 2k). For convenience, we can denote the coordinates of Perron vector X

corresponding to vertices in V (T ′
1) the same as V (Ti+1) in Fig. 2. Since |V (T1)| > 3

and
∑

vi∈RTl

xi = e+ g or f , from G′ to G, we have

ρ(G) − ρ(G′) > XT (D(G)−D(G′))X

= 2
∑

vi∈V (T1)

xi

∑

vj∈V (T l
2
+1

)∪···∪V (Tl−1)

xj + 2
∑

vi∈V (T1)∪···∪V (T l
2

)

xi

∑

vj∈V (Tl)\RTl

xj

+2
∑

vi∈V (T2)

xi

∑

vj∈V (T l
2
+2

)∪···∪V (Tl−1)

xj + 2
∑

vi∈V (T3)

xi

∑

vj∈V (T l
2
+3

)∪···∪V (Tl−1)

xj

+ · · · + 2
∑

vi∈V (T l
2
−1

)

xi

∑

vj∈V (Tl−1)

xj

− 2
∑

vi∈RTl

xi

∑

vj∈V (T l
2
+1

)∪···∪V (Tl−1)

xj − 2
∑

vi∈RTl

xi

∑

vj∈V (Tl)\RTl

xj

> 2





∑

vi∈V (T1)

xi −
∑

vi∈RTl

xi











∑

vj∈V (T l
2
+1

)∪···∪V (Tl−1)∪V (Tl)\RTl

xj







> 2[e+ g + h− (e+ g)]







∑

vj∈V (T l
2
+1

)∪···∪V (Tl−1)∪V (Tl)\RTl

xj







> 0,

which is a contradiction.

If l is odd, let

G′ = G− {v2v3, v2v21, . . . , v2v2s} − {vlvl−1, vlvl1, . . . , vlvlr}

+ {v1v3, v1v21, . . . , v1v2s}+ {v1vl−1, v1vl1, . . . , v1vlr}.

Then G′ ∈ U(2k) and G′ = U(Cl−2;T
′
1, T3, . . . , Tl−1). From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

> 2





∑

vi∈V (T1)

xi −
∑

vi∈RT2

xi











∑

vi∈V (T3)∪···∪V (T l+1
2

)

xi +
∑

vi∈V (T2)\RT2

xi







+2





∑

vi∈V (T1)

xi −
∑

vi∈RTl

xi











∑

vi∈V (T l+1
2

+1
)∪···∪V (Tl−1)

xi +
∑

vi∈V (Tl)\RTl

xi






.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 569-587, August 2014



ELA

On the Distance Spectral Radius of Unicyclic Graphs with Perfect Matchings 579

Similar to the case that l is even, we can also get a contradiction.

Subcase 1.2. vl−1vl /∈ M(G) and v2v3 ∈ M(G).

Suppose N ′
Tl
(vl) = {vl1, . . . , vlr} and N ′

T3
(v3) = {v31, . . . , v3t}. Let

G′ = G− {vlvl−1, vlvl1, . . . , vlvlr} − {v3v4, v3v31, . . . , v3v3t}

+ {v1vl−1, v1vl1, . . . , v1vlr}+ {v2v4, v2v31, . . . , v2v3t}.

Then G′ ∈ U(2k) and G′ = U(Cl−2;T
′
1, T

′
2, T4, . . . , T

′
l−1). From G′ to G, we have

ρ(G)− ρ(G′) > X
T
(

D(G) −D(G′)
)

X

> 2





∑

vi∈V (T1)

xi +
∑

vi∈V (T2)

xi









∑

vi∈V (T4)∪···∪V (Tl−1)

xi +
∑

vi∈(V (T3)\RT3
)∪(V (Tl)\RTl

)

xi





− 2



x3 +
∑

vi∈RTl

xi









∑

vi∈V (T4)∪···∪V (Tl−1)

xi +
∑

vi∈(V (T3)\RT3
)∪(V (Tl)\RTl

)

xi



 .(3.4)

We can denote the coordinates of Perron vector X corresponding to vertices in V (T ′
1)

and V (T ′
2) the same as V (Ti+1) and V (Ti) in Fig. 2. Then, by Lemma 2.3 (ii), we

have

∑

vi∈V (T1)

xi −
∑

vi∈RTl

xi +
∑

vi∈V (T2)

xi − x3 > (e+ g + h)− (e+ g) + d− c

= h+ d− c

> 0.(3.5)

Combining (3.4) and (3.5), we get ρ(G) > ρ(G′), which is a contradiction.

Subcase 1.3. vl−1vl ∈ M(G) and v2v3 ∈ M(G).

If there exists some i = 2, 3, l− 1, l such that |V (Ti)| > 3, then dealing with this

case the same as Subcase 1.1 and Subcase 1.2, respectively, we can get a contradiction.

Otherwise, |V (T2)| = |V (T3)| = |V (Tl−1) = |V (Tl)| = 1.

If l = 5, let

G′ = G− {v3v4}+ {v1v3}.

Then G′ ∈ U(2k) and G′ = U(C3;T
′
1, T2, T3). We can denote the coordinates of

Perron vector X corresponding to vertices in V (T ′
1) the same as V (Ti) in Fig. 2.

Using a symmetry, we can get x2 = x3. Since |V (G)| > 10, we have |V (T1)| > 6. By
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Lemma 2.3 (i), from G′ to G, we have

ρ(G) − ρ(G′) > XT (D(G) −D(G′))X

= 2x3

∑

vi∈V (T1)

xi − 2x2x4 − 4x3x4

= 2x3





∑

vi∈V (T1)

xi − 3x4





> 2x3[2(a+ b) + c+ d− 3b]

= 2x3(2a+ c+ d− b)

> 0,

which is a contradiction.

If l = 6, let

G′ = G− {v3v4, v4v5}+ {v1v3, v1v4}.

Then G′ ∈ U(2k). From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G) −D(G′))X

= 2
∑

vi∈V (T1)

xi



x3 + 2
∑

vi∈V (T4)

xi



+ 2x3



x6 −
∑

vi∈V (T4)

xi − x5



− 4x5

∑

vi∈V (T4)

xi

= 2x3





∑

vi∈V (T1)

xi − x5 + x6



+ 2
∑

vi∈V (T4)

xi



2
∑

vi∈V (T1)

xi − x3 − 2x5





> 0.

If l = 7, |V (T4)| > 3 or |V (T5)| > 3, deal with the case the same as Subcase 1.2.

If l = 7, |V (T4)| = |V (T5)| = 1 and |V (T1)| = 4, by matlab, we get ρ(G) =

22.9526 > ρ(U2
10) = 21.0245, which is a contradiction.

If l = 7, |V (T4)| = |V (T5)| = 1 and |V (T1)| > 4, let

G′ = G− {v5v6}+ {v1v5}.

Then G′ ∈ U(2k). From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

= 2
∑

vi∈V (T1)

xix4 + 4
∑

vi∈V (T1)

xix5 + 2x2x5 − 2x3x6 − 4x4x6 − 4x5x6

> 2





∑

vi∈V (T1)

xix4 − x3x6 − 2x4x6



+ 4x5





∑

vi∈V (T1)

xi − x6



 .(3.6)
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Since v3 and v4 are symmetric in G′, we can assume x3 = x4. We can denote the

coordinates of Perron vector X corresponding to vertices in V (T1) the same as V (Ti)

in Fig. 2. By Lemma 2.3 (i), we have

∑

vi∈V (T1)

xix4 − x3x6 − 2x4x6 =





∑

vi∈V (T1)

xi − 3x6



x4

> (2(a+ b) + c+ d− 3b)x4

= (2a+ c+ d− b)x4

> 0,(3.7)

and
∑

vi∈V (T1)

xi − x6 >
∑

vi∈V (T1)

xi − 3x6 > 0.(3.8)

Combining (3.6), (3.7) and (3.8), we get ρ(G) > ρ(G′), which is a contradiction.

If l = 7 and |V (T4)| = |V (T5)| = 2, let

G′ = G− {v3v4, v4v5, v5v6}+ {v1v4, v1v5, v1v6}.

Then G′ ∈ U(2k) and G′ = U(C3;T
′
1, T6, T7). From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

= 2
∑

vi∈V (T1)

xi



2
∑

vi∈V (T4)

xi + 2
∑

vi∈V (T5)

xi + x6



+ 2x2





∑

vi∈V (T5)

xi + x6





− 2x3



2
∑

vi∈V (T4)

xi

∑

vi∈V (T5)

xi





+2
∑

vi∈V (T4)

xi



x7 −
∑

vi∈V (T5)

xi



− 2
∑

vi∈V (T5)

xix6

> 4





∑

vi∈V (T1)

xi − x3





∑

vi∈V (T4)

xi + 2x6





∑

vi∈V (T1)

xi −
∑

vi∈V (T5)

xi





+2



2
∑

vi∈V (T1)

xi − x3 −
∑

vi∈V (T4)

xi





∑

vi∈V (T5)

xi.(3.9)

We can denote the coordinates of Perron vector X corresponding to vertices in V (T ′
1)

the same as V (Ti) in Fig. 2. Since |V (T1)| > 3, we have
∑

vi∈V (T1)

xi − x3 > a+ b+ d− b = a+ d > 0.(3.10)
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Similarly, we can have

∑

vi∈V (T1)

xi −
∑

vi∈V (T5)

xi > 0,

2
∑

vi∈V (T1)

xi − x3 −
∑

vi∈V (T4)

xi > 0.(3.11)

Combining (3.9), (3.10) and (3.11), we get ρ(G) > ρ(G′), which is a contradiction.

If l > 8, let

G′ = G− {v3v4, vl−2vl−1}+ {v2v4, vl−2vl}.

Then G′ ∈ U(2k) and G′ = U(Cl−2;T1, T
′
2, T4, . . . , Tl−2, T

′
l ). From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G) −D(G′))X

> 2





∑

vi∈V (T1)

xi + x2 + xl − x3 − xl−1









∑

vi∈V (T4)∪···∪V (Tl−2)

xi





Similarly to the case l = 7, we can also get a contradiction.

Case 2. For any 1 6 i 6 l, |V (Ti)| = 2.

If l = 5, by matlab, we get ρ(G) = 21.7047 > ρ(U2
10) = 21.0245, which is a

contradiction.

If l = 6, by matlab, we get ρ(G) = 29.8114 > ρ(U2
12) = 27.0578, which is a

contradiction.

If l = 7, by matlab, we get ρ(G) = 37.9249 > ρ(U2
14) = 33.1338, which is a

contradiction.

If l = 8, by matlab, we get ρ(G) = 48.0000 > ρ(U2
16) = 39.2346, which is a

contradiction.

If l > 9, let

G′ = G− {v2v3, v3v4, . . . , vl−2vl−1}+ {v1v3, v1v4, . . . , v1vl−1}.

Then G′ ∈ U(2k) and G′ = U(C3;T
′
1, Tl−1, Tl, ). Since

∑

vi∈V (T2)

xi = · · · =
∑

vi∈V (Tl−2)

xi
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and
∑

vi∈V (Tl−1)

xi =
∑

vi∈V (Tl)

xi in G′, from G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

> 2
∑

vi∈V (T1)

xi





∑

vi∈V (T3)

xi + · · ·+
∑

vi∈V (Tl−1)

xi





+2
∑

vi∈V (T2)

xi



−
∑

vi∈V (T3)

xi +
∑

vi∈V (T5)

xi + · · ·+
∑

vi∈V (Tl−1)

xi





+2
∑

vi∈V (T3)

xi



−
∑

vi∈V (T4)

xi +
∑

vi∈V (T6)

xi + · · ·+
∑

vi∈V (Tl)

xi





+ · · ·+ 2
∑

vi∈V (Tl−3)

xi



−
∑

vi∈V (Tl−2)

xi +
∑

vi∈V (Tl)

xi





+2
∑

vi∈V (Tl−2)

xi



−
∑

vi∈V (Tl−1)

xi





> 0,

which is a contradiction.

Case 3. For any 1 6 i 6 l, |V (Ti)| 6 2, and there exists some 1 6 j 6 l such that

|V (Tj)| = 1.

For convenience, we may assume that |V (T1)| = 2 and |V (Tl)| = 1.

Subcase 3.1. |V (T2)| = 1.

Then v2v3, vl−1vl ∈ M(G). Dealing with this case the same as Subcase 1.3.

Subcase 3.2. |V (T2)| = |V (T3)| = 2.

Then vl−1vl ∈ M(G). Since |V (G)| > 10, we can get l > 6.

If l = 6, we get ρ(G) = 22.3859 > ρ(U2
10) = 21.0245, which is a contradiction.

If l = 7 and |V (T4)| = 1, we get ρ(G) = 22.2365 > ρ(U2
10) = 21.0245, which is a

contradiction.

If l = 7 and |V (T4)| = 2, we get ρ(G) = 30.0508 > ρ(U2
12) = 27.0578, which is a

contradiction.

If l > 8 is odd, let

G′ = G− {v2v3, v3v4, vl−2vl−1}+ {v1v3, v1v4, v1vl−2}.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 569-587, August 2014



ELA

584 X.L. Zhang

Then G′ ∈ U(2k) and G′ = U(Cl−4;T
′
1, T4, . . . , Tl−2). We can denote the coordinates

of Perron vector X corresponding to vertices in V (T ′
1) the same as V (Ti) in Fig. 2.

From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

> 2





∑

vi∈V (T1)

xi − xl−1









∑

vi∈V (T4)∪···∪V (Tl−2)

xi





= (c+ d− b)





∑

vi∈V (T4)∪···∪V (Tl−2)

xi





> 0.

If l > 8 is even, let

G′ = G− {v1vl, v3v4, vl−2vl−1}+ {v2vl, v2v4, vl−2vl}.

Then G′ ∈ U(2k) and G′ = U(Cl−3;T
′
2, T4, . . . , Tl−2, T

′
l ). We can denote the coordi-

nates of Perron vector X corresponding to vertices in V (T ′
2) and V (T ′

l ) the same as

V (Ti+1) and V (Ti) in Fig. 2, respectively. From G′ to G, we have

ρ(G) − ρ(G′) > XT (D(G)−D(G′))X

> 2





∑

vi∈V (T2)

xi + xl − xl−1











∑

vi∈V (T l
2
+1

)∪···∪V (Tl−2)

xi







= (h+ f + d− c)







∑

vi∈V (T l
2
+1

)∪···∪V (Tl−2)

xi







> 0,

which is a contradiction.

Subcase 3.3. |V (T2)| = 2, |V (T3)| = 1.

Then v3v4, vl−1vl ∈ M(G). Since |V (G)| > 10, |V (T1)| = 2 and |V (Tl)| = 1, we

get l > 7.

If l = 7, we get ρ(G) = 22.9172 > ρ(U2
10) = 21.0245, which is a contradiction.

If l = 8 and |V (T5)| = 1, we get ρ(G) = 23.3244 > ρ(U2
10) = 21.0245, which is a

contradiction.

If l = 8 and |V (T5)| = 2, we get ρ(G) = 32.0000 > ρ(U2
12) = 27.0578, which is a

contradiction.
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If l = 9 and |V (T5)| = 1 or |V (T7)| = 1, we can deal with the case similarly to

Subcase 1.3.

If l = 9 and |V (T5)| = 2, |V (T7)| = 2, we can deal with the case similarly to

Subcase 3.2.

If l > 10, Let

G′ = G− {v4v5, vl−2vl−1}+ {v2v5, v1vl−2}.

Then G′ ∈ U(2k) and G′ = U(Cl−4;T
′
1, T

′
2, T5, . . . , Tl−2). We can denote the coordi-

nates of Perron vector X corresponding to vertices in V (T ′
1) and V (T ′

2) the same as

V (Ti) and V (Ti+1) in Fig. 2, respectively. By Lemma 2.3 (i), from G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

> 4





∑

vi∈V (T1)

xi +
∑

vi∈V (T2)

xi − x4 − xl−1









∑

vi∈V (T5)∪···∪V (Tl−2)

xi





= 4(c+ d+ h+ f − b− g)





∑

vi∈V (T5)∪···∪V (Tl−2)

xi





> 0,

which is a contradiction.

Case 4. For any 1 6 i 6 l, |V (Ti)| = 1.

Then G = Cn. By Lemma 2.5, we have ρ(G) > ρ(U2
n), which is a contradiction.

Claim 2. l = 3.

Otherwise, we have l = 4. Let G = U(C4;T1, T2, T3, T4) and C4 = v1v2v3v4v1.

Since |V (G)| > 10, there must exist some 1 6 i 6 4 such that |V (Ti)| > 3. We may

assume that |V (T1)| > 3 and |V (T1)| has the same parity as |V (T2)|.

Suppose N ′
T2
(v2) = {v21, . . . , v2s}. Let

G′ = G− {v2v21, . . . , v2v2s}+ {v1v21, . . . , v1v2s}.
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Then G′ ∈ U(2k) and G′ = U(C3;T
′
1, T3, T4). From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

= 2
∑

vi∈V (T1)

xi

∑

vj∈V (T2)\RT2

xj + 2
∑

vi∈V (T1)

xi

∑

vj∈V (T3)

xj

− 2
∑

vi∈V (T2)\RT2

xi

∑

vj∈RT2

xj − 2
∑

vi∈RT2

xi

∑

vj∈V (T3)

xj

= 2(
∑

vi∈V (T1)

xi −
∑

vj∈RT2

xj)(
∑

vj∈V (T2)\RT2

xj +
∑

vj∈V (T3)

xj)

> 0,

which is a contradiction.

Claim 3. G = U2
2k.

Otherwise, let G = U(C3;T1, T2, T3). There must exist some 1 6 i, j 6 3 such

that |V (Ti)| is even and |V (Tj)| > 1. We may assume |V (T1)| is even, |V (T2)| > 1

and |V (T2)| > |V (T3)|.

If |V (T2)| = 2, then we have |V (T3)| = 2. Suppose RT3
\ {v3} = {v′3}. Let

G′ = G− {v2v3}+ {v1v
′
3}.

Then G′ = U2
2k. Using a symmetry, we get x3 = xv′

3
in G′. From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G)−D(G′))X

= 2xv′
3

∑

vi∈V (T1)

xi − 2x3

∑

vi∈V (T2)

xi

= 2x3





∑

vi∈V (T1)

xi −
∑

vi∈V (T2)

xi



 .

Since |V (G)| > 10 and |V (T2)| = |V (T3)| = 2, we have |V (T1)| > 6. So, we have
∑

vi∈V (T1)

xi −
∑

vi∈V (T2)

xi > 0. This implies ρ(G) > ρ(G′), which is a contradiction.

If |V (T2)| > 2, we may assume N ′
T1
(v1) = {v11, . . . , v1r}, RT1

\ {v1} = {v′1} and

N ′
T3
(v3) = {v31, . . . , v3t}. Let

G′ = G− {v1v3, v1v11, . . . , v1v1r} − {v3v31, . . . , v3v3t}

+ {v2v
′
1, v2v11, . . . , v2v1r}+ {v2v31, . . . , v2v3t}.
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Then G′ = U2
2k. Using a symmetry, we get x1 = xv′

1
in G′. From G′ to G, we have

ρ(G)− ρ(G′) > XT (D(G) −D(G′))X

= − 2x1





∑

vi∈V (T1)\RT1

xi +
∑

vi∈RT3

xi



+ 2xv′
1





∑

vi∈V (T2)

+
∑

vi∈V (T3)\RT3
)

xi





+2
∑

vi∈V (T2)

xi





∑

vi∈V (T1)\RT1

xi +
∑

vi∈V (T3)\RT3

xi





+2
∑

vi∈V (T3)\RT3

xi





∑

vi∈V (T1)\RT1

xi −
∑

vi∈RT3

xi





> 2





∑

vi∈V (T2)

xi − x1





∑

vi∈V (T1)\RT1

xi + 2



x1 +
∑

vi∈V (T3)\RT3

xi









∑

vi∈V (T2)

xi −
∑

vi∈RT3

xi





> 0,

which is a contradiction.
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[5] A. Ilić. Distance spectral radius of trees with given matching number. Discrete Applied

Mathematics, 158:1799–1806, 2010.

[6] H. Minc. Nonnegative Matrices. John Wiley and Sons Inc., New York, 1988.

[7] M. Nath and S. Paul. On the distance spectral radius of bipartite graphs. Linear Algebra and

its Applications, 436:1285–1296, 2012.

[8] S. Ruzeih and D. Powers. The distance spectrum of the path Pn and the first distance

eigenvector of connected graphs. Linear and Multilinear Algebra, 28:75–81, 1990.
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