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Abstract. In a recent paper by Hirzallah et al. [O. Hirzallah, F. Kittaneh, M. Krnić, N.

Lovričević, and J. Pečarić. Eigenvalue inequalities for differences of means of Hilbert space oper-

ators. Linear Algebra and its Applications, 436:1516–1527, 2012.], several eigenvalue inequalities

are obtained for the difference of weighted arithmetic and weighted geometric means of two positive

invertible operators A and B on a separable Hilbert space under the condition that A− B is com-

pact. This paper aims to prove some general versions of eigenvalue inequalities for the difference of

weighted arithmetic, weighted geometric and generalized Heinz means with better bounds under the

same conditions.
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1. Introduction. Let B(H) denote the algebra of all bounded linear operators

on a complex separable Hilbert space (H, 〈·, ·〉). The cone of positive operators is

denoted by B(H)+. As usual for selfadjoint operators A,B ∈ B(H), by A ≥ B, we

mean A − B ∈ B(H)+. We shall consider λ1(A) ≥ λ2(A) ≥ · · · ≥ 0, the eigenvalues

of a compact operator A ∈ B(H)+ arranged in the decreasing order and repeated

according to their multiplicity. The set of eigenvalues of X ∈ B(H) is called the

spectrum of X and is denoted by Sp(X). I stands for the identity operator.

There is a vast literature on operator connections and means, for instance see

[10, 11]. A one-to-one correspondence between the class of operator connections and

the operator monotone functions was established by Kubo and Ando [10], as follows:

(1.1) AσB = A1/2f(A−1/2BA−1/2)A1/2

for all positive operators A and B (Here A1/2 is the positive square root of A and σ

is a connection with f its representing function).

A normalized connection σ, i.e., IσI = I, is called a mean, and accordingly the

representing function f(x) satisfies f(1) = 1. The dual σ⊥ of a non-zero mean σ,
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defined by Aσ⊥B = (B−1σA−1)−1 for positive invertible operators A,B. We easily

see from (1.1) that the representing operator monotone function of σ⊥ is x
f(x) , where

f(x) is the representing function of σ.

The well known examples of operator monotone functions are (1−α)+αx, xα, and

(αx−1 + 1− α)−1 for 0 ≤ α ≤ 1. These functions represent the weighted arithmetic,

weighted geometric, and weighted harmonic means and these means are denoted by

∇α,#α and !α, respectively. The representing functions of ∇⊥
α , #

⊥
α , and !⊥α are given

by ((1 − α)x−1 + α)−1, x1−α, and (1 − α)x + α, respectively. In particular, we take

∇1/2, #1/2, and !1/2 or simply written as ∇, #, and !, the arithmetic, geometric, and

harmonic means, respectively. It is easy to see that ∇ and ! are duals of each other,

while # is a self dual mean.

The notion of generalized operator Heinz mean is given in [7], i.e.,

Hσ(A,B) =
AσB +Aσ⊥B

2
,

for two invertible operators A,B ∈ B(H)+.

Observe from (1.1) that the representing function of Hσ is f(x)+(x/f(x))
2 , where

f(x) is the representing function of the mean σ. Notice that the following inequality

√
x ≤ f(x) + (x/f(x))

2
≤ 1 + x

2
,

holds true for all x ∈ R
+. This leads to an interesting operator inequality,

A#B ≤ Hσ(A,B) ≤ A∇B

for any two invertible operators A,B ∈ B(H)+.

The operator means have always been of great importance in several branches of

science like electronics, electrical network theory, image scanning, radar system, etc.

For detailed study of operator means, the best sources are [2, 8, 9, 10].

Hirzallah et al. [6] in 2012, proved the following results.

Let A ≥ B be positive invertible operators with A−B compact. Then

(1.2) λj (A∇µB −A#µB) ≥ K(µ, β)λj

(

A−1/2(A−B)2A−1/2
)

, β ≥ 0,

(1.3) λj (B∇µA−B#µA) ≤ K(µ, γ)λj

(

B−1/2(A−B)2B−1/2
)

, −1 < γ ≤ 0,

where K(µ, t) = µ(1−µ)
2(1+t)2 for µ ∈ [0, 1] and j = 1, 2, . . .

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 557-568, August 2014



ELA

Inequalities Involving Eigenvalues for Difference of Operator Means 559

In 2014, Pal, Singh and Aujla [13] generalized (1.2) and (1.3) as follows:

Let f : (0,∞) → (0,∞) be an operator monotone function representing a mean

σ with µ = f ′(1). Then, for A ≥ B positive invertible operators with A−B compact,

(1.4) λj (A∇µB −AσB) ≥ Kf (a)λj

(

A−1/2(A−B)2A−1/2
)

, a ≥ 0,

(1.5) λj (B∇µA−BσA) ≤ Kf(b)λj

(

B−1/2(A−B)2B−1/2
)

, −1 < b ≤ 0,

where Kf (t) =
−f ′′(1)
2(1+t)2 and j = 1, 2, . . .

Our aim in this paper is to present a most general and different version of eigen-

value inequalities for difference of operator means. These conclude eigenvalue in-

equalities with better bounds, (see Remark 3.2) and subsume the existing inequalities

(1.2), (1.3), (1.4) and (1.5). We also discuss several related inequalities which include

a comparison of the eigenvalues of the difference of operator arithmetic, geometric,

and generalized Heniz means.

2. Basic results.

Lemma 2.1. Let f : (0,∞) → (0,∞) be an operator monotone function and let

f ′(1) ≥ 1/2 (resp., f ′(1) ≤ 1/2). Then

(2.1) f(1)− f ′(1) + f ′(1)x− f(x) ≥ −3f ′′(1)(x− 1)2

2((2f(1)− f ′(1))x + (f(1) + f ′(1)))

for x > 1 (resp., x < 1). The order of the inequality (2.1) reverses for x < 1

(resp., x > 1). Moreover, when f(x) is non-linear the equality holds if and only if

x = 1.

Proof. As is well-known (see [1, 10]), f(x) admits an integral representation

f(x) = f(0) + βx+

∫

(0,∞)

x(1 + λ)

x+ λ
dν(λ) = f(0) + βx+

∫

(0,∞)

φλ(x)dν(λ),

where β ≥ 0, ν a positive measure on (0,∞) and φλ(x) = x(1+λ)
x+λ for x, λ ∈ (0,∞).

The result holds trivially when f(x) is linear. We therefore, assume that f(x) is

non-linear i.e. f(x) = φλ(x) =
x(1+λ)
x+λ . Since φ′

λ(1) =
λ

1+λ and φ′′

λ(1) =
−2λ

(1+λ)2 then

on taking µ = λ
1+λ , the inequality (2.1) reduces to

1− µ+ µx− x

(1− µ)x + µ
− 3µ(1− µ)(x− 1)2

((2 − µ)x+ (1 + µ))
≥ 0.
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After small calculations, we see that the above inequality becomes equivalent to

(2.2)
µ(1− µ)(x − 1)2

3((1 − µ)x+ µ))
(

(2−µ)x
3 + 1+µ

3

) (1− x)(1 − 2µ) ≥ 0.

Clearly, µ ≤ 1, so (2.2) holds if

(2.3) (1− x)(1 − 2µ) ≥ 0.

The inequality (2.3) is true under the given conditions, i.e. µ ≥ 1/2 (resp., µ ≤ 1/2)

when x > 1 (resp., x < 1). This completes the proof of (2.1).

The proof of reverse version is similar, therefore not provided. The equality

conditions follow from (2.2).

Remark 2.2. The inequality (2.1) is better than an inequality given in [7]

(Lemma 2.1). However, the inequality in Lemma 2.1 in [7] is already proved better

than one given in [13], (see [7], Remark 2.2).

Lemma 2.3. Let f be as in Lemma 2.1. Then

(2.4) 0 ≤ f(1)− f ′(1) + f ′(1)x2 − f(x2) ≤ −2f ′′(1)(x− 1)2

for x < 1 (resp., x > 1). The inequality (2.4) does not hold good for x > 1 (resp., x <

1). Moreover, when f(x) is non-linear the equality holds if and only if x = 1.

Proof. First, note that f(1) − f ′(1) + f ′(1)x2 − f(x2) ≥ 0, using Lemma 2.1.

Again as in the previous lemma, we shall prove the latter inequality in (2.4) for f(x)

non-linear function, i.e., f(x) = φλ(x) = x(1+λ)
x+λ . Thus the inequality on the right

hand side of (2.4) reduces to prove

1

1 + λ
+

λ

1 + λ
x2 − 1 + λ

x2 + λ
x2 − 4λ

(1 + λ)2
(x− 1)2 ≤ 0.(2.5)

On taking µ = λ
1+λ together with some calculations, we obtain (2.5) equivalent to

(1− µ)µ(x − 1)2

(1− µ)x2 + µ

(

(x+ 1)2 − 4((1− µ)x2 + µ)
)

≤ 0.(2.6)

Clearly, (2.6) holds good for µ = 1/2, so we assume without loss of generality µ 6= 1/2.

Let

F (x) = (x+ 1)2 − 4((1− µ)x2 + µ).

Then,

F ′(x) = 2(x+ 1)− 8(1− µ)x.
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If µ > 1/2 then for all x < 1,

F ′(x) > 2(x+ 1)− 4x = 2(1− x) ≥ 0.

This means F (x) is an increasing function and hence F (x) ≤ F (1) = 0. If µ < 1/2

then for all x > 1,

F ′(x) < 2(x+ 1)− 4x = 2(1− x) ≤ 0.

This means F (x) is a decreasing function and hence F (x) ≤ F (1) = 0. This proves

(2.6). Thus the inequality (2.4) holds for all x < 1 (resp., x > 1) when f ′(1) ≥
1/2 (resp., f ′(1) ≤ 1/2).

To settle the cases x > 1 (resp., x < 1) when f ′(1) ≥ 1/2 (resp., f ′(1) ≤ 1/2),

we illustrate following examples:

(i) Take f(x) = 19x
6x+13 , here f ′(1) = 13/19 > 1/2 and the inequality (2.4) does

not hold good for x > 1, see Fig. 2.1 below.
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Fig. 2.1. 6
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(ii) Take f(x) = 5x
3x+2 , here f ′(1) = 2/5 < 1/2 and the inequality (2.4) does not

hold good for 0 ≤ x ≤ 1, see Fig. 2.2 below.
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Finally, the equality conditions are clear from (2.6).
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3. Eigenvalue inequalities for difference of operator means. To prove

eigenvalue inequalities involving difference of operator means, the following facts will

be used in the sequel.

An operator A ∈ B(H) is compact if and only if for every orthonormal set {en}
in H, lim

n→∞
〈Aen, en〉 → 0. This implies the following:

(i) If A,B ∈ B(H) are positive and A−B ∈ B(H)+, then A compact implies B

is so, (see [5] or [12, p. 59]).

(ii) The Weyl’s monotonicity principle for compact positive operators is that

if A,B ∈ B(H)+ are compact operators such that A − B ∈ B(H)+, then

λj(A) ≥ λj(B) for all j = 1, 2 . . . (see [1, p. 63] or [3, p. 26]).

Since the space of compact operators is a two-sided ideal in B(H), it is easy to see that

X(A−B)Y is compact if A−B is compact for A,B ∈ B(H) and X,Y are arbitrary

members of B(H). Moreover, using spectral theorem in Calkin Algebra setting, we

obtain A∇µB −AσB compact for A−B compact (for details, see [13]).

To avoid the repetitions, we shall discuss the equality cases for all the results

proved henceforth at the end of this section.

Theorem 3.1. Let σ be an operator mean with f(x) its representing function and

assuming µ = f ′(1). Let A ≥ B be positive invertible operators with A− B compact.

Then

λj((B∇µA)− (BσA)) ≥ −1

2
f ′′(1)λj((B∇ 2−µ

3

A)−1/2(A−B)2(B∇ 2−µ

3

A)−1/2),(3.1)

λj((A∇µB)− (AσB)) ≤ −1

2
f ′′(1)λj((A∇ 2−µ

3

B)−1/2(A−B)2(A∇ 2−µ

3

B)−1/2),(3.2)

for µ ≥ 1/2 and j = 1, 2, . . . The orders in the inequalities (3.1) and (3.2) are

reversed for µ ≤ 1/2. Equality holds if and only if A = B.

Proof. Use Lemma 2.1 for the given operator monotone function f(x) when

µ ≥ 1/2 to obtain

(3.3) 1−µ+µx−f(x) ≥ −f ′′(1)

2
(x−1)

(

2− µ

3
x+

1+ µ

3

)−1

(x−1), for x > 1

and

(3.4) 1− µ+ µx− f(x) ≤ −f ′′(1)

2
(x − 1)

(

2− µ

3
x+

1 + µ

3

)−1

(x− 1), for x < 1.

Replace x by B−1/2AB−1/2 in (3.3) and by A−1/2BA−1/2 in (3.4) respectively, to
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obtain

(I∇µB
−1/2AB−1/2)− (IσB−1/2AB−1/2)(3.5)

≥ −f ′′(1)

2
(B−1/2AB−1/2 − I)(I∇ 2−µ

3

B−1/2AB−1/2)−1(B−1/2AB−1/2 − I)

and

(I∇µA
−1/2BA−1/2)− (IσA−1/2BA−1/2)(3.6)

≤ −f ′′(1)

2
(A−1/2BA−1/2 − I)(I∇ 2−µ

3

A−1/2BA−1/2)−1(A−1/2BA−1/2 − I).

On pre and post multiplication to both sides by B1/2 in (3.5) and by A1/2 in (3.6)

respectively, we get

(B∇µA)− (BσA) ≥ −f ′′(1)

2
(A−B)(B∇ 2−µ

3

A)−1(A−B)

and

(A∇µB)− (AσB) ≤ −f ′′(1)

2
(A−B)(A∇ 2−µ

3

B)−1(A−B).

Since, the operators (B∇µA) − (BσA) and −f ′′(1)
2 (A − B)(A∇ 2−µ

3

B)−1(A − B) are

compact, so by fact (i) above, the operators −f ′′(1)
2 (A−B)(B∇ 2−µ

3

A)−1(A−B) and

(A∇µB) − (AσB) are compact. Using the fact (ii) and λj(X
∗X) = λj(XX∗), we

obtain

λj ((B∇µA)− (BσA)) ≥ −f ′′(1)

2
λj((A−B)(B∇ 2−µ

3

A)−1(A−B))

=
−f ′′(1)

2
λj((B∇ 2−µ

3

A)−1/2(A−B)2(B∇ 2−µ

3

A)−1/2)

and

λj ((A∇µB)− (AσB)) ≤ −f ′′(1)

2
λj((A −B)(B∇ 2−µ

3

A)−1(A−B))

=
−f ′′(1)

2
λj((B∇ 2−µ

3

A)−1/2(A−B)2(B∇ 2−µ

3

A)−1/2).

These prove (3.1) and (3.2). Similarly, the following reverse inequalities can be

proved:

λj ((B∇µA)− (BσA)) ≤ −f ′′(1)

2
λj(B∇ 2−µ

3

A)−1/2(A−B)2(B∇ 2−µ

3

A)−1/2),(3.7)

λj ((A∇µB)− (AσB)) ≥ −f ′′(1)

2
λj((A∇ 2−µ

3

B)−1/2(A−B)2(A∇ 2−µ

3

B)−1/2)(3.8)
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for µ ≤ 1/2 and j = 1, 2, . . .

Remark 3.2. The inequalities (3.1) and (3.8) are with better bounds than the

inequalities in [7, Theorem 3.1] and in [13, Theorem 2.2]. Indeed, for A ≥ B positive

invertible operators, we have

A ≥ A∇tB ≥ B, for all t ∈ [0, 1].

This implies

B−1 ≥ (A∇tB)−1 ≥ A−1 for all t ∈ [0, 1], (see [1], p.114).(3.9)

Observe that − f ′′(1)
2 ≥ − f ′′(1)

2(1+a)2 for a ≥ 0. Hence, for j = 1, 2, . . . , we have

−f ′′(1)

2
λj((A −B)(A∇ 2−µ

3

B)−1(A−B))(3.10)

≥ −f ′′(1)

2(1 + a)2
λj((A −B)A−1(A−B))

=
−f ′′(1)

2(1 + a)2
λj(A

−1/2(A−B)2A−1/2)

= Kf(a)λj(A
−1/2(A−B)2A−1/2).

The inequalities (3.2) and (3.7) are also better similarly. In fact −f ′′(1)
2(1+b)2 ≥ − f ′′(1)

2

for −1 < b ≤ 0 and using (3.9), we get

−f ′′(1)

2
λj((A −B)(B∇ 2−µ

3

A)−1(A−B))(3.11)

≤ −f ′′(1)

2(1 + b)2
λj((A−B)B−1(A−B))

=
−f ′′(1)

2(1 + b)2
λj(B

−1/2(A−B)2B−1/2)

= Kf(b)λj(B
−1/2(A−B)2B−1/2).

We now, present the following corollaries, in the light of the inequalities (3.10)

and (3.11). One may compare these in [4] and [13] with constants K(µ, 0) and Kxµ(0)

respectively.

Corollary 3.3. (cf. [6, Theorem 4]) Let A,B and σ be as in Theorem 3.1.

Then for arbitrarily fixed µ ∈ [0, 1] and j = 1, 2 . . . ,

λj(A∇B −A#B) ≥λj(A∇B −Hσ(A,B))

≥µ(1 − µ)

2
λj((A∇B)−1/2(A−B)2(A∇B)−1/2).
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Proof. Note that the representing function of the generalized Heinz mean Hσ

is given by F (x) = f(x)+(x/f(x))
2 , when f(x) is representing function of the mean σ.

Since F ′(1) = 1/2 and F ′′(1) = µ(µ− 1), where µ = f ′(1) ∈ [0, 1]. Now, on replacing

σ by Hσ in (3.8) and using Hσ(A,B) ≥ A#B, we obtain the desired result.

Corollary 3.4. (cf. [6, Theorem 4]) Let A,B, σ, and µ be as in Corollary 3.3.

Then for j = 1, 2 . . . ,

λj(A∇B −Hσ(A,B)) ≤ µ(1− µ)

2
λj((A∇B)−1/2(A−B)2(A∇B)−1/2).

Proof. The proof follows similarly as in Corollary 3.3 on replacing σ by Hσ in

(3.2).

Corollary 3.5. (cf. [4, Corollary 2.6]) Let A,B be as in Theorem 3.1 and

µ ∈ [0, 1]. Then

λj((B∇µA)− (B#µA))

≥ 1

2
µ(1 − µ)λj((B∇ 2−µ

3

A)−1/2(A−B)2(B∇ 2−µ

3

A)−1/2),

λj((A∇µB)− (A#µB))(3.12)

≤ 1

2
µ(1− µ)λj((A∇ 2−µ

3

B)−1/2(A−B)2(A∇ 2−µ

3

B)−1/2)

for µ ≥ 1/2 and j = 1, 2 . . . The orders are reversed for 0 ≤ µ ≤ 1/2.

Proof. Taking f(x) = xµ in Theorem 3.1, we obtain the desired result.

The following corollary is an outcome of Corollary 3.5, which may be treated as

a reverse version of Corollary 3.3.

Corollary 3.6. Let A,B, and σ be as in Theorem 3.1. Then for j = 1, 2 . . . ,

λj((A∇B) −Hσ(A,B)) ≤ λj((A∇B) − (A#B))

≤ 1

8
λj((A∇B)−1/2(A−B)2(A∇B)−1/2)

Proof. Take µ = 1/2 and using the fact that Hσ(A,B) ≥ A#B in (3.12), we get

the desired result.

Theorem 3.7. Let A,B, f, σ, and µ be as in Theorem 3.1. Then for j = 1, 2, . . . ,

(3.13) 0 ≤ λj((B∇µA)− (BσA)) ≤ −4f ′′(1)λj((A∇B) − (A#B)); µ ≤ 1

2
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and

(3.14) 0 ≤ λj((A∇µB)− (AσB)) ≤ −4f ′′(1)λj((A∇B) − (A#B)); µ ≥ 1

2
.

Equality holds if and only if A = B.

Proof. We prove the inequality (3.13) only, since the proof of (3.14) is similar.

Replace x2 by x in Lemma 2.3, to get

(3.15) 0 ≤ f(1)− f ′(1) + f ′(1)x− f(x) ≤ −2f ′′(1)(1 + x− 2
√
x).

Choose f ′(1) = µ ≤ 1/2. Since B−1/2AB−1/2 ≥ I, so, we replace x by B−1/2AB−1/2

in (3.15) to obtain

(I∇µB
−1/2AB−1/2)− (IσB−1/2AB−1/2)(3.16)

≤ −4f ′′(1)((I∇B−1/2AB−1/2)− (I#B−1/2AB−1/2)).

Pre and post multiplication by B1/2 to both sides in the inequality (3.16) lead to

(B∇µA)− (BσA) ≤ −4f ′′(1)((A∇B) − (A#B)).

Finally, the operator A∇B −A#B is compact, so in view of the facts (i) and (ii), we

obtain the desired result.

Corollary 3.8. Let A,B be as in Theorem 3.1 and µ ∈ [0, 1]. Then for j =

1, 2 . . . ,

λj(B∇µA−B#µA)≤ 4µ(1− µ)λj(A∇B −A#B)

≤ 2µ(A∇B −A#B); µ ≤ 1

2

and

λj(A∇µB −A#µB)≤ 4µ(1− µ)λj(A∇B −A#B)

≤ 2(1− µ)λj(A∇B −A#B);
1

2
≤ µ.

Equality holds if and only if A = B.

Proof. The result follows on taking f(x) = xµ in Theorem 3.7, and using the fact

that 2µ(1− µ) is the harmonic mean between µ and 1− µ.

Corollary 3.9. Let A,B, σ, and µ be as in Corollary 3.3. Then for j = 1, 2 . . . ,

λj(A∇B −Hσ(A,B))≤ 4µ(1− µ)λj(A∇B −A#B)

≤ 2 max{µ, 1− µ}λj(A∇B − A#B).
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Proof. Replace σ by Hσ in Theorem 3.7, to get the desired result.

Finally, we shall discuss the equality conditions in (3.1), (3.2), (3.7), (3.8), (3.13)

and (3.14). We recall a result from [3, p. 26], which says, if A,B ∈ B(H) are positive

invertible compact operators with A ≥ B, then A = B if and only if λj(A) = λj(B),

j = 1, 2, . . . The equality in (3.1) leads to

λj((B∇µA)− (BσA)) = −1

2
f ′′(1)λj((B∇ 2−µ

3

A)−1/2(A−B)2(B∇ 2−µ

3

A)−1/2),

for j = 1, 2, . . . and 1/2 ≤ µ ≤ 1. Then, we have

(1 − µ)I + µB−
1

2AB−
1

2 − f(B−
1

2AB−
1

2 )

= −1

2
f ′′(1)((I −B−1/2AB−1/2)(I∇ 2−µ

3

B−1/2AB−1/2)−1(I −B−1/2AB−1/2))

which is equivalently written as

1 + µ(t− 1)− f(t) = −3

2
f ′′(1)

(t− 1)2

1 + µ+ (2 − µ)t

for all t ∈ Sp(B−
1

2AB−
1

2 ). Hence it follows from the equality condition in the Lemma

2.1 that Sp(B−
1

2AB−
1

2 ) = {1}, i.e. A = B. The converse is trivial.

The proofs for equality condition in other cases are similar.
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[12] D.S. Mitrinović, J. Pečarić, and A.M. Fink. Classical and New Inequalities in Analysis. Kluwer

Academic Publishers Group, Dordrecht, 1993.

[13] R. Pal, M. Singh, and J.S. Aujla. Generalized operator version of Bernoulli’s inequality. Linear

and Multilinear Algebra, 62:267–273, 2014.

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 557-568, August 2014


